首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of a subfamily of lipid globule‐associated proteins, referred to as plant fibrillins (FIB1a, ‐1b, ‐2), was determined using a RNA interference (RNAi) strategy. We show that Arabidopsis plants with reduced levels of these plastid structural proteins are impaired in long‐term acclimation to environmental constraint, namely photooxidative stress imposed by high light combined with cold. As a result, their photosynthetic apparatus is inefficiently protected. This leads to the prevalence of an abnormal granal and stromal membrane arrangement, as well as higher photosystem II photoinhibition under stress. The visible phenotype of FIB1‐2 RNAi lines also includes retarded shoot growth and a deficit in anthocyanin accumulation under stress. All examined phenotypic effects of lower FIB levels are abolished by jasmonate (JA) treatment. An atypical expression pattern of several JA‐induced genes was observed in RNAi plants. A JA‐deficient mutant was found to share similar stress phenotypic characteristics with FIB RNAi plants. We conclude a new physiological role for JA, namely acclimation of chloroplasts, and that light/cold stress‐related JA biosynthesis is conditioned by the accumulation of plastoglobule‐associated FIB1‐2 proteins. Consistent correlative data suggest that this FIB effect is mediated by plastoglobule (and triacylglycerol) accumulation as the potential site for initiating the chloroplast stress‐related JA biosynthesis.  相似文献   

3.
Ethylene response factor 1 (ERF1) is an essential integrator of the jasmonate and ethylene signalling pathways coordinating a large number of genes involved in plant defences. Its orthologue in Hevea brasiliensis, HbERF‐IXc5, has been assumed to play a major role in laticifer metabolism and tolerance to harvesting stress for better latex production. This study sets out to establish and characterize rubber transgenic lines overexpressing HbERF‐IXc5. Overexpression of HbERF‐IXc5 dramatically enhanced plant growth and enabled plants to maintain some ecophysiological parameters in response to abiotic stress such as water deficit, cold and salt treatments. This study revealed that HbERF‐IXc5 has rubber‐specific functions compared to Arabidopsis ERF1 as transgenic plants overexpressing HbERF‐IXc5 accumulated more starch and differentiated more latex cells at the histological level. The role of HbERF‐IXc5 in driving the expression of some target genes involved in laticifer differentiation is discussed.  相似文献   

4.
5.
6.
Phytohormones are central players in sensing and signalling numerous environmental conditions like drought. In this work, hormone profiling together with gene expression of key enzymes involved in abscisic acid (ABA) and jasmonate biosynthesis were studied in desiccating Arabidopsis roots. Jasmonic acid (JA) content transiently increased after stress imposition whereas progressive and concomitant ABA and Jasmonoyl Isoleucine (JA‐Ile) accumulations were detected. Molecular data suggest that, at least, part of the hormonal regulation takes place at the biosynthetic level. These observations also point to a possible involvement of jasmonates on ABA biosynthesis under stress. To test this hypothesis, mutants impaired in jasmonate biosynthesis (opr3, lox6 and jar1‐1) and in JA‐dependent signalling (coi1) were employed. Results showed that the early JA accumulation leading to JA‐Ile build up was necessary for an ABA increase in roots under two different water stress conditions. Signal transduction between water stress‐induced JA‐Ile accumulation and COI1 is necessary for a full induction of the ABA biosynthesis pathway and subsequent hormone accumulation in roots of Arabidopsis plants. The present work adds a level of interaction between jasmonates and ABA at the biosynthetic level.  相似文献   

7.
  • Salinity, which is one of the most common abiotic stresses, may severely affect plant productivity and quality. Although plant lectins are thought to play important roles in plant defense signaling during pathogen attack, little is known about the contribution of plant lectins to stress resistance.
  • We cloned and functionally characterized a rice jacalin‐related mannose‐binding lectin gene, OsJRL, from rice ‘Nipponbare’. We analyzed the expression patterns of OsJRL under various stress conditions in rice. Furthermore, we overexpressed OsJRL in Escherichia coli and rice.
  • The cDNA of OsJRL contained a 438 bp open reading frame, which encodes a polypeptide of 145 amino acids. OsJRL was localized in the nucleus and cytoplasm. Real time PCR analyses revealed that OsJRL expression showed tissue specificity in rice and was upregulated under diverse stresses, namely salt, drought, cold, heat and abscisic acid treatments. Overexpression of OsJRL in E. coli enhanced cell viability and dramatically improved tolerance of high salinity. Overexpression of OsJRL in rice also enhanced salinity tolerance and increased the expression levels of a number of stress‐related genes, including three LEA (late embryogenesis abundant proteins) genes (OsLEA19a, OsLEA23 and OsLEA24), three Na+ transporter genes (OsHKT1;3, OsHKT1;4 and OsHKT1;5) and two DREB genes (OsDREB1A and OsDREB2B).
  • Based on these results, we suggest that OsJRL plays an important role in cell protection and stress signal transduction.
  相似文献   

8.
  • Involvement of nitric oxide (NO) in plant metabolism and its connection with phytohormones has not been fully described, thus information about the role of this molecule in signalling pathways remains fragmented. In this study, the effects of NO on calmodulin (CAM), calcium protein kinase (CPK), content of phytohormones and secondary metabolites in canola plants under salinity stress were investigated.
  • We applied 100 μM sodium nitroprusside as an NO source to canola plants grown under saline (100 mM NaCl) and non-saline conditions at the vegetative stage.
  • Plant growth was negatively affected by salinity, but exogenous NO treatment improved growth. NO caused a significant increase in activity of CAT, SOD and POX through their enhanced gene expression in stressed canola. Salinity-responsive genes, namely CAM and CPK, were induced by NO in plants grown under salinity. NO application enhanced phenolic compounds, such as gallic acid and coumaric acid and flavonoid compound,s catechin, diadzein and kaempferol, in plants subjected to salinity. NO treatment enhanced abscisic acid and brassinosteroids but decreased auxin and gibberellin in stressed canola plants.
  • The impacts of NO in improving stress tolerance in canola required CAM and CPK. Also, NO signalling re-established the phytohormone balance and resulted in enhanced tolerance to salt stress. Furthermore, NO improved salinity tolerance in canola by increasing enzymatic and non-enzymatic antioxidant content.
  相似文献   

9.
10.
11.
Adverse environmental stresses affect plant growth and crop yields. Sheepgrass (Leymus chinensis (Trin.) Tzvel), an important forage grass that is widely distributed in the east of Eurasia steppe, has high tolerance to extreme low temperature. Many genes that respond to cold stress were identified in sheepgrass by RNA‐sequencing, but more detailed studies are needed to dissect the function of those genes. Here, we found that LcFIN2, a sheepgrass freezing‐induced protein 2, encoded a chloroplast‐targeted protein. Expression of LcFIN2 was upregulated by freezing, chilling, NaCl and abscisic acid (ABA) treatments. Overexpression of LcFIN2 enhanced the survival rate of transgenic Arabidopsis after freezing stress. Importantly, heterologous expression of LcFIN2 in rice exhibited not only higher survival rate but also accumulated various soluble substances and reduced membrane damage in rice under chilling stress. Furthermore, the chlorophyll content, the quantum photochemistry efficiency of photosystem II (ΦPSII), the non‐photochemical quenching (NPQ), the net photosynthesis rate (Pn) and the expression of some chloroplast ribosomal‐related and photosynthesis‐related genes were higher in the transgenic rice under chilling stress. These findings suggested that the LcFIN2 gene could potentially be used to improve low‐temperature tolerance in crops.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Understanding the mechanism by which plants sense, signal and respond to salinity stress is of great interest to plant biologists. In stress signalling, often the same molecules are involved in both damage-related and adaptive events. To dissect this complexity, we compared the salinity responses of two grapevine cell lines differing in their salinity tolerance. We followed rapid changes in the cellular content of sodium and calcium, apoplastic alkalinisation and slower responses in the levels of jasmonic acid, its active isoleucine conjugate and abscisic acid, as well as of stilbenes. Differences in timing and sensitivity to either the lanthanoid Gd or exogenous calcium provide evidence for an adaptive role of early sodium uptake through non-selective cation channels acting upstream of Ca2+ and H+ fluxes. We find a correlation of salt sensitivity with unconstrained jasmonate (JA) signalling, whereas salt adaptation correlates with tight control of jasmonic acid and its isoleucine conjugate, accompanied by accumulation of abscisic acid and suppression of stilbenes that trigger defence-related cell death. The data are discussed by a model where efficient fine-tuning of JA signalling determines whether cells will progress towards adaptation or programme cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号