首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report mapping of active replication origins in thaum‐ and euryarchaeal replicons using high‐throughput sequencing‐based marker frequency analysis. The chromosome of the thaumarchaeon Nitrosopumilus maritimus is shown to contain a single origin of replication, whereas the main chromosome in the halophilic euryarchaea Haloferax mediterranei and Haloferax volcanii each contains two origins. All replication origins specified bidirectional replication, and the two origins in the halophiles were initiated in synchrony. The pHM500 plasmid of H. mediterranei is shown to contain a single origin, and the copy numbers of five plasmid replicons in the two halophiles were inferred to be close to that of the main chromosome. Origin recognition boxes (ORBs) that provide binding sites for Orc1/Cdc6 replication initiator proteins are identified at all chromosomal origins, as well as in a range of additional thaumarchaeal species. An annotation update is provided for all three species.  相似文献   

2.
3.
The unit-copy plasmid replicon mini-P1 consists of an origin, a gene for an initiator protein, RepA, and a control locus, incA. Both the origin and the incA locus contain repeat sequences that bind RepA. It has been proposed that the incA repeats control replication by sequestering the rate-limiting RepA initiator protein. Here we show that when the concentration of RepA was increased about fourfold beyond its normal physiological level from an inducible source in trans, the copy number of a plasmid carrying the P1 origin increased about eightfold. However, when the origin and a single copy of incA were present in the same plasmid, the copy number did not even double. The failure of an increased supply of RepA to overcome the inhibitory activity of incA is inconsistent with the hypothesis that incA inhibits replications solely by sequestering RepA. We propose that incA, in addition to sequestration, can also restrain replication by causing steric hindrance to the origin function. Our proposal is based on the observation that incA can bind to a RepA-origin complex in vitro.  相似文献   

4.
Mini-P1 plasmid replication: the autoregulation-sequestration paradox   总被引:31,自引:0,他引:31  
D K Chattoraj  R J Mason  S H Wickner 《Cell》1988,52(4):551-557
It has been proposed that the initiator protein RepA is rate limiting for mini-P1 plasmid replication, and that the role of the plasmid copy number control locus is to sequester the initiator and thus reduce replication. This proposal appears inconsistent with the observation that RepA is autoregulated, since the protein lost by sequestration should be replenished. A resolution of this autoregulation-sequestration paradox is possible if the sequestered RepA, unavailable for replication, is still available for promoter repression. We demonstrate that RepA binds to the control locus and to the promoter region simultaneously, causing the intervening DNA to loop. DNA looping could provide the requisite mechanism by which RepA bound to the control locus might exert repression.  相似文献   

5.
Molecular clocks reduce plasmid loss rates: the R1 case   总被引:3,自引:0,他引:3  
Plasmids control their replication so that the replication frequency per plasmid copy responds to the number of plasmid copies per cell. High sensitivity amplification in replication response to copy number deviations generally reduces variation in copy numbers between different single cells, thereby reducing the plasmid loss rate in a cell population. However, experiments show that plasmid R1 has a gradual, insensitive replication control predicting considerable copy number variation between single cells. The critical step in R1 copy number control is regulation of synthesis of a rate-limiting cis-acting replication protein, RepA. De novo synthesis of a large number of RepA molecules is required for replication, suggesting that copy number control is exercised at multiple steps. In this theoretical kinetic study we analyse R1 multistep copy number control and show that it results in the insensitive replication response found experimentally but that it at the same time effectively prohibits the existence of only one plasmid copy in a dividing cell. In combination with the partition system of R1, this can lead to very high segregational stability. The R1 control mechanism is compared to the different multistep copy number control of plasmid ColE1 that is based on conventional sensitivity amplification. This implies that while copy number control for ColE1 efficiently corrects for fluctuations that have already occurred, R1 copy number control prevents their emergence in cells that by chance start their cycle with only one plasmid copy. We also discuss how regular, clock-like, behaviour of single plasmid copies becomes hidden in experiments probing collective properties of a population of plasmid copies because the individual copies are out of phase. The model is formulated using master equations, taking a stochastic approach to regulation, but the mathematical formalism is kept to a minimum and the model is simplified to its bare essence. This simplicity makes it possible to extend the analysis to other replicons with similar design principles.  相似文献   

6.
The origin of replication of the IncL/M plasmid pMU604 was analyzed to identify sequences important for binding of initiator proteins and origin activity. A thrice repeated sequence motif 5'-NANCYGCAA-3' was identified as the binding site (RepA box) of the initiator protein, RepA. All three copies of the RepA box were required for in vivo activity and binding of RepA to these boxes appeared to be cooperative. A DnaA R box (box 1), located immediately upstream of the RepA boxes, was not required for recruitment of DnaA during initiation of replication by RepA of pMU604 unless a DnaA R box located at the distal end of the origin (box 3) had been inactivated. However, DnaA R box 1 was important for recruitment of DnaA to the origin of replication of pMU604 when the initiator RepA was that from a distantly related plasmid, pMU720. A mutation which scrambled DnaA R boxes 1 and 3 and one which scrambled DnaA R boxes 1, 3 and 4 had much more deleterious effects on initiation by RepA of pMU720 than on initiation by RepA of pMU604. Neither Rep protein could initiate replication from the origin of pMU604 in the absence of DnaA, suggesting that the difference between them might lie in the mechanism of recruitment of DnaA to this origin. DnaA protein enhanced the binding and origin unwinding activities of RepA of pMU604, but appeared unable to bind to a linear DNA fragment bearing the origin of replication of pMU604 in the absence of other proteins.  相似文献   

7.
Summary A subset of Escherichia coli heat shock proteins, DnaK, DnaJ and GrpE were shown to be required for replication of mini-F plasmid. Strains of E. coli K12 carrying a missense mutation or deletion in the dnaK, dnaJ, or grpE gene were virtually unable to be transformed by mini-F DNA at the temperature (30° C) that permits cell growth. When excess amounts of the replication initiator protein (repE gene product) of mini-F were provided by means of a multicopy plasmid carrying repE, these mutant bacteria became capable of supporting mini-F replication under the same conditions. However, the copy number of a high copy number mini-F plasmid was reduced in these mutant bacteria as compared with the wild type in the presence of excess RepE protein. Furthermore, mini-F plasmid mutants that produce altered initiator protein and exhibit a very high copy number were able to replicate in strains deficient in any of the above heat shock proteins. These results indicate that the subset of heat shock proteins (DnaK, DnaJ and GrpE) play essential roles that help the functioning of the RepE initiator protein in mini-F DNA replication.  相似文献   

8.
Summary Comparative analyses were made between plasmid pSa17, a deletion derivative of pSa that is capable of replicating efficiently in Escherichia coli and plasmid pSa3, a derivative that is defective for replication. By comparing the restriction maps of these two derivatives, the regions essential for replication and for stable maintenance of the plasmid were determined. A 2.5 kb DNA segment bearing the origin of DNA replication of pSa17 was sequenced. A 36 kDa RepA protein was encoded in the region essential for replication. Downstream of the RepA coding region was a characteristic sequence including six 17 bp direct repeats, the possible binding sites of RepA protein, followed by AT-rich and GC-rich sequences. Furthermore, an 8 bp incomplete copy of the 17 bp repeat was found in the promoter region of the repA gene. Based on the hypothesis that RepA protein binds to this partial sequence as well as to intact 17 bp sequences, an autoregulatory system for the synthesis of RepA protein may be operative. Another open reading frame (ORF) was found in the region required for the stability of the plasmid. The putative protein encoded in this ORF showed significant homology to several site-specific recombination proteins. A possible role of this putative protein in stable maintenance of the plasmid is discussed.  相似文献   

9.
Summary Replication of plasmid R1162 DNA does not require the product of the dnaA gene. An integrated copy of the plasmid can suppress the temperature-sensitive dnaA46 allele when (1) additional plasmid copies are present in the cytoplasm and (2) an inactive replication origin, generated by deletion, is also present in the chromosome. We propose that the inactive origin sets the rate of initiation of chromosome replication at a level compatible with cell viability, possibly by providing additional binding sites for an R1162-encoded protein that is rate-limiting for plasmid replication.  相似文献   

10.
Random chemical mutation of a Corynebacterium glutamicum-Escherichia coli shuttle vector derived from plasmid pCGR2 was done using hydroxylamine. It brought about amino acid substitutions G109D and E180K within the replicase superfamily domain of the plasmid's RepA protein and rendered the plasmid highly unstable, especially at higher incubation temperatures. Colony formation of C. glutamicum was consequently completely inhibited at 37 °C but not at 25 °C. G109 is a semi-conserved residue mutation which resulted in major temperature sensitivity. E180 on the other hand is not conserved even among RepA proteins of closely related C. glutamicum pCG1 family plasmids and its independent mutation caused relatively moderate plasmid instability. Nonetheless, simultaneous mutation of both residues was required to achieve temperature-sensitive colony formation. This new pCGR2-derived temperature-sensitive plasmid enabled highly efficient chromosomal integration in a variety of C. glutamicum wild-type strains, proving its usefulness in gene disruption studies. Based on this, an efficient markerless gene replacement system was demonstrated using a selection system incorporating the temperature-sensitive replicon and Bacillus subtilis sacB selection marker, a system hitherto not used in this bacterium. Single-crossover integrants were accurately selected by temperature-dependent manner and 93% of the colonies obtained by the subsequent sucrose selection were successful double-crossover recombinants.  相似文献   

11.
B J Froehlich  J R Scott 《Plasmid》1988,19(2):121-133
P1 and P7 are closely related plasmid prophages which are members of the same incompatibility group. We report the complete DNA sequence of the replication region of P7 and compare it to that of P1. The sequence predicts a single amino acid difference between the RepA proteins of these two plasmids, no differences in methylation sites or regions where dnaA protein is expected to bind, and no difference in the spacing of the major features of the two replicons. A P1 replicon with a mutation in repA, the gene that encodes an essential replication protein, is complemented for replication by providing either the P1 RepA protein (RepA1) or the P7 RepA protein (RepA7) in trans. Furthermore, when either of these proteins is supplied in trans, the plasmid copy number of P1 cop mutants drops to that of P1 cop+. However, when RepA7 is supplied, the copy number of P1 cop and P1 cop+ is higher than that when RepA1 is supplied. This indicates that the single amino acid difference between the two versions of the RepA protein plays an important role in determining the plasmid copy number.  相似文献   

12.
13.
H M Shepard  D H Gelfand  B Polisky 《Cell》1979,18(2):267-275
The Col E1-derivative copy number mutant plasmid pOP1Δ6 has been used to investigate the control of plasmid replication. pOP1Δ6 normally exists at about 200 copies per chromosome, while the wild-type plasmid from which it was derived (pBGP120) exists at about 15 copies per chromosome. We have observed that in E. coli containing both pOP1Δ6 and pBGP120, the copy number of pOP1Δ6 is lowered to 4–6 copies per chromosome. Thus the mutation in pOP1Δ6 is recessive. The association between the two plasmids is stable in E. coli, indicating that incompatibility properties as well as replication control characteristics have been altered in pOP1Δ6. Co-residence of the unrelated plasmid pSC101 with pOP1Δ6 has no detectable effect on pOP1Δ6 copy number. These results suggest that a plasmid-specific, diffusible repressor may act negatively to control plasmid copy number, and that pOP1Δ6 produces a defective repressor or is altered in repressor synthesis. We have constructed in vitro a plasmid which is identical in size to pQP1Δ6 but contains a replication origin region derived from pBGP120. Since this plasmid, pNOP1, exists stably (like pBGP120) at 10–15 copies per chromosome, the high copy number of pOP1Δ6 is not related to its reduced size relative to pBGP120. To localize the mutation in pOP1Δ6 responsible for DNA overproduction, we have cloned fragments of pBGP120 into pOP1Δ6 and selected for plasmids with wild-type copy number. We find that a 2.0 kb region of pBGP120 DNA surrounding the origin of plasmid DNA replication is capable of suppressing the DNA overproducer phenotype of pOP1Δ6. The 2.0 kb fragment is capable of independent self-replication or can integrate into pOP1Δ6 in vivo to form a composite plasmid with two origins of replication. The overproducer phenotype of pOP1Δ6 is suppressed in either configuration.  相似文献   

14.
15.
RepA, a plasmid-encoded gene product required for pSC101 replication in Escherichia coli, is shown here to inhibit the replication of pSC101 in vivo when overproduced 4- to 20-fold in trans. Unlike plasmids whose replication is prevented by mutations in the repA gene, plasmids prevented from replicating by overproduction of the RepA protein were lost rapidly from the cell population instead of being partitioned evenly between daughter cells. Removal of the partition (par) locus increased the inhibitory effect of excess RepA on replication, while host and plasmid mutations that compensate for the absence of par, or overproduction of the E. coli DnaA protein, diminished it. A repA mutation (repA46) that elevates pSC101 copy number almost entirely eliminated the inhibitory effect of RepA at high concentration and stimulated replication when the protein was moderately overproduced. As the RepA protein can exist in both monomer and dimer forms, we suggest that overproduction promotes RepA dimerization, reducing the formation of replication initiation complexes that require the RepA monomer and DnaA; we propose that the repA46 mutation alters the ability of the mutant protein to dimerize. Our discovery that an elevated intracellular concentration of RepA specifically impedes plasmid partitioning implies that the RepA-containing complexes initiating pSC101 DNA replication participate also in the distribution of plasmids at cell division.  相似文献   

16.
A food-grade vector system was developed that allows stable integration of multiple plasmid copies in the chromosome of Lactococcus lactis. The vector consists of the plus origin of replication (Ori+) of the lactococcal plasmid pWV01, the sucrose genes of the lactic acid bacterium Pediococcus pentosaceus PPE1.0 as selectable marker, a multiple-cloning site, and a lactococcal DNA fragment of a well-characterized chromosomal region. The system includes two L. lactis strains, LL108 and LL302, which produce the pWV01 RepA protein essential for replication of the Ori+ vectors. These helper strains allow the construction and isolation of the replicating form of the integration plasmids from a homologous background. Single-cross-over integration of the plasmids in L. lactis MG1363 resulted in amplifications to a level of approximately 20 copies/chromosome after selection of the transformants on medium containing sucrose as the only fermentable sugar. The amplifications were stable under selective growth conditions. In glucose-containing medium a limited loss of integrated plasmid copies was detected at a rate of (7.5–15) × 10−2 copies per generation. One strain, MG124, was isolated that had retained 11 integrated copies after a period of 120 generations of non-selective growth. These results show that the single-cross-over integration system described here represents a simple procedure for the engineering of stable food-grade strains carrying multiple copies of a gene of interest. Received: 23 September 1997 / Received revision: 21 November 1997 / Accepted: 21 November 1997  相似文献   

17.
Summary pTB19, a 27 kb plasmid originating from a thermophilic Bacillus species, contains integrated copies of two rolling-circle type plasmids on a 10.6 kb DNA fragment. In the present study we analysed the part of pTB19 that contains the rolling-circle plasmid pTB913 and the region in between the two rolling-circle plasmids. We show that, in the integrated state, pTB913 was flanked by a 55 by direct repeat that duplicated part of the replication initiation gene repB. Since repB was interrupted, the integrated pTB913 could not initiate rolling-circle replication. Autonomously replicating pTB913 was produced from pTB19, probably through recombination between the 55 by direct repeats; this was a rare event. Since the second integrated rolling-circle type plasmid also contained a non-functional replication initiation gene, replication of pT1319 must be controlled by the RepA determinant. Theta-type replication, controlled by RepA is likely to account for the high stability of pTB19. In between the two integrated rolling-circle plasmids was present an open reading frame (447 codons) which could encode a protein of unknown function.  相似文献   

18.
19.
The replicon of the low copy number plasmid P1 uses the three Escherichia coli heat shock proteins DnaJ, DnaK, and GrpE for the efficient initiation of its DNA replication. The only P1-encoded protein required for plasmid replication is the initiator, RepA. Binding of RepA to the origin also represses the promoter for the repA gene, which is located within the origin. We found that repression is incomplete in E. coli strains with mutations in the dnaJ, dnaK, or grpE genes. Since there is no decrease in RepA concentration in the mutant strains, the mutations are likely to affect the protein-DNA or protein-protein reactions required for repression, thereby decreasing RepA binding at its promoter. We also showed that the deficit in repression can be overcome by providing excess RepA, implying that the mechanism of repression is not altered in the mutant strains. Since repression requires RepA binding to the origin, a binding deficit might account for the replication defect in the heat shock mutants.  相似文献   

20.
A 24-kb plasmid with 21 open reading frames (ORFs) was newly isolated from Corynebacterium glutamicum ATCC 14997 and named pCGR2. Three of its ORFs were indispensable for stable autonomous replication of pCGR2 in C. glutamicum: in the absence of selective pressure, deletion derivatives of pCGR2 containing the three ORFs showed stability in C. glutamicum for over 50 generations. The first of these ORFs encoded replicase repA whose gene product revealed high amino acid sequence similarity to corresponding gene products of C. glutamicum pCG1-family plasmids in general, and to that of pTET3 plasmid repA in particular. The other two ORFs were located upstream of repA and exhibited high sequence similarity to pTET3 parA and parB, respectively. Interestingly, plasmids based on the pCGR2 were compatible not only with those based on different family plasmids (pBL1, pCASE1) but also with those based on pCG1-family plasmid. Plasmids comprising pCGR2 repA showed a copy number of four in C. glutamicum. The number increased to 240 upon introduction of a mutation within the repA origin of the putative promoter for counter-transcribed RNA. This 60-fold increase in copy number should immensely contribute towards enhanced expression of desired genes in C. glutamicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号