首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pineal organ of masu salmon Oncorhynchus masou was maintained in a flow-through, whole-organ culture (superfusion) system and melatonin secretory profiles were determined at 15 °C under light-dark cycles of 12:12 h (LD 12:12) or the same in combination with constant darkness (DD) for 72 h. Under LD 12:12, superfused pineal organs showed a rhythmic melatonin secretion with high and low rates during the dark phase and the light phase, respectively. When the pineal organs maintained under LD 12:12 for 24 h were transferred to DD, melatonin secretion was consistently activated and no endogenous component was evident. When the pineal organs maintained under DD for 48 h were transferred to LD 12:12, melatonin secretion was reduced only during the light phase. These results indicate that melatonin secretion from the superfused pineal organ of masu salmon is regulated not by an intra-pineal circadian oscillator but by the environmental LD cycles, via local photoreceptors.  相似文献   

2.
The dinoflagellate Gonyaulax polyedra was previously shown to undergo asexual encystment in response to decreased temperature (15° instead of 20°C rearing temperature) in combination with short-days, a response which can be mimicked by melatonin and, much more efficiently, by 5-methoxytryptamine (= 5-MT). We demonstrate that these cyst-inducing conditions lead to enormous accumulations of the two methoxyindoleamines. The circadian rhythmicity of melatonin is maintained for the two days usually preceding cyst formation, though, at an elevated level. Transiently, very high concentrations of melatonin can occur, eventually exceeding 1 millimolar. These extreme concentrations decay rapidly; during this decline, 5-MT and 5-methoxytryptophol appear in large amounts. The concentrations of 5-MT which are measured during this process are higher than those required for cyst induction by the exogenous indoleamine.  相似文献   

3.
At a temperature of 15oC, Gonyaulax polyedra responds to short days (light ≤ 10 h) by transition to the stage of a resting cyst. At 20oC, even an lightdark (LD) cycle of 6:18 is incapable of inducing this process. In otherwise cyst-inducing conditions (15oC; 10 h of light per day), an interruption of the scotophase by 2 h of light (LDLD 8:2:2:12 or 2:2:8:12) prevented encystment. Cyst induction is, therefore, initiated by a photoperiodic mechanism rather than by light deficiency. In Gonyaulax, photoperiodism may be mediated by the action of indoleamines. Melatonin, which exhibits a circadian rhythmicity in this organism, leads to encystment when given 1 h before lights-off in LD 11:13 at 15oC, i.e., under otherwise noninducing conditions. Again, at 20oC, melatonin is inefficient. Some analogues of melatonin, in particular, 5-methoxytryptamine and N,N-dimethyl-5-methoxytryptamine, and, at high concentrations, their respective precursors, serotonin and bufotenin, are capable of inducing cyst formation at 20oC and in LD 12:12, whereas A'-acetyl-serotonin does not show this effect.  相似文献   

4.
The pineal organ of masu salmon Oncorhynchus masou was maintained in a flow-through, whole-organ culture (superfusion) system and melatonin secretory profiles were determined at 15 °C under light-dark cycles of 12:12 h (LD 12:12) or the same in combination with constant darkness (DD) for 72 h. Under LD 12:12, superfused pineal organs showed a rhythmic melatonin secretion with high and low rates during the dark phase and the light phase, respectively. When the pineal organs maintained under LD 12:12 for 24 h were transferred to DD, melatonin secretion was consistently activated and no endogenous component was evident. When the pineal organs maintained under DD for 48 h were transferred to LD 12:12, melatonin secretion was reduced only during the light phase. These results indicate that melatonin secretion from the superfused pineal organ of masu salmon is regulated not by an intra-pineal circadian oscillator but by the environmental LD cycles, via local photoreceptors.  相似文献   

5.
The rhythmic expression of circadian clock genes in the neurons of the suprachiasmatic nucleus (SCN) underlies the manifestation of endogenous circadian rhythmicity in behavior and physiology. Recent evidence demonstrating rhythmic clock gene expression in non‐SCN tissues suggests that functional clocks exist outside the central circadian pacemaker of the brain. In this investigation, the nature of an oscillator in peripheral blood mononuclear cells (PBMCs) is evaluated by assessing clock gene expression throughout both a typical sleep/wake cycle (LD) and during a constant routine (CR). Six healthy men and women aged (mean±SEM) 23.7±1.6 yrs participated in this five‐day investigation in temporal isolation. Core body temperature and plasma melatonin concentration were measured as markers of the central circadian pacemaker. The expression of HPER1, HPER2, and HBMAL1 was quantified in PBMCs sampled throughout an uninterrupted 72 h period. The core body temperature minimum and the midpoint of melatonin concentration measured during the CR occurred 2:17±0:20 and 3:24 ±0:09 h before habitual awakening, respectively, and were well aligned to the sleep/wake cycle. HPER1 and HPER2 expression in PBMCs demonstrated significant circadian rhythmicity that peaked early after wake‐time and was comparable under LD and CR conditions. HBMAL1 expression was more variable, and peaked in the middle of the wake period under LD conditions and during the habitual sleep period under CR conditions. For the first time, bi‐hourly sampling over three consecutive days is used to compare clock gene expression in a human peripheral oscillator under different sleep/wake conditions.  相似文献   

6.
At a temperature of 15oC, Gonyaulax polyedra responds to short days (light ≤ 10 h) by transition to the stage of a resting cyst. At 20oC, even an lightdark (LD) cycle of 6:18 is incapable of inducing this process. In otherwise cyst-inducing conditions (15oC; 10 h of light per day), an interruption of the scotophase by 2 h of light (LDLD 8:2:2:12 or 2:2:8:12) prevented encystment. Cyst induction is, therefore, initiated by a photoperiodic mechanism rather than by light deficiency. In Gonyaulax, photoperiodism may be mediated by the action of indoleamines. Melatonin, which exhibits a circadian rhythmicity in this organism, leads to encystment when given 1 h before lights-off in LD 11:13 at 15oC, i.e., under otherwise noninducing conditions. Again, at 20oC, melatonin is inefficient. Some analogues of melatonin, in particular, 5-methoxytryptamine and N,N-dimethyl-5-methoxytryptamine, and, at high concentrations, their respective precursors, serotonin and bufotenin, are capable of inducing cyst formation at 20oC and in LD 12:12, whereas A'-acetyl-serotonin does not show this effect.  相似文献   

7.
The rhythm of adult eclosion in the Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) is investigated under various photoperiods and temperatures aiming to determine the nature of the temperature compensation and the free‐running period. Insects that are committed to a nondiapause larval development show diel rhythms of adult eclosion at 30, 25 and 20 °C. At 30 °C, the eclosion peak (i.e. the mean time of eclosion) occurs approximately 20 h after lights off under an LD 4 : 20 h photocycle, and at approximately 15 h under an LD 20 : 4 h photocycle. At 25 °C, the peak of eclosion occurs approximately 19 h after lights off under an LD 2 : 20 h photocycle and at approximately 16 h under an LD 20 : 4 h photocycle. At 20 °C, the eclosion peak is significantly advanced under long days of >12 h (i.e. approximately 20 h after lights off under an LD 4 : 20 h photocycle and approximately 9 h under an LD 20 : 4 h photocycle), indicating an effect of both lights‐off and lights‐on signals on the timing of the adult eclosion. To determine the involvement of a self‐sustained oscillator, the rhythm of adult eclosion is examined under darkness at different temperatures (30 to 21 °C). The mean free‐running periods are 22.4, 22.8, 22.0 and 22.5 h at 30, 24, 23 and 22 °C, respectively, indicating that the eclosion rhythm is temperature‐compensated. However, this rhythm does not free‐run under constant darkness at 21 °C. Because a clear diel rhythm is observed under 24‐h photocycles at 20 °C, the oscillator might be damped out within 24 h at the lower temperature.  相似文献   

8.
The dinoflagellate Gonyaulax polyedra was previously shown to undergo asexual encystment in response to decreased temperature (15° instead of 20°C rearing temperature) in combination with short-days, a response which can be mimicked by melatonin and, much more efficiently, by 5-methoxytryptamine (= 5-MT). We demonstrate that these cyst-inducing conditions lead to enormous accumulations of the two methoxyindoleamines. The circadian rhythmicity of melatonin is maintained for the two days usually preceding cyst formation, though, at an elevated level. Transiently, very high concentrations of melatonin can occur, eventually exceeding 1 millimolar. These extreme concentrations decay rapidly; during this decline, 5-MT and 5-methoxytryptophol appear in large amounts. The concentrations of 5-MT which are measured during this process are higher than those required for cyst induction by the exogenous indoleamine.  相似文献   

9.
Abstract. The interactive effects of temperature (20 °C or 25 °C) and photoperiod (LD 12 : 12 h or LD 15 : 9 h) on diapause induction and termination are investigated in the west‐Japan type yellow‐spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae). Larval diapause of P. hilaris is induced under three diapause‐inducing conditions (20 °C–SD, 20 °C–LD and 25 °C–SD), and the diapause larvae are transferred to one of four conditions (20 °C–SD, 20 °C–LD, 25 °C–SD or 25 °C–LD) for observation of pupation, which indicates termination of diapause. The intensity of diapause induced under the three conditions increases in the order 20 °C–SD < 25 °C–SD < 20 °C–LD, when assessed by the time course of pupation after the transfer. On the other hand, the effectiveness of the temperature–photoperiod combinations to terminate diapause is in the order 25 °C–SD (ineffective) < < 20 °C–LD < 25 °C–LD < 20 °C–SD. Among the temperatures (5, 10, 15 and 20 °C) examined, 15 °C is the most effective in terminating diapause under the short day; diapause in most larvae appears to have been completed in 15 days.  相似文献   

10.
Abstract

The possible endogenous circadian rhythm in the feeding activity of rainbow trout (Oncorhynchus mykiss) was investigated using individual fish previously trained for self‐feeding. Under LD 12:12 conditions, the fish showed a diurnal behaviour, in many cases with a feeding rhythm with two main peaks of food demand at dawn and dusk, with an 8h interval of low feeding activity, and the actograms showed an expected 24 h rhythm. Fish kept under constant conditions (L : L, 15°±0.5°C), showed free‐running feeding activity for about 12 days. Food demands were concentrated at dawn, with a periodogram of 25.3 hour, under continuous environmental conditions. Results showed evidence for the endogenous origin of the circadian rhythm of feeding in this species.  相似文献   

11.
ABSTRACT

Melatonin, an essential pineal hormone, acts as a marker of the circadian clock that regulates biological rhythms in animals. The effects of exogenous melatonin on the circadian system of nocturnal rodents have been extensively studied; however, there is a paucity of studies on the phase-resetting characteristics of melatonin in diurnal rodents. We studied the phase shifting effects of exogenous melatonin as a single melatonin injection (1 mg/kg) at various phases of the circadian cycle on the circadian locomotor activity rhythm in the palm squirrel, Funambulus pennantii. A phase response curve (PRC) was constructed. Adult male squirrels (N = 10) were entrained to a 12:12 h light-dark cycle (LD) in a climate-controlled chronocubicle with food and water provided ad libitum. After stable entrainment, squirrels were transferred to constant dark condition (DD) for free-running. Following stable free run, animals were administered a single dose of melatonin (1 mg/kg in 2% ethanol-phosphate buffered saline (PBS) solution) or vehicle (2% ethanol-PBS solution) at circadian times (CTs) 3 h apart to evoke phase shifts. The phase shifts elicited at various CTs were plotted to generate the PRC. A dose response curve was generated using four doses (0.5, 1, 2 and 4 mg/kg) administered at the CT of maximum phase advance. Melatonin evoked maximum phase advances at CT0 (1.23 ± 0.28 h) and maximum phase delays at CT15 (0.31 ± 0.09 h). In the dose response experiment, maximal phase shifts were evoked with 1 mg/kg. In contrast, no significant shifts were observed in control groups. Our study demonstrates that the precise timing and appropriate dose of melatonin administration is essential to maximize the amelioration of circadian rhythm–related disorders in a diurnal model.  相似文献   

12.
Abstract Sericinus montelus overwinters as diapausing pupae. In the present study, the effects of photoperiod and temperature on diapause induction and termination of diapause are investigated. The results obtained demonstrate that high temperature can reverse the effect of short day‐lengths on diapause induction. Under an LD 12 : 12 h photoperiod, all pupae enter diapause at 15, 20 and 25 °C, whereas all pupae develop without diapause at 35 °C. No pupae enter diapause under an LD 14 : 10 h photoperiod when the temperature is above 20 °C. Photoperiodic response curves obtained at 25 and 30 °C indicate that S. montelus is a long‐day species and the critical day‐length is approximately 13 h at 25 °C. At 25 °C, the duration of diapause is shortest when the diapausing pupae are maintained under an LD 16 : 8 h photoperiod and increases under LD 14 : 10 h and LD 12 : 12 h photoperiods. Under an LD 16 : 8 h photoperiod, the duration of diapause is shortest when the diapausing pupae are maintained at 25 °C, followed by 20 and 30 °C, and then at 15 °C. These results suggest that a moderate temperature favours diapause development under a diapause‐averting photoperiod in this species. The duration of diapause induced by an LD 12 : 12 h photoperiod is significantly longer at 25 °C than those at 15, 20 and 30 °C, and is shortest at 15 °C. At 25 °C, the duration of diapause induced by LD 6 : 18, LD 12 : 12 and LD 13 : 11 h photoperiods is similar and longer than 90 days. Thus, the diapause‐inducing conditions may affect diapause intensity and a photoperiod close to the critical day‐length has significant influence on diapause intensity in S. montelus.  相似文献   

13.
Diapausing larvae of Ephestia elutella reared at 20°C in short photoperiods (LD 11:13), and then maintained 12 weeks or longer at 5–15°C before transfer to 20 or 25°C, pupated sooner than unchilled controls. At 25°C, all samples kept in long photoperiods (LD 15:9) survived better and pupated faster than similarly treated samples held in short photoperiods (LD 9:15). Samples kept at 20°C after chilling pupated much slower than those at 25°C, and, except after exposure at 5°C, pupated at similar rates at LD 11:13 or 15:9, although mortality was higher at the shorter photoperiod. After exposure at 5°C, larvae required increased day-length as well as increased temperature to hasten pupation whereas after exposure at 10°C most responded to increased temperature only.For samples maintained in slightly heated or unheated outbuildings, the summer emergence was poorly synchronized and males on average emerged ahead of females. Samples moved from the unheated outbuilding to 25°C and long days in the laboratory in early spring, however, pupated quickly and males and females emerged together. A late phase of diapause development thus exists requiring both high temperature and long photoperiods to ensure a prompt resumption of morphogenesis. Spring temperatures in the United Kingdom are seldom high enough to synchronize the completion of diapause.  相似文献   

14.
Plodia interpunctella Hübner (Lepidoptera: Pyralidae) comprises a model insect to analyse the photoperiodic time‐measuring system controlling its larval diapause. In the present study, the effective length of light pulse in night interruption experiments is determined at 25 °C. Various lengths of light pulse are tested by inserting them at the midnight of an LD 12 : 12 h photoperiod. When the light pulse is 15 or 30 min, the incidence of diapause is 86%. To inhibit the induction of diapause effectively, a light pulse of 1.75–2 h is needed. The incidence of diapause is 12% under an LD 12 : 5 : 2 : 5 h photoperiod. To determine the precise role of the light pulse, 2‐h light pulses placed at the midnight of an LD 12 : 12 h photoperiod are disrupted systematically by darkness. When a 2‐h light pulse is disrupted by 15 min of darkness, diapause is generally prevented (< 29%) regardless of the temporal position of darkness. Longer disruption by darkness induces diapause moderately (37–67%). A Bünsow experiment is also conducted at 25 and 20 °C, in which the main photophase of 12 h of light is combined with 24–72‐h scotophases scanned by a 2‐h light pulse. The photoperiodic cycle length tested, therefore, varies in the range 36–84 h. In each cycle length, the incidence of diapause fluctuates as the light pulse moves toward dawn. However, no regular and circadian changes in the percentage diapause are observed in relation to diapause determination.  相似文献   

15.
Abstract

Sugar Gliders (Petaurus breviceps) re‐entrain faster after 8‐h delay shifts of an LD 12:12 and an LD 8:16 (31–56:0.3 lux each) than after 8‐h advance shifts of these Zeitgeber cycles. In order to test whether this asymmetric re‐entrainment behavior is related to, or even caused by the phase response characteristics of the circadian system, the phase response of the activity rhythm to short and long light pulses was studied. Short light pulses (15 min of 31–56 lux against a background intensity of 0.3 lux) caused only relatively small delay shifts when applied around the onset, and more pronounced advance shifts when given at the end of the activity time (α). Onset and end of activity shifted by different amounts. Long light pulses produced by 8‐h advances and delays of one single lighttime of an LD 12:12 elicited pronounced phase delays when applied at the beginning of the activity time, but only minor phase advances when given at the posterior part of α. These results indicate that in Petaurus breviceps the phase response characteristics to long light pulses exerting parametric effects of light are responsible for the pronounced asymmetry effect in re‐entrainment. Differing phase responses of onset and end of activity point to a two‐oscillator structure of the circadian pacemaker system in this marsupial.  相似文献   

16.
Daily variations in plasma melatonin levels in the rainbow trout Oncorhynchus mykiss were studied under various light and temperature conditions. Plasma melatonin levels were higher at mid-dark than those at mid-light under light-dark (LD) cycles. An acute exposure to darkness (2 hr) during the light phase significantly elevated the plasma melatonin to the level that is comparable with those at mid-dark, while an acute exposure to a light pulse (2 hr) during the dark phase significantly suppressed melatonin to the level that is comparable with those at mid-light. Plasma melatonin kept constantly high and low levels under constant darkness and constant light, respectively. No circadian rhythm was seen under both conditions. When the fish were subjected to simulative seasonal conditions (simulative (S)-spring: under LD 13.1:10.9 at 13 degrees C; S-summer: under LD 14.3:9.7 at 16.5 degrees C; S-autumn: under LD 11.3:12.7 at 13 degrees C; S-winter: under LD 10.1:13.9 at 9 degrees C), melatonin levels during the dark phase were significantly higher than those during the light phase irrespective of simulative seasons. The peak melatonin level in each simulative season significantly correlated with temperature but not with the length of the dark phase employed. In addition, the peak melatonin level in S-autumn was significantly higher than those in S-spring although water temperature was the same under these conditions. These results indicate that the melatonin rhythm in the trout plasma is not regulated by an endogenous circadian clock but by combination of photoperiod and water temperature.  相似文献   

17.
The present study is part of a more extensive investigation dedicated to the study and treatment of age‐dependent changes/disturbances in the circadian system in humans. It was performed in the Tyumen Elderly Veteran House and included 97 subjects of both genders, ranging from 63 to 91 yrs of age. They lived a self‐chosen sleep‐wake regimen to suit their personal convenience. The experiment lasted 3 wks. After 1 control week, part of the group (n=63) received 1.5 mg melatonin (Melaxen?) daily at 22:30 h for 2 wks. The other 34 subjects were given placebo. Axillary temperature was measured using calibrated mercury thermometers at 03:00, 08:00, 11:00, 14:00, 17:00, and 23:00 h each of the first and third week. Specially trained personnel took the measurements, avoiding disturbing the sleep of the subjects. To evaluate age‐dependent changes, data obtained under similar conditions on 58 young adults (both genders, 17 to 39 yrs of age) were used. Rhythm characteristics were estimated by means of cosinor analyses, and intra‐ and inter‐individual variability by analysis of variance (ANOVA). In both age groups, the body temperature underwent daily changes. The MESOR (36.38±0.19°C vs. 36.17±0.21°C) and circadian amplitude (0.33±0.01°C vs. 0.26±0.01°C) were slightly decreased in the elderly compared to the young adult subjects (p<0.001). The mean circadian acrophase was similar in both age groups (17.19±1.66 vs. 16.93±3.08 h). However, the inter‐individual differences were higher in the older group, with individual values varying between 10:00 and 23:00 h. It was mainly this phase variability that caused a decrease in the inter‐daily rhythm stability and lower group amplitude. With melatonin treatment, the MESOR was lower by 0.1°C and the amplitude increased to 0.34±0.01°C, a similar value to that found in young adults. This was probably due to the increase of the inter‐daily rhythm stability. The mean acrophase did not change (16.93 vs. 16.75 h), although the inter‐individual variability decreased considerably. The corresponding standard deviations (SD) of the group acrophases were 3.08 and 1.51 h (p<0.01). A highly significant correlation between the acrophase before treatment and the phase change under melatonin treatment indicates that this is due to a synchronizing effect of melatonin. Apart from the difference in MESOR, the body temperature rhythm in the elderly subjects undergoing melatonin treatment was not significantly different from that of young adults. The data clearly show that age‐dependent changes mainly concern rhythm stability and synchronization with the 24 h day. A single daily melatonin dose stabilizes/synchronizes the body temperature rhythm, most probably via hypothermic and sleep‐improving effects.  相似文献   

18.
《Chronobiology international》2013,30(7):1369-1388
Australian sleepy lizards (Tiliqua rugosa) exhibit marked locomotor activity rhythms in the field and laboratory. Light-dark (LD) and temperature cycles (TCs) are considered important for the entrainment of circadian locomotor activity rhythms and for mediating seasonal adjustments in aspects of these rhythms, such as phase, amplitude, and activity pattern. The relative importance of 24 h LD and TCs in entraining the circadian locomotor activity rhythm in T. rugosa was examined in three experiments. In the first experiment, lizards were held under LD 12:12 and subjected to either a TC of 33:15?°?C in phase with the LD cycle or a reversed TC positioned in antiphase to the LD cycle. Following LD 12:12, lizards were maintained under the same TCs but were subjected to DD. Activity was restricted to the thermophase in LD, irrespective of the lighting regime and during the period of DD that followed, suggesting entrainment by the TC. The amplitude of the TC was lowered by 8?°?C to reduce the intensity and possible masking effect of the TC zeitgeber in subsequent experiments. In the second experiment, lizards were held under LD 12.5:11.5 and subjected to one of three treatments: constant 30?°?C, normal TC (30:20?°?C) in phase with the LD cycle, or reversed TC. Following LD, all lizards were subjected to DD and constant 30?°?C. Post-entrainment free-run records revealed that LD cycles and TCs could both entrain the locomotor rhythms of T. rugosa. In LD, mean activity duration (α) of lizards in the normal TC group was considerably less than that in the constant 30?°?C group. Mean α also increased between LD and DD in lizards in the normal TC group. Although there was large variation in the phasing of the rhythm in relation to the LD cycle in reversed TC lizards, TCs presented in phase with the LD cycle most accurately synchronized the rhythm to the photocycle. In the third experiment, lizards were held in DD at constant 30?°?C before being subjected to a further period of DD and one of four treatments: normal TC (06:00 to 18:00 h thermophase), delayed TC (12:00 to 00:00 h thermophase), advanced TC (00:00 to 12:00 h thermophase), or control (no TC, constant 30?°?C). While control lizards continued to free-run in DD at constant temperature, the locomotor activity rhythms of lizards subjected to TCs rapidly entrained to TCs, whether or not the TC was phase advanced or delayed by 6 h. There was no difference in the phase relationships of lizard activity rhythms to the onset of the thermophase among the normal, delayed, and advanced TC groups, suggesting equally strong entrainment to the TC in each group. The results of this experiment excluded the possibility that masking effects were responsible for the locomotor activity responses of lizards to TCs. The three experiments demonstrated that TCs are important for entraining circadian locomotor activity rhythms of T. rugosa, even when photic cues are conflicting or absent, and that an interaction between LD cycles and TCs most accurately synchronizes this rhythm. (Author correspondence: )  相似文献   

19.
The rhythmic expression of circadian clock genes in the neurons of the suprachiasmatic nucleus (SCN) underlies the manifestation of endogenous circadian rhythmicity in behavior and physiology. Recent evidence demonstrating rhythmic clock gene expression in non-SCN tissues suggests that functional clocks exist outside the central circadian pacemaker of the brain. In this investigation, the nature of an oscillator in peripheral blood mononuclear cells (PBMCs) is evaluated by assessing clock gene expression throughout both a typical sleep/wake cycle (LD) and during a constant routine (CR). Six healthy men and women aged (mean±SEM) 23.7±1.6 yrs participated in this five-day investigation in temporal isolation. Core body temperature and plasma melatonin concentration were measured as markers of the central circadian pacemaker. The expression of HPER1, HPER2, and HBMAL1 was quantified in PBMCs sampled throughout an uninterrupted 72 h period. The core body temperature minimum and the midpoint of melatonin concentration measured during the CR occurred 2:17±0:20 and 3:24 ±0:09 h before habitual awakening, respectively, and were well aligned to the sleep/wake cycle. HPER1 and HPER2 expression in PBMCs demonstrated significant circadian rhythmicity that peaked early after wake-time and was comparable under LD and CR conditions. HBMAL1 expression was more variable, and peaked in the middle of the wake period under LD conditions and during the habitual sleep period under CR conditions. For the first time, bi-hourly sampling over three consecutive days is used to compare clock gene expression in a human peripheral oscillator under different sleep/wake conditions.  相似文献   

20.
The unicellular alga Gonyaulax polyedra reacts to short days and low temperatures by forming asexual cysts. Its photoperiodic response is elicited via the physiological mediation of melatonin. This indoleamine known as a dark signal in vertebrates is also synthetised by this dinophyt attaining concentrations as high as in the mammalian pineal gland. Its level varies in a circadian fashion, showing a steep increase after the onset of darkness, followed by a gradual decline towards the beginning of photophase. The critical photoperiod of the encystment response shows in Gonyaulax polyedra the remarkably high precision of about half an hour. Under otherwise non-inducing conditions, a single addition of 10 –4 M melatonin, given 1 h before the onset of darkness, elicits encystment as much, and with similar kinetics, as in short-days. The effect of melatonin action during long-day conditions (11:13) and low temperature (15°C) has been investigated. After addition of 10 –4 M or 7x10 –5 M melatonin each 3 h, the cyst-inducing capacity depends on the circadian phase of treatment. The differences in efficiency of melatonin observed are negatively correlated with the endogenous melatonin production of Gonyaulax polyedra which is higher at the begining of darkness. These results lead to novel consequences relating to the rapid catabolism of this substance and the dependence of its efficiency on light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号