首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Progesterone is a neuroactive hormone with non‐genomic effects on GABAA receptors (GABAAR). Changes in the expression of GABAAR subunits are related to depressive‐like behaviors in rats. Moreover, sex differences and depressive behaviors have been associated with prefrontal brain asymmetry in rodents and humans. Thus, our objective was to investigate the effect of progesterone on the GABAAR α1 and γ2 subunits mRNA expression in the right and left prefrontal cortex of diestrus female and male rats exposed to the forced swimming test (FST). Male and female rats (n = 8/group) were randomly selected to receive a daily dose of progesterone (0·4 mg·kg–1) or vehicle, during two complete female estrous cycles (8–10 days). On the experiment day, male rats or diestrus female rats were euthanized 30 min after the FST. Our results showed that progesterone significantly increased the α1 subunit mRNA in both hemispheres of male and female rats. Moreover, there was an inverse correlation between depressive‐like behaviors and GABAAR α1 subunit mRNA expression in the right hemisphere in female rats. Progesterone decreased the GABAAR γ2 mRNA expression only in the left hemisphere of male rats. Therefore, we conclude that the GABAA system displays an asymmetric distribution according to sex and that progesterone, at lower doses, presents an antidepressant effect after increasing the GABAAR α1 subunit expression in the right prefrontal cortex of female rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Aims Rutin is one of the flavonoids that has many beneficial effects on the health. Previously, we showed that rutin has a protective effect on trimethyltin (TMT)-induced memory dysfunction in rats. The aim of this study was to investigate the protective effects of rutin on TMT-induced hippocampal injury and the time course profiles of these effects in rats. Methods Four-week-old male Sprague-Dawley (SD) rats were fed chow with or without rutin (0.75%) during the experimental period and were administered with a single dose of TMT (8.5 mg/kg b.w., p.o.) or vehicle at 6 weeks of age. The rats were sacrificed 5, 10, or 20 days after the TMT administration and then histological and molecular examinations of the hippocampus were performed. Results Rutin supplementation suppressed the TMT-induced decrease in the number of hippocampal pyramidal neurons 20 days after TMT administration. The TMT-induced up-regulation of the mRNA expression levels of reactive microglia marker and pro-inflammatory cytokines were reversed by rutin supplementation 10 or 20 days after the TMT administration. Conclusions These results suggested that the neuroprotective effect of rutin on TMT-induced spatial memory impairment could be attributable to its inhibitory effect against microglial activation and its role in synapse formation via neurotrophic factors in the hippocampus.  相似文献   

3.
Previous research indicates that the GABAAergic system is involved in the pathophysiology of the fragile X syndrome, a frequent form of inherited intellectual disability and associated with autism spectrum disorder. However, the molecular mechanism underlying GABAAergic deficits has remained largely unknown. Here, we demonstrate reduced mRNA expression of GABAA receptor subunits in the cortex and cerebellum of young Fmr1 knockout mice. In addition, we show that the previously reported underexpression of specific subunits of the GABAA receptor can be corrected in YAC transgenic rescue mice, containing the full-length human FMR1 gene in an Fmr1 knockout background. Moreover, we demonstrate that FMRP directly binds several GABAA receptor mRNAs. Finally, positive allosteric modulation of GABAA receptors with the neurosteroid ganaxolone can modulate specific behaviors in Fmr1 knockout mice, emphasizing the therapeutic potential of the receptor.  相似文献   

4.
The equilibrium potential for GABA-A receptor mediated currents (EGABA) in neonatal central neurons is set at a relatively depolarized level, which is suggested to be caused by a low expression of K+/Cl- co-transporter (KCC2) but a relatively high expression of Na+-K+-Cl- cotransporter (NKCC1). Theta-burst stimulation (TBS) in stratum radiatum induces a negative shift in EGABA in juvenile hippocampal CA1 pyramidal neurons. In the current study, the effects of TBS on EGABA in neonatal and juvenile hippocampal CA1 neurons and the underlying mechanisms were examined. Metabotropic glutamate receptors (mGluRs) are suggested to modulate KCC2 and NKCC1 levels in cortical neurons. Therefore, the involvement of mGluRs in the regulation of KCC2 or NKCC1 activity, and thus EGABA, following TBS was also investigated. Whole-cell patch recordings were made from Wistar rat hippocampal CA1 pyramidal neurons, in a slice preparation. In neonates, TBS induces a positive shift in EGABA, which was prevented by NKCC1 antisense but not NKCC1 sense mRNA. (RS)-a-Methyl-4-carboxyphenylglycine (MCPG), a group I and II mGluR antagonist, blocked TBS-induced shifts in both juvenile and neonatal hippocampal neurons. While blockade of mGluR1 or mGluR5 alone could interfere with TBS-induced shifts in EGABA in neonates, only a combined blockade could do the same in juveniles. These results indicate that TBS induces a negative shift in EGABA in juvenile hippocampal neurons but a positive shift in neonatal hippocampal neurons via corresponding changes in KCC2 and NKCC1 expressions, respectively. mGluR activation seems to be necessary for both shifts to occur while the specific receptor subtype involved seems to vary.  相似文献   

5.
Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine well known for its role in inflammation enhancement. However, a growing body of evidence is emerging on its role in energy metabolism in insulin sensitive tissues such as hippocampus, a brain region implicated in cognition, learning and memory. We hypothesized that genetic deletion of MIF may result in the specific behavioral changes, which may be linked tо impairments in brain or systemic insulin sensitivity by possible changes of the hippocampal synaptic plasticity. To assess memory, exploratory behavior and anxiety, three behavioral tests were applied on Mif gene-deficient (MIF−/−) and “wild type” C57BL/6J mice (WT). The parameters of systemic and hippocampal insulin sensitivity were also determined. The impact of MIF deficiency on hippocampal plasticity was evaluated by analyzing the level of synaptosomal polysialylated-neural cell adhesion molecule (PSA-NCAM) plasticity marker and mRNA levels of different neurotrophic factors.The results showed that MIF−/− mice exhibit emphasized anxiety-like behaviors, as well as impaired recognition memory, which may be hippocampus-dependent. This behavioral phenotype was associated with impaired systemic insulin sensitivity and attenuated hippocampal insulin sensitivity, characterized by increased inhibitory Ser307 phosphorylation of insulin receptor substrate 1 (IRS1). Finally, MIF−/− mice displayed a decreased hippocampal PSA-NCAM level and unchanged Bdnf, NT-3, NT-4 and Igf-1 mRNA levels.The results suggest that the lack of MIF leads to disturbances of systemic and hippocampal insulin sensitivity, which are possibly responsible for memory deficits and anxiety, most likely through decreased PSA-NCAM-mediated neuroplasticity rather than through neurotrophic factors.  相似文献   

6.
Abstract: The GABAA receptor is a heterooligomeric protein complex composed of multiple receptor subunits. Developmental changes in the pattern of expression of 11 GABAA receptor subunits in individual rat embryonic hippocampal neurons on days 1–21 in culture and acutely dissociated hippocampal neurons from postnatal day (PND) 5 rat pups were investigated using the technique of single-cell mRNA amplification. We demonstrate that multiple GABAA receptor subunits are expressed within individual hippocampal neurons, with most cells simultaneously expressing α1, α2, α5, β1, and γ2 mRNAs. Further, relative expression of several GABAA receptor subunit mRNAs changes significantly in embryonic hippocampal neurons during in vitro development, with the relative abundance (compared with β-actin) of α1, α5, and γ2 mRNAs increasing 2.3-, 2.7-, and 3.8-fold, respectively, from days 1 to 14, and β1 increasing 5-fold from days 1 to 21. In situ hybridization with antisense digoxigenin-labeled α1, β1, and γ2 RNA probes demonstrates a similar increase in expression of subunit mRNAs as embryonic hippocampal neurons mature in vitro. Relative abundances of α1, β1, and γ2 subunit mRNAs in acutely dissociated PND 5 hippocampal neurons are also significantly greater than in embryonic day 17 neurons on day 1 in vitro and exceed the peak values seen in cultured neurons on days 14–21, suggesting that GABAA receptor subunit mRNA expression within individual hippocampal neurons follows a similar, if somewhat delayed, developmental pattern in vitro compared with in vivo. These findings suggest that embryonic hippocampal neuronal culture provides a useful model in which to study the developmental regulation of GABAA receptor expression and that developmental changes in GABAA receptor subunit expression may underlie some of the differences in functional properties of GABAA receptors in neonatal and mature hippocampal neurons.  相似文献   

7.
The neurosteroid allopregnanolone is a potent positive allosteric modulator of GABA action at GABAA receptors. Allopregnanolone is synthesized in the brain from progesterone by the sequential action of 5α-reductase type I (5α-RI) and 3α-hydroxysteroid dehydrogenase (3α-HSD). 5α-RI and 3α-HSD are co-expressed in cortical, hippocampal, and olfactory bulb glutamatergic neurons and in output neurons of the amygdala, thalamus, cerebellum, and striatum. Neither 5α-RI nor 3α-HSD mRNAs is expressed in glial cells or in cortical or hippocampal GABAergic interneurons. It is likely that allopregnanolone synthesized in principal output neurons locally modulates GABAA receptor function by reaching GABAA receptor intracellular sites through lateral membrane diffusion. This review will focus on the behavioral effects of allopregnanolone on mouse models that are related to a sexually dimorphic regulation of brain allopregnanolone biosynthesis. Animal models of psychiatric disorders, including socially isolated male mice or mice that receive a long-term treatment with anabolic androgenic steroids (AAS), show abnormal behaviors such as altered fear responses and aggression. In these animal models, the cortico-limbic mRNA expression of 5α-RI is regulated in a sexually dimorphic manner. Hence, in selected glutamatergic pyramidal neurons of the cortex, CA3, and basolateral amygdala and in granular cells of the dentate gyrus, mRNA expression of 5α-RI is decreased, which results in a downregulation of allopregnanolone content. In contrast, 5α-RI mRNA expression fails to change in the striatum medium spiny neurons and in the reticular thalamic nucleus neurons, which are GABAergic. By manipulating allopregnanolone levels in glutamatergic cortico-limbic neurons in opposite directions to improve [using the potent selective brain steroidogenic stimulant (SBSS) S-norfluoxetine] or induce (using the potent 5α-RI inhibitor SKF 105,111) behavioral deficits, respectively, we have established the fundamental role of cortico-limbic allopregnanolone levels in the sexually dimorphic regulation of aggression and fear. By selectively targeting allopregnanolone downregulation in glutamatergic cortico-limbic neurons, i.e., by improving the response of GABAA receptors to GABA, new therapeutics would offer appropriate and safe management of psychiatric conditions, including impulsive aggression, irritability, irrational fear, anxiety, posttraumatic stress disorders, and depression. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

8.
The proliferation and differentiation of neural progenitor (NP) cells can be regulated by neurotransmitters including GABA and dopamine. The present study aimed to examine how these two neurotransmitter systems interact to affect post‐natal hippocampal NP cell proliferation in vitro. Mouse hippocampal NP cells express functional GABAA receptors, which upon activation led to an increase in intracellular calcium levels via the opening of L‐type calcium channels. Activation of these GABAA receptors also caused a significant decrease in proliferation; an effect that required the entry of calcium through L‐type calcium channels. Furthermore, while activation of D1‐like dopamine receptors had no effect on proliferation, it abrogated the suppressive effects of GABAA receptor activation on proliferation. The effects of D1‐like dopamine receptors are associated with a decrease in the ability of GABAA receptors to increase intracellular calcium levels, and a reduction in the surface expression of GABAA receptors. In this way, D1‐like dopamine receptor activation can increase the proliferation of NP cells by preventing GABAA receptor‐mediated inhibition of proliferation. These results suggest that, in conditions where NP cell proliferation is under the tonic suppression of GABA, agonists which act through D1‐like dopamine receptors may increase the proliferation of neural progenitors.  相似文献   

9.
10.
Tien LT  Ma T  Fan LW  Loh HH  Ho IK 《Neurochemical research》2007,32(11):1891-1897
Anatomical evidence indicates that γ-aminobutyric acid (GABA)-ergic and opioidergic systems are closely linked and act on the same neurons. However, the regulatory mechanisms between GABAergic and opioidergic system have not been well characterized. In the present study, we investigated whether there are changes in GABAA receptors in mice lacking μ-opioid receptor gene. The GABAA receptor binding was carried out by autoradiography using [3H]-muscimol (GABAA), [3H]-flunitrazepam (FNZ, native type 1 benzodiazepine) and [35S]-t-butylbicyclophosphorothionate (TBPS, binding to GABAA-gated chloride channels) in brain slices of wild type and μ-opioid receptor knockout mice. The binding of [3H]-FNZ in μ-opioid receptor knockout mice was significantly higher than that of the wild type controls in most of the cortex and hippocampal CA1 and CA2 formations. μ-Opioid receptor knockout mice show significantly lower binding of [35S]-TBPS than that of the wild type mice in few of the cortical areas including ectorhinal cortex layers I, III, and V, but not in the hippocampus. There was no significant difference in binding of [3H]-muscimol between μ-opioid receptor knockout and wild type mice in the cortex and hippocampus. These data indicate that there are specific regional changes in GABAA receptor binding sites in μ-opioid receptor knockout mice. These data also suggest that there are compensatory up-regulation of benzodiazepine binding site of GABAA receptors in the cortex and hippocampus and down-regulation of GABA-gated chloride channel binding site of GABAA receptors in the cortex of the μ-opioid receptor knockout mice.  相似文献   

11.
Brain-derived neurotrophic factor (BDNF) is associated with the main symptoms of chronic fatigue sydrome (CFS) and neuron apoptosis. Nevertheless, no study has been performed directly to explore the relationship between CFS, BDNF and neuron apoptosis. We induced a CFS model by six injections of killed Brucella abortus antigen in BALB/c mice and treated them with Hochu-ekki-to (TJ-41). Daily running activity, body weight (BW), ratio of cerebral weight to BW (CW/BW) and expression levels of BDNF and Bcl-2 mRNA in the hippocampus were determined. The daily activity and CW/BW decreased significantly in the CFS model. BDNF and Bcl-2 mRNA expression levels in the hippocampus were suppressed in the CFS model and TJ-41 treated mice, while no significant difference was found between them. We improved a murine model to investigate the relationship between CFS and brain dysfunction. In this model, reduced daily activity might have been associated with decreased hippocampal BDNF mRNA expression, hippocampal apoptosis and brain atrophy. TJ-41 increased the daily running activity of the model, which was independent of brain recovery.  相似文献   

12.

Astrocytes are the major glial cells in brain tissue and are involved, among many functions, ionic and metabolic homeostasis maintenance of synapses. These cells express receptors and transporters for neurotransmitters, including GABA. GABA signaling is reportedly able to affect astroglial response to injury, as evaluated by specific astrocyte markers such as glial fibrillary acid protein and the calcium-binding protein, S100B. Herein, we investigated the modulatory effects of the GABAA receptor on astrocyte S100B secretion in acute hippocampal slices and astrocyte cultures, using the agonist, muscimol, and the antagonists pentylenetetrazol (PTZ) and bicuculline. These effects were analyzed in the presence of tetrodotoxin (TTX), fluorocitrate (FLC), cobalt and barium. PTZ positively modify S100B secretion in hippocampal slices and astrocyte cultures; in contrast, bicuculline inhibited S100B secretion only in hippocampal slices. Muscimol, per se, did not change S100B secretion, but prevented the effects of PTZ and bicuculline. Moreover, PTZ-induced S100B secretion was prevented by TTX, FLC, cobalt and barium indicating a complex GABAA communication between astrocytes and neurons. The effects of two putative agonists of GABAA, β-hydroxybutyrate and methylglyoxal, on S100B secretion were also evaluated. In view of the neurotrophic role of extracellular S100B under conditions of injury, our data reinforce the idea that GABAA receptors act directly on astrocytes, and indirectly on neurons, to modulate astroglial response.

  相似文献   

13.
Abstract: We have shown that the vertebrate neuropeptide N-acetylaspartylglutamate (NAAG) meets the criteria for a neurotransmitter, including function as a selective metabotropic glutamate receptor (mGluR) 3 agonist. Short-term treatment of cerebellar granule cells with NAAG (30 µM) results in the transient increase in content of GABAAα6 subunit mRNA. Using quantitative PCR, this increase was determined to be up to 170% of control values. Similar effects are seen following treatment with trans-1-aminocyclopentane-1,3-dicarboxylate and glutamate and are blocked by the mGluR antagonists (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine and (2S)-α-ethylglutamic acid. The effect is pertussis toxin-sensitive. The increase in α6 subunit mRNA level can be simulated by activation of other receptors negatively linked to adenylate cyclase activity, such as adenosine A1, α2-adrenergic, muscarinic, and GABAB receptors. Forskolin stimulation of cyclic AMP (cAMP) levels abolished the effect of NAAG. The change in α6 levels induced by 30 µM NAAG can be inhibited in a dose-dependent manner by simultaneous application of increasing doses of the β-adrenergic receptor agonist isoproterenol. The increase in α6 mRNA content is followed by a fourfold increase in α6 protein level 6 h posttreatment. Under voltage-clamped conditions, NAAG-treated granule cells demonstrate an increase in the furosemide-induced inhibition of GABA-gated currents in a concentration-dependent manner, indicating an increase in functional α6-containing GABAA receptors. These data support the hypothesis that NAAG, acting through mGluR3, regulates expression of the GABAAα6 subunit via a cAMP-mediated pathway and that cAMP-coupled receptors for other neurotransmitters may similarly influence GABAA receptor subunit composition.  相似文献   

14.
Recent studies have suggested that the GABAA, receptor complex, the site of action of the inhibitory neurotransmitter gamma amino-butyric acid (GABAA) and the anxiolytic benzodiazepines, is heterogeneous. Moreover, its composition may change during development. To better understand the molecular basis of receptor heterogeneity, the levels and distribution of the mRNA encoding the α1 receptor subunit were examined in the developing and adult rat brain with quantitative in situ hybridization histochemistry. Our studies demonstrate that α1 subunit mRNA expression changes during ontogeny. At late embryonic stages and in the first postnatal week, low levels of the mRNA were detected in the cortex, inferior colliculus, and hippocampus. The mRNA levels in these regions increased during the second and third postnatal weeks. Furthermore, a dramatic change in the distribution of the α1 subunit mRNA was seen in the second postnatal week when the message first became detectable in the cerebellar cortex. During subsequent development and in the mature brain, the α1 subunit mRNA was most abundant in the cerebellum, olfactory bulb, and inferior colliculus, although the absolute levels of mRNA varied by as much as sixfold in selected brain regions. The mature distribution of α1 subunit mRNA, along with its temporal appearance in the cerebellum, suggests that this subunit is a constituent of the Type 1 benzodiazepine site of the GABAA receptor complex. Furthermore, the onset of α1 subunit mRNA expression in the cerebellar cortex coincides with a period of extensive synapse formation, raising the possibility that synaptic interactions modulate the appearance of this GABAA receptor subunit in the cerebellum.  相似文献   

15.
GABAB receptors function as heterodimeric G-protein-coupled receptors for the neurotransmitter γ-aminobutyric acid (GABA). Receptor subtypes, based on isoforms of the ligand-binding subunit GABAB1, are thought to involve a differential set of associated proteins. Here, we describe two mouse lines that allow a straightforward biochemical isolation of GABAB receptors. The transgenic mice express GABAB1 isoforms that contain sequences for a two-step affinity purification, in addition to their endogenous subunit repertoire. Comparative analyses of purified samples from the transgenic mice and wild-type control animals revealed two novel components of the GABAB1 complex. One of the identified proteins, potassium channel tetramerization domain-containing protein 12, associates with heterodimeric GABAB receptors via the GABAB2 subunit. In transfected hippocampal neurons, potassium channel tetramerization domain-containing protein 12 augmented axonal surface targeting of GABAB2. The mice equipped with tags on GABAB1 facilitate validation and identification of native binding partners of GABAB receptors, providing insight into the molecular mechanisms of synaptic modulation.  相似文献   

16.
The responses of inhibitory neurons/synapses to motoneuron injury in the cranial nervous system remain to be elucidated. In this study, we analyzed GABAA receptor (GABAAR) and GABAergic neurons at the protein level in the transected rat facial nucleus. Immunoblotting revealed that the GABAARα1 protein levels in the axotomized facial nucleus decreased significantly 5–14 days post-insult, and these levels remained low for 5 weeks. Immunohistochemical analysis indicated that the GABAARα1-expressing cells were motoneurons. We next examined the specific components of GABAergic neurons, including glutamate decarboxylase (GAD), vesicular GABA transporter (VGAT) and GABA transporter-1 (GAT-1). Immunoblotting indicated that the protein levels of GAD, VGAT and GAT-1 decreased transiently in the transected facial nucleus from 5 to 14 days post-insult, but returned to the control levels at 5 weeks post-insult. Although GABAARα1 protein levels in the transected nucleus did not return to their control levels for 5 weeks post-insult, the administration of glial cell line—derived neurotrophic factor at the cut site significantly ameliorated the reductions. Through these findings, we verified that the injured facial motoneurons suppressed the levels of GABAARα1 protein over the 5 weeks post-insult, presumably due to the deprivation of neurotrophic factor. On the other hand, the levels of the GAD, VGAT and GAT-1 proteins in GABAergic neurons were transiently reduced in the axotomized facial nucleus at 5–14 days post-insult, but recovered at 4–5 weeks post-insult.  相似文献   

17.
GABAB receptors are the G‐protein‐coupled receptors for the neurotransmitter γ‐aminobutyric acid (GABA). Receptor subtypes are based on the subunit isoforms GABAB1a and GABAB1b, which combine with GABAB2 subunits to form heteromeric receptors. Here, we used a modified bacterial artificial chromosome (BAC) containing the GABAB1 gene to generate transgenic mice expressing GABAB1a and GABAB1b subunits fused to the enhanced green fluorescence protein (eGFP). We demonstrate that the GABAB1‐eGFP fusion proteins reproduce the cellular expression patterns of endogenous GABAB1 proteins in the brain and in peripheral tissue. Crossing the GABAB1‐eGFP BAC transgene into the GABAB1?/? background restores pre and postsynaptic GABAB functions, showing that the GABAB1‐eGFP fusion proteins substitute for the lack of endogenous GABAB1 proteins. Finally, we demonstrate that the GABAB1‐eGFP fusion proteins replicate the temporal expression patterns of native GABAB receptors in cultured neurons. These transgenic mice therefore provide a validated tool for direct visualization of native GABAB receptors. genesis 47:595–602, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.

Background

Taurine is one of the most abundant free amino acids especially in excitable tissues, with wide physiological actions. Chronic supplementation of taurine in drinking water to mice increases brain excitability mainly through alterations in the inhibitory GABAergic system. These changes include elevated expression level of glutamic acid decarboxylase (GAD) and increased levels of GABA. Additionally we reported that GABAA receptors were down regulated with chronic administration of taurine. Here, we investigated pharmacologically the functional significance of decreased / or change in subunit composition of the GABAA receptors by determining the threshold for picrotoxin-induced seizures. Picrotoxin, an antagonist of GABAA receptors that blocks the channels while in the open state, binds within the pore of the channel between the β2 and β3 subunits. These are the same subunits to which GABA and presumably taurine binds.

Methods

Two-month-old male FVB/NJ mice were subcutaneously injected with picrotoxin (5 mg kg-1) and observed for a) latency until seizures began, b) duration of seizures, and c) frequency of seizures. For taurine treatment, mice were either fed taurine in drinking water (0.05%) or injected (43 mg/kg) 15 min prior to picrotoxin injection.

Results

We found that taurine-fed mice are resistant to picrotoxin-induced seizures when compared to age-matched controls, as measured by increased latency to seizure, decreased occurrence of seizures and reduced mortality rate. In the picrotoxin-treated animals, latency and duration were significantly shorter than in taurine-treated animas. Injection of taurine 15 min before picrotoxin significantly delayed seizure onset, as did chronic administration of taurine in the diet. Further, taurine treatment significantly increased survival rates compared to the picrotoxin-treated mice.

Conclusions

We suggest that the elevated threshold for picrotoxin-induced seizures in taurine-fed mice is due to the reduced binding sites available for picrotoxin binding due to the reduced expression of the beta subunits of the GABAA receptor. The delayed effects of picrotoxin after acute taurine injection may indicate that the two molecules are competing for the same binding site on the GABAA receptor. Thus, taurine-fed mice have a functional alteration in the GABAergic system. These include: increased GAD expression, increased GABA levels, and changes in subunit composition of the GABAA receptors. Such a finding is relevant in conditions where agonists of GABAA receptors, such as anesthetics, are administered.
  相似文献   

19.
ABSTRACT

This study aims to study the effects of adenosine A2A receptor (A2AR) on hippocampal cell apoptosis and the putative mechanisms in a mouse model of chronic hypoxic-hypercapnia. Wild-type (WT) or A2AR knockout (A2AR KO) mice were randomly divided into normal control (NC) groups and chronic hypoxic-hypercapnia (4HH) groups. Compared with their corresponding NC groups (WT-NC and KO-NC), the apoptosis index (AI), caspase-3 activity, Bax mRNA and P-p38 protein expression in the hippocampus of 4HH groups (WT-4HH and KO-4HH) were significantly increased, while Bcl2 mRNA expression was significantly decreased (P < 0.05). Moreover, A2AR deficiency significantly rescued the effect of chronic hypoxic-hypercapnia on apoptosis when compared with the WT-4HH group (P < 0.05). A2AR deficiency inhibits hippocampal cell apoptosis in mice exposed to chronic hypoxic-hypercapnia, which might be associated with dampened p38 MAPK activation and Bax mRNA expression, and augmented Bcl-2 mRNA expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号