首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to examine the association of high blood lactate levels, induced with a maximal cycling or with an intravenous infusion, with spinal cord excitability. The study was carried out on 17 male athletes; all the subjects performed a maximal cycling test on a mechanically braked cycloergometer, while 6 of them were submitted to the intravenous infusion of a lactate solution (3?mg/kg in 1?min). Before the exercise or the injection, also at the end as well as 5 and 10?min after the conclusion, venous blood lactate was measured and excitability of the spinal α-motoneurons was evaluated by using the H reflex technique. In both experimental conditions, it has been observed that an exhaustive exercise is associated with a strong increase of blood lactate (but not of blood glucose) and with a significant reduction of spinal excitability. Since a similar augment of blood lactate induced by an intravenous infusion, in subjects not performing any exercise, is not associated with significant changes of spinal excitability, it can be concluded that the increase of blood lactate levels during a maximal exercise is not per se capable of modifying the excitability of spinal α-motoneurons.  相似文献   

2.
Objectives: In taekwondo competitions, fatigue has a large influence on performance. Recent studies have reported that the excitability in the primary hand motor cortex, investigated with transcranial magnetic stimulation (TMS), is enhanced at the end of a maximal exercise and that this improvement correlates with blood lactate. The aim of the present study was to investigate the relationship between blood lactate and cortical excitability in taekwondo athletes and non-athletes.

Methods: The excitability of the primary motor cortex was measured before and after fatiguing hand-grip exercise by TMS. Capillary blood lactate was measured at rest (pre-test), at the end (0?min), and at 3 and 10?min after the exercise by using a “Lactate Pro” portable lactate analyzer.

Results: Significant differences in cortical excitability between the two groups were found after the exercise (p?p?Conclusion: The present findings showed changes in the excitability in the athletes group and also in the non-athletes group. However, blood lactate seems to have the greater effect in trained subjects compared to untrained subjects. In fact, it appears that, during extremely intensive exercise in taekwondo athletes, lactate may delay the onset of fatigue not only by maintaining the excitability of muscle, but also by increasing the excitability of the primary motor cortex more than in non-athletes.  相似文献   

3.
The influence of blood lactate on brainstem excitability was tested by using the blink reflex (BR) recovery cycle on 18 sprinters. Blood lactate was measured before maximal cycling, at the end, as well as 5 and 10?min after the exhaustion. Blood lactate was associated with a decrement of R2 whereas only small changes were observed after an intravenous infusion of lactate. It seems, therefore, that lactate influences BR mainly by acting at the cortical level.  相似文献   

4.
Gender differences in cortical excitability have been detected by using transcranial magnetic stimulation (TMS). The present study was carried out to compare the effects of high blood lactate levels, induced by performing a maximal exhausting exercise, on the excitability of the primary motor cortex in young male and female athletes. The study was carried out on 21 young males and 20 females from the Middle Distance Track Team of our university. Before the exercise, at the end, as well as 5 and 10 min after the conclusion, venous blood lactate and glucose were measured and excitability of the motor cortex was evaluated by using TMS. We observed a similar enhancement of excitability of primary motor cortex, concomitantly with an increase of blood lactate, in both young male and female athletes. However, the improvement was significantly higher (p < 0.05) in women (37.4% ± 3.97) than in men (42.0% ± 6.43), suggesting a greater sensitiveness of female cerebral cortex to blood lactate.  相似文献   

5.
Eccentric muscle actions are known to induce temporary muscle damage, delayed onset muscle soreness (DOMS) and muscle weakness that may persist for several days. The purpose of the present study was to determine whether DOMS-inducing exercise affects blood lactate responses to subsequent incremental dynamic exercise. Physiological and metabolic responses to a standardised incremental exercise task were measured two days after the performance of an eccentric exercise bout or in a control (no prior exercise) condition. Ten healthy recreationally active subjects (9 male, 1 female), aged 20 (SD 1) years performed repeated eccentric muscle actions during 40 min of bench stepping (knee high step; 15 steps · min−1). Two days after the eccentric exercise, while the subjects experienced DOMS, they cycled on a basket loaded cycle ergometer at a starting work rate of 150 W, with increments of 50 W every 2 min until fatigue. The order of the preceding treatments (eccentric exercise or control) was randomised and the treatments were carried out 2 weeks apart. Two days after the eccentric exercise, all subjects reported leg muscle soreness and exhibited elevated levels of plasma creatine kinase activity (P < 0.05). Endurance time and peak O2 during cycling were unaffected by the prior eccentric exercise. Minute volume, respiratory exchange ratio and heart rate responses were similar but venous blood lactate concentration was higher (P < 0.05) during cycling after eccentric exercise compared with the control condition. Peak blood lactate concentration, observed at 2 min post-exercise was also higher [12.6 (SD 1.4) vs 10.9 SD (1.3) mM; P < 0.01]. The higher blood lactate concentration during cycling exercise after prior eccentric exercise may be attributable to an increased rate of glycogenolysis possibly arising from an increased recruitment of Type II muscle fibres. It follows that determination of lactate thresholds for the purpose of fitness assessment in subjects experiencing DOMS is not appropriate. Accepted: 27 September 1997  相似文献   

6.
The excitability of α-motoneurons was studied in healthy subjects during voluntary and passive air-stepping with imitation of foot loading. The foot loading induced reduction of the H-reflex during both immobility and stepping. Thus, sensory inputs from load receptors play an important role in phase-dependent modulation of the H-reflex, and excitability of α-motoneurons is considerably dependent on the foot afferent input.  相似文献   

7.
We studied the role of lactate in gluconeogenesis (GNG) during exercise in untrained fasting humans. During the final hour of a 4-h cycle exercise at 33-34% maximal O(2) uptake, seven subjects received, in random order, either a sodium lactate infusion (60 micromol x kg(-1) x min(-1)) or an isomolar sodium bicarbonate infusion. The contribution of lactate to gluconeogenic glucose was quantified by measuring (2)H incorporation into glucose after body water was labeled with deuterium oxide, and glucose rate of appearance (R(a)) was measured by [6,6-(2)H(2)]glucose dilution. Infusion of lactate increased lactate concentration to 4.4 +/- 0.6 mM (mean +/- SE). Exercise induced a decrease in blood glucose concentration from 5.0 +/- 0.2 to 4.2 +/- 0.3 mM (P < 0.05); lactate infusion abolished this decrease (5.0 +/- 0.3 mM; P < 0.001) and increased glucose R(a) compared with bicarbonate infusion (P < 0.05). Lactate infusion increased both GNG from lactate (29 +/- 4 to 46 +/- 4% of glucose R(a), P < 0.001) and total GNG. We conclude that lactate infusion during low-intensity exercise in fasting humans 1). increased GNG from lactate and 2). increased glucose production, thus increasing the blood glucose concentration. These results indicate that GNG capacity is available in humans after an overnight fast and can be used to sustain blood glucose levels during low-intensity exercise when lactate, a known precursor of GNG, is available at elevated plasma levels.  相似文献   

8.
Numerous studies have reported that following intense exercise the rate of blood lactate (La) disappearance is greater during continuous aerobic work than during passive recovery. Recent work indicates that a combination of high- and low-intensity work may be optimal in reducing blood La. We tested this hypothesis by measuring the changes in blood La levels following maximal exercise during four different recovery patterns. Immediately following 50 S of maximal work, subjects (n = 7) performed one of the following recovery treatments for 40 min: 1) passive recovery (PR); 2) cycling at 35% maximal O2 uptake (VO2 max) (35% R); 3) cycling at 65% VO2 max (65% R); 4) cycling at 65% for 7 min followed by cycling at 35% for 33 min (CR). The treatment order was counterbalanced with each subject performing all treatments. Serial blood samples were obtained throughout recovery treatments and analyzed for La. The rate of blood La disappearance was significantly greater (P less than 0.05) in both the 35% R and CR when compared with either the 65% R or PR. No significant difference (P greater than 0.05) existed in the rate of blood La disappearance between the 35% R and CR. These data do not support the hypothesis that exercise recovery at a combination of intensities is superior to a recovery involving continuous submaximal exercise in lowering blood La following maximal work.  相似文献   

9.
This study investigated 1) red blood cells (RBC) rigidity and 2) lactate influxes into RBCs in endurance-trained athletes with and without exercise-induced hypoxemia (EIH). Nine EIH and six non-EIH subjects performed a submaximal steady-state exercise on a cyclo-ergometer at 60% of maximal aerobic power for 10 min, followed by 15 min at 85% of maximal aerobic power. At rest and at the end of exercise, arterialized blood was sampled for analysis of arterialized pressure in oxygen, and venous blood was drawn for analysis of plasma lactate concentrations and hemorheological parameters. Lactate influxes into RBCs were measured at three labeled [U-14C]lactate concentrations (1.6, 8.1, and 41 mM) on venous blood sampled at rest. The EIH subjects had higher maximal oxygen uptake than non-EIH (P < 0.05). Total lactate influx was significantly higher in RBCs from EIH compared with non-EIH subjects at 8.1 mM (1,498.1 +/- 87.8 vs. 1,035.9 +/- 114.8 nmol.ml(-1).min(-1); P < 0.05) and 41 mM (2,562.0 +/- 145.0 vs. 1,618.1 +/- 149.4 nmol.ml(-1).min(-1); P < 0.01). Monocarboxylate transporter-1-mediated lactate influx was also higher in EIH at 8.1 mM (P < 0.05) and 41 mM (P < 0.01). The drop in arterial oxygen partial pressure was negatively correlated with total lactate influx measured at 8.1 mM (r = -0.82, P < 0.05) and 41 mM (r = -0.84, P < 0.05) in the two groups together. Plasma lactate concentrations and hemorheological data were similar in the two groups at rest and at the end of exercise. The results showed higher monocarboxylate transporter-1-mediated lactate influx in the EIH subjects and suggested that EIH could modify lactate influx into erythrocyte. However, higher lactate influx in EIH subjects was not accompanied by an increase in RBC rigidity.  相似文献   

10.
Regional substrate exchange was studied in 12 healthy males during 90 min of bicycle exercise at 30% of maximal O2 consumption with a 20-min recovery. Six subjects received an intravenous fructose infusion (8.5 mmol/min) from 40 min of exercise to the end of recovery. Splanchnic glucose output, muscle glucose uptake, arterial glucose, and insulin were uninfluenced by the infusion. The respiratory exchange ratio rose to 0.93 +/- 0.04, and arterial free fatty acids fell by 50% (P less than 0.05). Fructose was taken up by splanchnic tissues (45% of administered load), leg muscle (28%), and resting muscle (28%). During infusion, arterial lactate and pyruvate rose two- to threefold, and these substrates were released from splanchnic tissues and taken up by exercising and resting muscle. Splanchnic release of lactate, pyruvate, and glucose accounted for 78% of fructose uptake at 90 min of exercise. Uptake of fructose, lactate, and pyruvate accounted for 55% and together with glucose for 103% of the total oxidative metabolism by exercising muscle. The regional fructose uptakes and lactate exchanges persisted throughout recovery. The present results indicate that fructose infusion during leg exercise 1) results in increased carbohydrate oxidation from fructose, lactate, and pyruvate in exercising muscle, 2) exerts a glycogenic effect in resting muscle and liver during exercise and in liver and muscle recovering from exercise, and 3) does not interfere with glucose metabolism, and that fructose transport into muscle differs from that of glucose.  相似文献   

11.
For many years, it was believed that ventilation does not limit performance in healthy humans. Recently, however, it has been shown that inspiratory muscles can become fatigued during intense endurance exercise and decrease their exercise performance. Therefore, it is not surprising that respiratory endurance training can prolong intense constant-intensity cycling exercise. To investigate the effects of respiratory endurance training on blood lactate concentration and oxygen consumption (VO2) during exercise and their relationship to performance, 20 healthy, active subjects underwent 30 min of voluntary, isocapnic hyperpnoea 5 days a week, for 4 weeks. Respiratory endurance tests, as well as incremental and constant-intensity exercise tests on a cycle ergometer, were performed before and after the 4-week period. Respiratory endurance increased from 4.6 (SD 2.5) to 29.1 (SD 4.0) min (P < 0.001) and cycling endurance time was prolonged from 20.9 (SD 5.5) to 26.6 (SD 11.8) min (P < 0.01) after respiratory training. The VO2 did not change at any exercise intensity whereas blood lactate concentration was lower at the end of the incremental [10.4 (SD 2.1) vs 8.8 (SD 1.9) mmol x l(-1), P < 0.001] as well as at the end of the endurance exercise [10.4 (SD 3.6) vs 9.6 (SD 2.7) mmol x l(-1), P < 0.01] test after respiratory training. We speculate that the reduction in blood lactate concentration was most likely caused by an improved lactate uptake by the trained respiratory muscles. However, reduced exercise blood lactate concentrations per se are unlikely to explain the improved cycling performance after respiratory endurance training.  相似文献   

12.
The excitability of the motor cortex increases as fatigue develops during sustained single-joint contractions, but there are no previous reports on how corticospinal excitability is affected by sustained locomotor exercise. Here we addressed this issue by measuring spinal and cortical excitability changes during sustained cycling exercise. Vastus lateralis (VL) and rectus femoris (RF) muscle responses to transcranial magnetic stimulation of the motor cortex (motor evoked potentials, MEPs) and electrical stimulation of the descending tracts (cervicomedullary evoked potentials, CMEPs) were recorded every 3 min from nine subjects during 30 min of cycling at 75% of maximum workload (W(max)), and every minute during subsequent exercise at 105% of W(max) until subjective task failure. Responses were also measured during nonfatiguing control bouts at 80% and 110% of W(max) prior to sustained exercise. There were no significant changes in MEPs or CMEPs (P > 0.05) during the sustained cycling exercise. These results suggest that, in contrast to sustained single-joint contractions, sustained cycling exercise does not increase the excitability of motor cortical neurons. The contrasting corticospinal responses to the two modes of exercise may be due to differences in their associated systemic physiological consequences.  相似文献   

13.
Motor center activity and reflexes from contracting muscle have been shown to be important for mobilization of free fatty acids (FFA) during exercise. We studied FFA metabolism in the absence of these mechanisms: during involuntary, electrically induced leg cycling in individuals with complete spinal cord injury (SCI). Healthy subjects performing voluntary cycling served as controls (C). Ten SCI (level of injury: C5-T7) and six C exercised for 30 min at comparable oxygen uptake rates (approximately 1 l/min), and [1-14C]palmitate was infused continuously to estimate FFA turnover. From femoral arteriovenous differences, blood flow, muscle biopsies, and indirect calorimetry, leg substrate balances as well as concentrations of intramuscular substrates were determined. Leg oxygen uptake was similar in the two groups during exercise. In SCI, but not in C, plasma FFA and FFA appearance rate fell during exercise, and plasma glycerol increased less than in C (P < 0.05). Fractional uptake of FFA across the working legs decreased from rest to exercise in all individuals (P < 0.05) but was always lower in SCI than in C (P < 0.05). From rest to exercise, leg FFA uptake increased less in SCI than in C subjects (14 +/- 3 to 57 +/- 20 vs. 41 +/- 13 to 170 +/- 57 micromol x min(-1) x leg(-1); P < 0.05). Muscle glycogen breakdown, leg glucose uptake, carbohydrate oxidation, and lactate release were higher (P < 0.05) in SCI than in C during exercise. Counterregulatory hormonal changes were more pronounced in SCI vs. C, whereas insulin decreased only in C. In conclusion, FFA mobilization, delivery, and fractional uptake are lower and muscle glycogen breakdown and glucose uptake are higher in SCI patients during electrically induced leg exercise compared with healthy subjects performing voluntary exercise. Apparently, blood-borne mechanisms are not sufficient to elicit a normal increase in fatty acid mobilization during exercise. Furthermore, in exercising muscle, FFA delivery enhances FFA uptake and inhibits carbohydrate metabolism, while carbohydrate metabolism inhibits FFA uptake.  相似文献   

14.
Physiological and metabolic output responses to facial cooling during a graded maximal exercise and a prolonged submaximal exercise lasting 30 min at 65% max were investigated in five male subjects. Pedalling on a cycle ergometer was performed both with and without facial cooling (10°C, 4.6 m s–1). Facial cooling at the end of graded maximal exercise apparently had no effect on plasma lactate (LA), maximal oxygen consumption ( max), maximal heart rate (HR max), rectal temperature (T re), work-load, lactate threshold (LT), ventilatory threshold (VT) and onset of blood lactate accumulation (OBLA). However, the response to facial cooling after prolonged submaximal exercise is significantly different for heart rate and work-load. The results suggest that facial wind stimulation during maximal exercise does not produce a stress high enough to alter the metabolic and physiological responses.  相似文献   

15.
To examine the effect of acute plasma volume expansion (PVE) on substrate selection during exercise, seven untrained men cycled for 40 min at 72 +/- 2% peak oxygen uptake (VO(2 peak)) on two occasions. On one occasion, subjects had their plasma volume expanded by 12 +/- 2% via an intravenous infusion of the plasma substitute Haemaccel, whereas on the other occasion no such infusion took place. Muscle samples were obtained before and immediately after exercise. In addition, heart rate and pulmonary gas and venous blood samples were obtained throughout exercise. No differences in oxygen uptake or heart rate during exercise were observed between trials, whereas respiratory exchange ratio, blood glucose, and lactate were unaffected by PVE. Muscle glycogen and lactate concentrations were not different either before or after exercise. In addition, there was no difference in total carbohydrate oxidation between trials (control: 108 +/- 2 g; PVE group: 105 +/- 2 g). Plasma catecholamine levels were not affected by PVE. These data indicate that substrate metabolism during submaximal exercise in untrained men is unaltered by acute hypervolemia.  相似文献   

16.
The purpose of the present study was to investigate the blood lactate (LA-) responses to hypoventilation induced by reduced frequency breathing (RFB) during recovery from exercise. Five male subject performed 16 4 min cycling bouts alternating with 16 min rest periods. Exercise intensities were chosen at power outputs corresponding to 30% VO2max at 2 mMLA-, VO2 at 4 mMLA-, and 90% VO2max in each subject. Breathing frequency was voluntarily controlled starting 10 s before each 3rd min of exercise and maintained throughout the rest of the exercise period. Four different breathing patterns at each exercise intensity were used: normal breathing (NB), breathing every 4 s, breathing every 8 s, and maximal RFB. Except for the NB trials, subjects held their breath at functional residual capacity during each breathing interval. The concentration difference of LA- between the 3rd min sample and the 4th min sample was defined as the lactate change during exercise (delta LA-ex), and that between the 4th min sample and the sample at the 3rd min after the end of the exercise as the lactate change during recovery (delta LA-rec). An ANOVA showed significant (p less than 0.05) differences in breathing procedures only in delta LA-rec. delta LA-rec seemed to increase as compared to NB only at VO2 at 4 mMLA- and 90% VO2max, while delta LA-ex remained unchanged as compared to NB in spite of reduced VA. These results might indicate that RFB inhibited lactate removal from working muscles during exercise.  相似文献   

17.
Hepatic lactate uptake versus leg lactate output during exercise in humans.   总被引:1,自引:0,他引:1  
The exponential rise in blood lactate with exercise intensity may be influenced by hepatic lactate uptake. We compared muscle-derived lactate to the hepatic elimination during 2 h prolonged cycling (62 +/- 4% of maximal O(2) uptake, (.)Vo(2max)) followed by incremental exercise in seven healthy men. Hepatic blood flow was assessed by indocyanine green dye elimination and leg blood flow by thermodilution. During prolonged exercise, the hepatic glucose output was lower than the leg glucose uptake (3.8 +/- 0.5 vs. 6.5 +/- 0.6 mmol/min; mean +/- SE) and at an arterial lactate of 2.0 +/- 0.2 mM, the leg lactate output of 3.0 +/- 1.8 mmol/min was about fourfold higher than the hepatic lactate uptake (0.7 +/- 0.3 mmol/min). During incremental exercise, the hepatic glucose output was about one-third of the leg glucose uptake (2.0 +/- 0.4 vs. 6.2 +/- 1.3 mmol/min) and the arterial lactate reached 6.0 +/- 1.1 mM because the leg lactate output of 8.9 +/- 2.7 mmol/min was markedly higher than the lactate taken up by the liver (1.1 +/- 0.6 mmol/min). Compared with prolonged exercise, the hepatic lactate uptake increased during incremental exercise, but the relative hepatic lactate uptake decreased to about one-tenth of the lactate released by the legs. This drop in relative hepatic lactate extraction may contribute to the increase in arterial lactate during intense exercise.  相似文献   

18.
Context: Postexercise urine lactate may be a novel biomarker of lactate production capacity during exercise.

Objective: To evaluate the reliability and utility of the urine lactate concentration after maximal swimming trials between different training protocols (6?×?50?m and 3?×?100?m) and training states (active and nonactive swimmers).

Materials and methods: Lactate and creatinine were determined by spectrophotometry in blood and urine.

Results: Blood and urine lactate concentrations were correlated in-between training protocols and in participants of different training states. The reliability of the urine lactate concentration was moderate for one of the training protocols and good or moderate for the two training states. Additionally, it was lower than that of the blood lactate concentration, and did not improve after normalizing to the urine creatinine concentration.

Discussion and conclusion: Although promising as a biomarker of lactate production capacity, urine lactate requires further research to improve its reliability.  相似文献   

19.
Effect of dichloroacetate on lactate concentration in exercising humans   总被引:1,自引:0,他引:1  
The precise mechanism responsible for the increase in plasma lactate concentration during exercise in humans is not known. We have used dichloroacetate to test the hypothesis that a limitation in pyruvate dehydrogenase activity is responsible for the rise in plasma lactate. Dichloroacetate stimulates the activity of pyruvate dehydrogenase, which is normally the regulatory enzyme in the oxidation of glucose when tissue oxygenation is adequate. Six subjects were studied twice according to a randomized, crossover protocol, involving one test with saline infusion and another with dichloroacetate infusion. Exercise load on a bicycle ergometer was increased progressively until exhaustion. Blood samples were drawn each minute throughout exercise and periodically throughout 120 min of recovery. Dichloroacetate significantly lowered the lactate concentration during exercise performed at less than 80% of the average maximal O2 consumption. The peak concentration of lactate at exhaustion was not affected by dichloroacetate treatment, but dichloroacetate did lower lactate concentration throughout recovery. These results suggest that a limitation in pyruvate dehydrogenase activity contributes to the increase in plasma lactate during submaximal exercise and recovery.  相似文献   

20.
A total of six male and six female sprinters at the same national competition level and aged 18–20 years performed a force/velocity test and a 30-s supramaximal exercise test (Wingate test) on 2 different days, separated by a maximal interval of 15 days. The maximal anaerobic power (W max) was determined from the force/velocity test, and the mean anaerobic power (W) from the Wingate test. Immediately after the Wingate test, a 5-ml venous blood sample was drawn via a heparinized catheter in an antebrachial vein for subsequent catecholamine (adrenaline and noradrenaline) analysis. After 5 min recovery a few microlitres of capillary blood were also taken for an immediate lactate determination. Even expressed per kilogram lean body mass,W max andW were significantly lower in women. The lactate and adrenaline responses induced by the Wingate test were also less pronounced in this group whereas the noradrenaline levels were not significantly different in men and women. Above all, very different relationships appeared between lactate, adrenaline, noradenaline and W according to sex. Thus, as reported by other authors, the adrenergic response to a supramaximal exercise seemed to be lower in women than in men. Nevertheless a different training status between the two groups, even at same national competition level, could not be excluded and might contribute, at least in part, to the gender differences observed in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号