首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of dietary zinc deficiency (ZD) on the composition and metabolism of the fatty acyl chains of phospholipids in rat liver were investigated with a fat-free diet. The levels of (n−9) fatty acids such as 18∶1 and 20∶3(n−9) in liver phospholipids (PL) were significantly lower in ZD-rats (19.4% and 5.4%, respectively) than in PF-rats (25.2 and 8.3%). On the other hand, the level of (n−6) acids such as 18∶2 and 20∶4 were higher in ZD-rats (3.3 and 19.1%, respectively) than in PF-rats (2.1 and 14.9%). In order to study the metabolism of fatty acids in vivo,14C-18∶0 or14C-18∶2 was intravenously injected, and then the conversion to the respective metabolite was examined. After the injection of14C-18∶0, the radioactivity was found in 18∶0 (49.3% of the total), 18∶1 (33.2%), and 20∶3 (n−9) (9.1%) in liver PL in PF-rats at 24h. In ZD-rats, the radioactivity was dramatically lower in 18∶1 (23.5%) and 20∶ (n−9) (3.6%), suggesting that the conversion of 18∶0 to 18∶1 and 20∶3 (n−9) was strongly inhibited in ZD-rats. When14C-18∶2 was injected, the radioactivity was mainly found in 18∶2, 20∶3(n−6), and 20∶4. The radioactivity in 20∶4 in ZD-rats was slightly higher than that in control rats. These results indicate that zinc deficiency affects the fatty acid metabolism in liver, in particular, it causes a reduction in δ9 desaturase activity, when rats are fed a fat-free diet.  相似文献   

2.
3.
The mineral imbalances in magnesium-deficient rats with dietary iron overload were studied. Forty-four male Wister rats were divided into six groups and fed six diets, two by three, fully crossed: magnesium adequate or deficient, and iron deficient, adequate, or excess. The concentrations of iron, magnesium, calcium, and phosphorus in tissues of the rats were measured. The results were as follows: (1) The excess iron intake reinforced the iron accumulation in liver and spleen of magnesium deficient rats; (2) The saturation of iron binding capacity was enormously elevated in the magnesium deficient rats fed excess iron; and (3) Dietary iron deprivation diminished the degree of calcium deposition in kidney of magnesium deficient rats. These results suggest that magnesium-deprived-rats have abnormal iron metabolism losing homeostatic regulation of plasma iron, and magnesium deficient rats with dietary iron overload may be used as an experimental hemochromatosis model.  相似文献   

4.
《Free radical research》2013,47(8):602-613
Abstract

Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease. Iron, cholesterol, and oxidative damage are frequently suggested to be related to the progression of NAFLD, but the precise relationship between them remains unclear. Guinea pigs fed on a high cholesterol and fat diet (without oxidized lipids) generated a disease model of NAFLD with hallmark observations in liver histology and increased liver damage markers. Hepatic cholesterol and iron levels were found to be significantly elevated and directly correlated. Plasma hepcidin and transferrin levels were decreased. Plasma iron concentrations were found to be elevated, likely due to an increased intestinal iron absorption caused by the decrease in plasma hepcidin. However, hepatic transferrin receptor-2 levels were unchanged. No significant increase in hepatic lipid peroxidation was detected using F2-isoprostanes as a reliable biomarker, nor was there a rise in protein carbonyls, a general index of oxidative protein damage. Some increases in cholesterol oxidation products were observed, but largely negated after normalizing for the elevated hepatic cholesterol content. Indeed, increased hemosiderin deposition and unchanged ferritin levels in liver suggested that the excess iron mainly existed as hemosiderin, which is redox-inactive.  相似文献   

5.
In the liver tissues of obese diabetic or nondiabetic patients, triggering receptor expressed on myeloid cells-1 (TREM-1) is usually found to be upregulated, thus leading to upregulation of various inflammatory cytokines and lipid accumulation. On the other hand, nonalcoholic fatty liver disease (NAFLD), characterized by excess lipid accumulation, and inflammatory injury in liver, is becoming an epidemic disease, globally. In the present study, we aimed to investigate the biological role and the underlying mechanisms of TREM-1 in NAFLD. upregulation of TREM-1 occurred in high-fat diet (HFD)-induced mice NAFLD model and oleic acid-treated HepG2 and primary mouse hepatocytes cell model at messenger RNA and protein levels. Functional studies established that overexpression of TREM-1 displayed hyperlipidemia, and increased in inflammatory indicators and lipid accumulation-related genes, which was ameliorated by knockdown of TREM-1. Our results also showed that obvious lipid accumulation and inflammatory injury occurred in the liver tissue of HFD-fed mice, while treatment with lentiviral vector short hairpin TREM showed marked improvement in tissue morphology and architecture and less lipid accumulation, thus deciphering the mechanism through which knockdown of TREM-1 ameliorated the inflammatory response and lipid accumulation of NAFLD mice through inactivation of the nuclear factor-κB (NF-κB) and PI3K/AKT signal pathways, respectively. In conclusion, TREM-1/NF-κB and TREM-1/PI3K/AKT axis could be an important mechanism in ameliorating the inflammatory response and lipid accumulation, respectively, thus shedding light on the development of novel therapeutics to the treatment of NAFLD.  相似文献   

6.
Background/Aim : The pathogenesis of Nonalcoholic Fatty Liver Disease remains largely unknown, but oxidative stress seems to be involved. The aim of this study was to evaluate the role of oxidative stress in experimental hepatic steatosis induced by a choline-deficient diet. Methods : Fatty liver disease was induced in Wistar rats by a choline-deficient diet. The animals were randomized into three groups: I (G1) and II (G2), n=6 each - fed with a choline-deficient diet for four and twelve weeks respectively; Group III (control-G3; n=6) - fed with a standard diet for twelve weeks. Samples of plasma and liver were submitted to biochemical, histological and oxidative stress analysis. Variables measured included serum levels of aminotransferases (AST, ALT), cholesterol and triglycerides. Oxidative stress was measured by lucigenin-enhanced luminescence and the concentration of hydroperoxides (CE-OOH-cholesteryl ester) in the liver tissue. Results: We observed moderate macro- and microvesicular fatty change in periportal zones G1 and G2 as compared to controls (G3). In G2, fatty change was more severe. The inflammatory infiltrate was scanty and no fibrosis was seen in any group. There was a significant increase of AST and triglycerides in G1 and G2 as compared to control group G3. The lucigenin-amplified luminescence (cpm/mg/min × 103) was significantly increased in G1 (1393±790) and G2 (7191±500) as compared to controls (513±170), p <0.05. The concentrations of CE-OOH were higher in G1 (5.7±0.9 nmol/mg protein) as compared to control (2.6±0.7 nmol/mg protein), p <0.05. Conclusion: 1) Oxidative stress was found to be increased in experimental liver steatosis; 2) The production of reactive oxygen species was accentuated when liver steatosis was more severe; 3) The alterations produced by oxidative stress could be an important step in the pathogenesis of nonalcoholic fatty liver disease.  相似文献   

7.
Excessive sucrose intake, known as fructose toxicity, leads to fatty liver, hyperlipidemia, and metabolic syndrome. Circadian disorders also contribute to metabolic syndrome. Here, we investigated the effect of excessive sucrose intake on circadian rhythms of the small intestine, the main location of sucrose absorption, to elucidate a mechanism of sucrose-induced abnormal lipid metabolism. Male Wistar rats were fed control starch or high-sucrose diets for 4 weeks. High-sucrose diet-induced fatty liver and hypertriglyceridemia in rats. Amplitudes of PER1/2 expression oscillations in the small intestine were reduced by excessive sucrose, while gene expression of GLUT5 and gluconeogenic enzymes was enhanced. These changes would contribute to interfering in lipid homeostasis as well as adaptive responses to control fructose toxicity in rats.  相似文献   

8.
The effects of different levels of quercetin on the blood pressure were studied in 6-week-old male Sprague-Dawley rats. The rats were fed with a control diet or a high-fat high-sucrose (HFS) diet containing 0, 0.02, 0.07, 0.2, or 0.5% quercetin for 4 weeks. The systolic blood pressure and the lipid peroxides in the plasma were both higher in the rats fed with the HFS diet without quercetin than in the rats fed with the control diet. The nitric oxide synthase (NOS) activity in the vascular tissues and nitric oxide (NO) metabolites in the plasma and urine were both lower in these rats. A distinct depression of the increase in blood pressure was found in the rats fed with the HFS diets containing quercetin. Each level of quercetin examined was effective, the 0.5% level being much more effective than other levels. Dietary quercetin decreased lipid peroxidation in the plasma of the rats fed with the HFS diets. Quercetin also suppressed the decrease in NO metabolites in the plasma and urine, and the NOS activity in the vascular tissues of these rats. These results suggest that the increased NO availability caused by the elevated NOS activity, and the antioxidative activity in these rats fed with quercetin may be sources of the antihypertensive effect of quercetin.  相似文献   

9.
The effects of latent iron deficiency combined with parenteral subchronic or acute cadmium exposure during pregnancy on maternal and fetal tissue distribution of cadmium, iron and zinc, and on fetal viability were evaluated. Timed-pregnant Sprague-Dawley rats were fed on semisynthetic test diets with either high iron (240 mg kg) or low iron (10 mg kg), and concomitantly exposed to 0, 3 or 5 mg cadmium (as anhydrous CdCl2) per kilogram body weight. Animals were exposed to cadmium from gestation day 1 through 19 by subcutaneously implanted mini pumps (Subchronic exposure) or on gestation day 15 by a single subcutaneous injection (Acute exposure). All rats were killed on gestation day 19. Blood samples, selected organs and fetuses were removed and prepared for element analyses by atomic absorption spectrometry. Low iron diet caused decreases in maternal body weight, maternal and fetal liver weights, placental weights and tissue iron concentrations. By cadmium exposure, both subchronic and acute, tissue cadmium concentrations were increased and the increase was dose-related, maternal liver and kidney zinc concentrations were increased, and fetal zinc concentration was decreased. Cadmium concentration in maternal liver was additionally increased by low iron diet. Acute cadmium exposure caused lower maternal body and organ weights, high fetal mortality, and decreased fetal weights of survivors. In conclusion, parenteral cadmium exposure during pregnancy causes perturbations in essential elements in maternal and fetal compartments. Acute cadmium exposure in the last trimester of gestation poses a risk for fetal viability especially when combined with low iron in maternal diet.  相似文献   

10.
CD36 is involved in high-affinity peripheral FFA uptake. CD36-deficient (cd36(-)(/)(-)) mice exhibit increased plasma FFA and triglyceride (TG) levels. The aim of the present study was to elucidate the cause of the increased plasma TG levels in cd36(-)(/)(-) mice. cd36(-)(/)(-) mice showed no differences in hepatic VLDL-TG production or intestinal [(3)H]TG uptake compared with wild-type littermates. cd36(-)(/)(-) mice showed a 2-fold enhanced postprandial TG response upon an intragastric fat load (P < 0.05), with a concomitant 2.5-fold increased FFA response (P < 0.05), suggesting that the increased FFA in cd36(-/-) mice may impair LPL-mediated TG hydrolysis. Postheparin LPL levels were not affected. However, the in vitro LPL-mediated TG hydrolysis rate as induced by postheparin plasma of cd36(-)(/)(-) mice in the absence of excess FFA-free BSA was reduced 2-fold compared with wild-type plasma (P < 0.05). This inhibition was relieved upon the addition of excess FFA-free BSA. Likewise, increasing plasma FFA in wild-type mice to the levels observed in cd36(-)(/)(-) mice by infusion prolonged the plasma half-life of glycerol tri[(3)H]oleate-labeled VLDL-like emulsion particles by 2.5-fold (P < 0.05). We conclude that the increased plasma TG levels observed in cd36(-)(/)(-) mice are caused by decreased LPL-mediated hydrolysis of TG-rich lipoproteins resulting from FFA-induced product inhibition of LPL.  相似文献   

11.
Effects of somatostatin (SOM) on tissue contents of proteins, total lipids and phospholipids were investigated in regenerating and intact liver tissue of Y-59 rats. Whereas SOM inhibited protein accumulation in regenerating liver, the hormone evoked and increase in total lipids, and specially in phosphatidylcholine, phosphatidylethnolamine, phosphatidylserine (PS) and phosphatidylinositol (PI). Since the same effects were not seen when intact liver was analyzed, it is assumed that SOM acts primarily on tissue stimulated to rapid growth. The increase of PS+PI fractions indicates a specific effect of SOM on the metabolism of phosphatidylinositides. Such an effect might result from the interference of the hormone with the action of growth factors that accelerate phosphatidylinositol breakdown.  相似文献   

12.
We previously reported that dietary amino acid restriction induces the accumulation of triglycerides (TAG) in the liver of growing rats. However, differences in TAG accumulation in individual cell types or other tissues were not examined. In this study, we show that TAG also accumulates in the muscle and adipose tissues of rats fed a low amino acid (low-AA) diet. In addition, dietary lysine restriction (low-Lys) induces lipid accumulation in muscle and adipose tissues. In adjusting the nitrogen content to that of the control diet, we found that glutamic acid supplementation to the low-AA diet blocked lipid accumulation, but supplementation with the low-Lys diet did not, suggesting that a shortage of nitrogen caused lipids to accumulate in the skeletal muscle in the rats fed a low-AA diet. Serum amino acid measurement revealed that, in rats fed a low-Lys diet, serum lysine levels were decreased, while serum threonine levels were significantly increased compared with the control rats. When the threonine content was restricted in the low-Lys diet, TAG accumulation induced by the low-Lys diet was completely abolished in skeletal muscle. Moreover, in L6 myotubes cultured in medium containing high threonine and low lysine, fatty acid uptake was enhanced compared with that in cells cultured in control medium. These findings suggest that the increased serum threonine in rats fed a low-Lys diet resulted in lipid incorporation into skeletal muscle, leading to the formation of fatty muscle tissue. Collectively, we propose conceptual hypothesis that “amino-acid signal” based on lysine and threonine regulates lipid metabolism.  相似文献   

13.
Lipogenic diets that are completely devoid of methionine and choline (MCD) induce hepatic steatosis. MCD feeding also provokes systemic weight loss, for unclear reasons. In this study, we found that MCD feeding causes profound hepatic suppression of the gene encoding stearoyl-coenzyme A desaturase-1 (SCD-1), an enzyme whose regulation has significant effects on metabolic rate. Within 7 days of MCD exposure, hepatic SCD-1 mRNA decreased to nearly undetectable levels. By day 21, SCD-1 protein was absent from hepatic microsomes and fatty acids showed a decrease in monounsaturated species. These changes in hepatic SCD-1 were accompanied by signs of hypermetabolism. Calorimetry revealed that MCD-fed mice consumed 37% more energy than control mice (P = 0.0003). MCD feeding also stimulated fatty acid oxidation, although fatty oxidation genes were not significantly upregulated. Interestingly, despite their increased metabolic rate, MCD-fed mice did not increase their food consumption, and as a result, they lost 26% of their body weight in 21 days. In summary, MCD feeding suppresses SCD-1 in the liver, which likely contributes to hypermetabolism and weight loss. MCD feeding also induces hepatic steatosis, by an independent mechanism. Viewed together, these two disparate consequences of MCD feeding (weight loss and hepatic steatosis) give the appearance of an unusual form of lipodystrophy.  相似文献   

14.
The effects of severe and moderate iron deficiency upon the antibody response to influenza virus were investigated in rats. Three groups of weanling male Wistar rats were fed one of two iron-deficient diets (5 mg and 15 mg iron/kg diet) or a normal iron-containing diet (35 mg iron/kg diet). A group of individually pair-fed rats was introduced with the low iron-consuming rats. The effects of the diets upon various iron status parameters were followed during the 4th, 5th, 6th, and 7th week of diet. After 4 weeks of feeding different diets, an intraperitoneal injection of inactivated influenza virus A/New Jersey/76 was performed and a recall injection was done at 5 weeks. Primary and secondary antibody responses were assayed. Rats were sacrificed at 7 weeks of diet. After 4 weeks of feeding different diets, the rats fed the 5 mg iron/kg diet were severely anemic and rats fed 15 mg iron/kg diet were moderately iron-deficient, as shown by their iron status parameters. Growth was delayed in anemic and matched pair-fed rats. A primary antibody response was almost nonexistent in all groups. Secondary antibody titers were significantly weaker in anemic rats than in ad libitum controls, but were not different from those of pair-fed rats. This response was similar in moderately iron-deficient, ad libitum, and pair-fed rats. These results show that antibody synthesis in response to the influenza virus vaccine is preserved in moderate iron deficiency but is reduced in severe anemia. The reduction in energy consumption associated with severe iron deficiency in the rat could play a part in the altered humoral response.  相似文献   

15.
Hypertension is known to be associated with an oxidative stress resulting from an imbalance of antioxidant defense mechanisms in various tissues. The purpose of this study was to investigate the relationship between the increase of arterial blood pressure, measured during the gradual development of experimental hypertension in deoxycorticosterone (DOCA)-salt-treated rats, and an early imbalance of liver antioxidant status. The levels of liver oxidant/antioxidant markers and iron were studied during the induction of hypertension in 3-, 6-, and 8-wk DOCA-salt-treated Sprague-Dawley rats. Hepatic antioxidant defenses were decreased as early as 3 wk of hypertensive treatment: the decrease of peroxidase-reductase-transferase and catalase activities was associated with a significant increase of thiobarbituric acid reactive substances (TBARS) levels. Liver oxidative stress increased until 6 wk, and remained stable at 8 wk of DOCA-salt treatment. Concurrently, liver iron levels were increased at 6 wk and returned to normal values after 8 wk of hypertensive treatment. Iron seems to be an inductor of liver oxidative stress and responsible for the persistent oxidative stress, most likely through secondary free-radical release. Thus, our data (1) confirm that hypertension in DOCA-salt-treated rats might be a free-radical-dependent disease where hepatic oxidant/antioxidant imbalance is obviously involved from the beginning of blood pressure elevation and (2) suggest that the use of suitable iron chelators might reverse liver oxidative stress associated with the increase of blood pressure.  相似文献   

16.
17.
18.
This study was designed to examine the effects of a high-fat, high-sucrose (HFHS) diet on vascular and metabolic actions of insulin. Male rats were randomized to receive an HFHS or regular chow diet for 4 wk. In a first series of experiments, the rats had pulsed Doppler flow probes and intravascular catheters implanted to measure blood pressure, heart rate, and regional blood flows. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine skeletal muscle glucose transport activity and to determine in vitro vascular reactivity, endothelial nitric oxide synthase (eNOS) protein expression in muscle and vascular tissues and endothelin content, nitrotyrosine formation, and NAD(P)H oxidase protein expression in vascular tissues. The HFHS-fed rats displayed insulin resistance, hyperinsulinemia, hypertriglyceridemia, hyperlipidemia, elevated blood pressure, and impaired insulin-mediated renal and skeletal muscle vasodilator responses. A reduction in endothelium-dependent vasorelaxation, accompanied by a decreased eNOS protein expression in muscles and blood vessel endothelium, and increased vascular endothelin-1 protein content were also noted in HFHS-fed rats compared with control rats. Furthermore, the HFHS diet induced a reduced insulin-stimulated glucose transport activity in muscles and increased levels of NAD(P)H oxidase protein and nitrotyrosine formation in vascular tissues. These findings support the importance of eNOS protein in linking metabolic and vascular disease and indicate the ability of a Westernized diet to induce endothelial dysfunction and to alter metabolic and vascular homeostasis.  相似文献   

19.
The energy balance and hepatic fatty acid-supported respiration were studied in rats fed a control or an energy-dense diet. In addition, state 3 and 4 respiratory rates as well as ketone body production with palmitoylcarnitine as substrate were determined in isolated mitochondria. Metabolizable energy intake and energy expenditure increased in rats fed an energy-dense diet, but the gain in body weight and lipid content remained unchanged. No variation occurred in the mitochondrial palmitoylcarnitine utilization rate and ketone body production, but a significant increase in the mitochondrial content of ketone bodies and the serum levels was found in rats fed an energy-dense diet. Furthermore, we have shown a significant increase in fatty acid-stimulated respiration in hepatocytes from rats fed an energy-dense diet. The enhanced hepatic fatty acid utilization as an energy substrate found in rats fed an energy-dense diet may contribute to reduce the availability of lipids for storage, thus counteracting the development of obesity.  相似文献   

20.
Fetuin-A is synthesized in the liver and is secreted into the bloodstream. Clinical studies suggest involvement of fetuin-A in metabolic disorders such as visceral obesity, insulin resistance, diabetes, and fatty liver. Curcumin is extracted from the rhizome Curcuma longa and has been shown to possess potent antioxidant, anticarcinogenic, anti-inflammatory, and hypoglycemic properties. In this study, we investigated the effect of curcumin treatment on serum fetuin-A levels as well as hepatic lipids and prooxidant–antioxidant status in rats fed a high-fat diet (HFD). Male Sprague–Dawley rats were divided into six groups. Group 1 was fed control diet (10 % of total calories from fat). Groups 2 and 3 were given curcumin (100 and 400 mg/kg bw/day, respectively ) by gavage for 8 weeks and were fed control diet. Group 4 was fed with HFD (60 % of total calories from fat). Groups 5 and 6 received HFD together with the two doses of curcumin, respectively. Curcumin treatment appeared to be effective in reducing liver triglycerides and serum fetuin-A levels. These findings suggest that the reduction of fetuin-A may contribute to the beneficial effects of curcumin in the pathogenesis of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号