首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This study was designed to determine the extent to which sensations elicited by discrete electrotactile stimulation can be spatially localized, with a qualitative comparison to mechanical stimulation, in a 2 x 2 electrode array on the fingertip. Electrotactile stimulation was delivered in two modes: (1) same current to all locations (constant) or (2) current adjusted to perceptual threshold of each location (varied). For each stimulus location, subjects were asked to identify the location of the stimulus. Mechanical stimulation of the same locations on the fingerpad was delivered through von Frey hairs (0.07, 0.2 and 0.4 g). The percentage of accurate responses was computed for all stimulation modes. We found that the accuracy of discrimination of stimulus location in both the constant (46%) and varied (40%) electrotactile stimulation modes was significantly higher than chance level (25%; p < 0.01). Furthermore, subjects were significantly more accurate in discriminating electrotactile stimuli in the constant than in the varied mode (p < 0.05). We also found that the accuracy of spatial discrimination was dependent on stimulation site for mechanical, but not electrotactile stimulation. Finally, we found a significant difference in accuracy over the duration of the experiment only for mechanical modes, which may indicate that electrotactile stimuli are less biased over time. These results suggest that, although low in accuracy, human subjects are able to extract spatial information from electrotactile stimuli. Further research is needed to optimize the amount of the information that can be delivered through electrotactile stimulation.  相似文献   

2.
Due to its high sensitivity and conductivity, electrotactile stimulation (ETS) on the tongue has proven to be a useful and technically convenient tool to substitute and/or augment sensory capabilities. However, most of its applications have only provided spatial attributes and little is known about (a) the ability of the tongue's sensory system to process electrical stimuli of varying magnitudes and (b) how modulation of ETS intensity affects subjects’ ability to decode stimulus intensity. We addressed these questions by quantifying: (1) the magnitude of the dynamic range (DR; maximal comfortable intensity/perception threshold) and its sensitivity to prolonged exposure; (2) subjects’ ability to perceive intensity changes; and (3) subjects’ ability to associate intensity with angular excursions of a protractor's handle. We found that the average DR (17 dB) was generally large in comparison with other tactile loci and of a relatively constant magnitude among subjects, even after prolonged exposure, despite a slight but significant upward drift (p < 0.001). Additionally, our results showed that as stimulus intensity increased, subjects’ ability to discriminate ETS stimuli of different intensities improved (p < 0.05) while estimation accuracy, in general, slightly decreased (increasing underestimation). These results suggest that higher ETS intensity may increase recruitment of rapidly adapting mechanoreceptor fibers, as these are specialized for coding stimulus differences rather than absolute intensities. Furthermore, our study revealed that the tongue's sensory system can effectively convey electrical stimuli despite minimal practice and when information transfer is limited by memory and DR drift.  相似文献   

3.
The goal of this study was to investigate the relationship between the psychophysical vibrotactile thresholds of the Pacinian (P) channel and the mechanical properties of the skin at the fingertip. Seven healthy adult subjects (age: 23–30) participated in the study. The mechanical stimuli were 250-Hz sinusoidal bursts and applied with cylindrical contactor probes of radii 1, 2, and 3.5?mm on three locations at the fingertip. The duration of each burst was 0.5?s (rise and fall time: 50?ms). The subjects performed a two-interval forced-choice task while the stimulus levels changed for tracking the threshold at 75% probability of detection. There were significant main effects of contactor radius and location (two-way ANOVA, values of p?<?0.001). The thresholds decreased as the contactor radius increased (i.e., spatial summation effect) at all locations. The thresholds were lowest near the whorl at the fingertip. Additionally, we measured the mechanical impedance (specifically, the storage and loss moduli) at the contact locations. The storage moduli did not change with the contactor location, but the loss moduli were lowest near the whorl. While the loss moduli decreased, the storage moduli increased (e.g., more springiness) as the contactor radius increased. There was moderate and barely significant correlation between the absolute thresholds and the storage moduli (r?=?0.650, p?=?0.058). However, the correlation between the absolute thresholds and the loss moduli was high and very significant (r?=?0.951, p?<?0.001). The results suggest that skin mechanics may be important for locally shaping psychophysical detection thresholds, which would otherwise be expected to be constant due to uniform Pacinian innervention density at the fingertip.  相似文献   

4.
Extracellular recordings were used to characterize responses to cutaneous mechanical stimulation of 78 neurons in the rat nucleus submedius (SM). Thirty-nine of these units were activated by some type of cutaneous mechanical stimulation. Eighteen cells were activated exclusively by noxious stimuli. In 13 of these cells, responses were of swift onset and relatively rapid termination following stimulus application. In contrast, in three neurons responses were delayed both in onset and termination, and in two the response was immediate, but the markedly increased evoked activity outlasted stimulus application by 13 min. Receptive fields (RFs) of these nociceptive neurons were generally large, although none were bilateral. Four SM neurons were activated by innocuous stimuli, but their maximal response was obtained only after noxious stimulation. Responses of all of these neurons were of immediate onset and recovery, and their RFs were large (two were bilateral). Twelve SM neurons were activated maximally by innocuous stimuli. Responses of seven of these cells were immediate in onset and termination, while that of three were delayed in both onset and termination. Two of the 12 innocuous-only neurons quickly became unresponsive to repeated stimulus applications, and could be reactivated only after a rest period during which no stimuli were applied. RFs of these units were also generally large, and in three cases were bilateral. Five SM neurons responded by decreasing, or completely ceasing, their firing subsequent to noxious-only (n = 2), or innocuous-only (n = 3) stimulation. Four of these units had large RFs (two were bilateral). The remaining 39 SM neurons could not be activated by any type of mechanical cutaneous stimulation we tried.

Electrical stimulation of the ventrolateral orbital cortex (VLO) was employed to examine frontal cortical projections of 21 SM neurons. Ten of these units were activated, although all of them synaptically rather than antidromically, and two were inhibited. There was no clear-cut relationship between neuronal location, physiological type, RF site, or VLO stimulation effects among the 39 SM neurons.

These results provide further support for the involvement of SM neurons in nociceptive information signaling, and suggest additionally that the role of the nucleus is not limited to nociception but encompasses a wider range of cutaneous sensations.  相似文献   

5.
Two male Florida manatees (Trichechus manatus latirostris) demonstrated sensitive tactile discrimination in a two‐alternative forced choice task, using a modified staircase method. Stimuli were acrylic plates with vertical gratings of ridges and grooves. The standard stimulus, present on every trial, had 2 mm gratings and the comparison stimuli had wider gratings. The blindfolded subjects were trained to demonstrate discrimination by pressing the target with wider gratings. Discrimination thresholds (75% correct) for the subjects were 2.05 mm and 2.15 mm, corresponding to Weber fractions of 0.025 and 0.075, respectively. These results indicate thresholds on similar stimuli comparable to humans (index finger tasks) and better than harbor seals, Phoca vitulina, and the closely related Antillean manatee, Trichechus manatus manatus. Memory for the tactile task was quite stable for both subjects, over 2 yr in the case of one of the subjects. Video analysis of responses indicated that bristle‐like hairs, perioral bristles, and skin on the oral disk were involved in the discrimination response.  相似文献   

6.
A new multimodal pain assessment model was developed integrating electrical, mechanical, cold, and warmth stimuli into the same device. The device, with a bag and electrodes for electrical stimulation, was positioned in the lower part of the esophagus in 11 healthy subjects. Mechanical stimuli were delivered with an impedance planimetric system. Thermal stimuli were performed by circulating water of different temperatures (5-50 degrees C) inside the bag. All subjects reported both nonpainful and painful local and referred sensations to all stimuli. Temporal summation to repeated electrical stimuli could be studied. For all stimuli, there was a relationship between stimulus intensity and pain intensity. The referred pain area increased with increasing intensity of the electrical and mechanical stimuli. There were several differences between the sensations evoked by the four stimulus modalities, indicating activation of different visceral nerve pathways. This model offers the possibility for controlled multimodal stimuli activating the superficial and deeper layers of the human gut and should be used in basic, clinical, and pharmacological pain studies.  相似文献   

7.
Macaca nemestrina monkeys were trained to indicate the location of suprathreshold tactile stimuli delivered to the glabrous skin of either foot. The testing paradigm involved self-initiated trials (a bar press), followed by 10-Hz stimulation at one of six locations (e.g., on the distal phalanx of the second toe on the left foot), providing the opportunity for the animal to press one of six buttons located on a facing panel. The buttons were positioned on a picture of a monkey's feet at locations corresponding to the skin loci that were stimulated on different trials. If the animal first presed the button corresponding to the position stimulated, liquid reward was delivered; responses to any other button terminated stimulation without reward, requiring initiation of another trial for the opportunity to receive reinforcement.

The localization errors for normal monkeys were reliably greater along the mediolateral dimension of the foot than they were proximodistally. For example, stimulation of the tip of toe 4 elicited responses to the button at the tip of toe 2 on 25% of the trials, as compared with only 10% errors betweeen the tip of toe 4 and the pad at the base of toe 4. Following unilateral interruption of the dorsal spinal columns at an upper thoracic level, the capacity for absolute tactile localization was unchanged over months of testing. The greater localization accuracy along the proximodistal axis of the foot remained after dorsal column transection.

In order to evaluate neural substrates of localization by monkeys, single-neuron receptive field (RF) sizes and distributions within the first somatosensory (SI) cortex were examined to determine the overlap or separation of the representations of different points on glabrous skin. The sample of neurons that provided the RF data was obtained in previous investigations of unanesthetized, neuromuscularly blocked Macaca fascicularis monkeys. Analysis of RF overlap revealed that greater than 50% of cytoarchitectural area 1 units that responded to stimulation of one digit tip also responded to another digit or to the pad at the base of a digit. These large RFs seem poorly suited to subserve a high degree of spatial localization and are compatible with the frequent localization errors by the monkeys in the behavioral experiments. However, the area 1 RF data do not explain the tendency of these animals to exhibit better localization accuracy along the proximodistal axis than along the mediolateral axis of the volar foot. We suggest that the observed asymmetry of localization accuracy may be the result of dynamic neural mechanisms that involve lateral interactions between cortical columns. Evidence from metabolic mapping experiments suggests that these lateral interactions determine the spatial distribution of cortical columns that respond to repetitive somatic stimuli (Whitsel et al, 1988).  相似文献   

8.
9.

Background

The somatosensory temporal discrimination threshold (STDT) measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols.

Methodology/Principal Findings

To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS) on the right primary somatosensory area (S1), pre-supplementary motor area (pre-SMA), right dorsolateral prefrontal cortex (DLPFC) and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS) on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli.

Conclusions/Significance

Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson''s disease.  相似文献   

10.
The effects of glaucoma on binocular visual sensitivity for the detection of various stimulus attributes are investigated at the fovea and in four paracentral retinal regions. The study employed a number of visual stimuli designed to isolate the processing of various stimulus attributes. We measured absolute contrast detection thresholds and functional contrast sensitivity by using Landolt ring stimuli. This psychophysical Landolt C-based contrast test of detection and gap discrimination allowed us to test parafoveally at 6 ° from fixation and foveally by employing interleaved testing locations. First-order motion perception was examined by using moving stimuli embedded in static luminance contrast noise. Red/green (RG) and yellow/blue (YB) colour thresholds were measured with the Colour Assessment and Diagnosis (CAD) test, which utilises random dynamic luminance contrast noise (± 45 %) to ensure that only colour and not luminance signals are available for target detection. Subjects were normal controls (n?=?65) and glaucoma patients with binocular visual field defects (n?=?15) classified based on their Humphrey Field Analyzer mean deviation (MD) scores. The impairment of visual function varied depending on the stimulus attribute and location tested. Progression of loss was noted for all tests as the degree of glaucoma increased. For subjects with mild glaucoma (MD ?0.01 dB to ?6.00 dB) significantly more data points fell outside the normal age-representative range for RG colour thresholds than for any other visual test, followed by motion thresholds. This was particularly the case for the parafoveal data compared with the foveal data. Thus, a multifaceted measure of binocular visual performance, incorporating RG colour and motion test at multiple locations, might provide a better index for comparison with quality of life measures in glaucoma.  相似文献   

11.
Summary Recently, a neural model of visual pattern discrimination for stimulus-specific habituation was developed, based on previous behavioral studies which demonstrated that toads exhibit a dishabituation hierarchy for different worm-like stimuli. The model suggests that visual objects are represented by temporal coding and predicts that the dishabituation hierarchy changes when the stimulus/background contrast direction is reversed or the stimulus size is varied. The behavioral experiments reported in this paper were designed to test these predictions, (1) For a pair of stimuli from the contrast reversal prediction, the experimental results validated the theory. (2) For a pair of stimuli from the size reduction prediction, the experimental results failed to validate the theory. Further experiments concerning size effects suggest that configurai visual pattern discrimination in toads exhibits size invariance. (3) Inspired by the Groves-Thompson account of habituation, we found that dishabituation by a second stimulus has a separate process from habituation to a first stimulus. This paper serves as an example of a fruitful dialogue between experimentation and modeling, crucial for understanding brain functions.Abbreviations a-h worm-like stimulus patterns - AT anterior thalamus - ERF excitatory receptive field - IRF inhibitory receptive field - RF receptive field - R2 to R4 retinal ganglion cell types - vMP posterior ventromedial pallium  相似文献   

12.
Background.?The use of relatively lower stimulus presentation numbers in quantitative sensory testing may influence the computation accuracy of participants’ discriminability. The minimum trial number for obtaining a stabilized participant discrimination ability was determined.

Materials and methods.?Twelve participants’ ability to discriminate between noxious heat stimuli pairs (45°C/46°C, 46°C/47°C, and 47°C/48°C) was assessed using a six-category confidence rating scale. Heat stimuli were administered to the forearm. Two conditions with presentation numbers of 17 trials per stimulus (representing the median number of trials in previous studies) and 40 trials per stimulus (used in a previous study with a similar protocol) were used.

Results and discussion.?Participants’ discriminability stabilized at approximately the 20th trial based on the lowest frequency of indeterminate and non-model conforming results under both conditions. A simple linear regression model showed a statistically significant positive relationship between discriminability for the two conditions (slope?=?0.65, p?<?0.001; constant?=?0.33, p?=?0.02; r2?=?0.51). As a rule of thumb, approximately 20 trials per stimulus intensity could be used to obtain a stabilized discriminability outcome.  相似文献   

13.
The aim of this study was to allow nonhuman animals to control their environment using operant conditioning procedures and to assess the effect of control on cognitive tasks. The study tested 4 predictions: (a) rats (Rattus norvegicus) will control a light stimulus; (b) animals will exhibit preferences for particular stimulus strengths; (c) animals who exert control over environmental stimuli will show improved performance on cognitive tasks compared with animals who lack control; and (d) at the end of the operant phase, experimental subjects will have lower corticosterone levels than animals who lack control. Experimental subjects did show control over a light stimulus and performed significantly better over time in a discrimination task compared with subjects who could not control their environment. There was no difference in corticosterone levels between control and experimental subjects. The results will both contribute to our understanding of how control of environmental stimuli affects the welfare of animals in captive environments and aid in designing experimental conditions that will increase validity and reliability in research.  相似文献   

14.
The thermal sensitivities of three humans and one monkey were measured using the “yes-no” paradigm based on the Theory of Signal Detection. The aim was to evaluate the monkey's thermal-sensing system as a model for that of humans. Three of the principal variables of human thermal sensations—the temperature to which the skin was adapted, the rate of temperature change, and the site of application of the thermal stimuli—were held constant. The other three variables—area of stimulation, intensity, and direction of the temperature change—were varied systematically.

All tour subjects displayed spatial summation for both warming and cooling. Isodetectability curves (de = 1) to small temperature changes, both for humans and for the monkey, could reasonably be fitted by the function I = kA-b, where I is stimulus intensity, A is the area of stimulation, and b is the rate at which spatial summation occurred. The rate of summation, b, to warming stimuli for the humans ranged from 0.60 to 1.14, while that for the monkey was 0.40. The rate of summation to cooling stimuli for the humans ranged from 0.50 to 0.87, while that for the monkey was 0.43.

The main species difference was that summation on the monkey palm all but ceased for both warming and cooling stimuli applied to areas larger than 4 cm2. Data from the human subjects did not demonstrate an upper limit of spatial summation. However, there was an indication that the human subjects would show a ceiling for spatial summation near the largest area tested in this study. Thus, when considering the spatial extent of a thermal stimulus and its influence upon thermal sensations, it may be more appropriate to compare areas relative to body size, rather than absolute values.  相似文献   

15.
Can nonhuman animals attend to visual stimuli as whole, coherent objects? We investigated this question by adapting for use with pigeons a task in which human participants must report whether two visual attributes belong to the same object (one-object trial) or to different objects (two-object trial). We trained pigeons to discriminate a pair of differently colored shapes that had two targets either on a single object or on two different objects. Each target equally often appeared on the one-object and two-object stimuli; therefore, a specific target location could not serve as a discriminative cue. The pigeons learned to report whether the two target dots were located on a single object or on two different objects; follow-up tests demonstrated that this ability was not entirely based on memorization of the dot patterns and locations. Additional tests disclosed predominate stimulus control by the color, but not by the shape of the two objects. These findings suggest that human psychophysical methods are readily applicable to the study of object discrimination by nonhuman animals.  相似文献   

16.
 With galvanic vestibular stimulation (GVS), electrical current is delivered transcutaneously to the vestibular afferents through electrodes placed over the mastoid bones. This serves to modulate the continuous firing levels of the vestibular afferents, and causes a standing subject to lean in different directions depending on the polarity of the current. Our objective in this study was to test the hypothesis that the sway response elicited by GVS can be used to reduce the postural sway resulting from a mechanical perturbation. Nine subjects were tested for their postural responses to both galvanic stimuli and support-surface translations. Transfer-function models were fit to these responses and used to calculate a galvanic stimulus that would act to counteract sway induced by a support-surface translation. The subjects' responses to support-surface translations, without and with the stabilizing galvanic stimulus, were then measured. With the stabilizing galvanic stimulus, all subjects showed significant reductions in both sway amplitude and sway latency. Thus, with GVS, subjects maintained a more erect stance and followed the support-surface displacement more closely. These findings suggest that GVS could possibly form the basis for a vestibular prosthesis by providing a means through which an individual's posture can be systematically controlled. Received: 11 May 2000 / Accepted in revised form: 20 November 2000  相似文献   

17.
The underlying specificity of visual object categorization and discrimination can be elucidated by studying different types of repetition priming. Here we focused on this issue in face processing. We investigated category priming (i.e. the prime and target stimuli represent different exemplars of the same object category) and item priming (i.e. the prime and target stimuli are exactly the same image), using an immediate repetition paradigm. Twenty-three subjects were asked to respond as fast and accurately as possible to categorize whether the target stimulus was a face or a building image, but to ignore the prime stimulus. We recorded event-related potentials (ERPs) and reaction times (RTs) simultaneously. The RT data showed significant effects of category priming in both face trials and building trials, as well as a significant effect of item priming in face trials. With respect to the ERPs, in face trials, no priming effect was observed at the P100 stage, whereas a category priming effect emerged at the N170 stage, and an item priming effect at the P200 stage. In contrast, in building trials, priming effects occurred already at the P100 stage. Our results indicated that distinct neural mechanisms underlie separable kinds of immediate repetition priming in face processing.  相似文献   

18.
We propose a simple measure of neural sensitivity for characterizing stimulus coding. Sensitivity is defined as the fraction of neurons that show positive responses to n stimuli out of a total of N. To determine a positive response, we propose two methods: Fisherian statistical testing and a data-driven Bayesian approach to determine the response probability of a neuron. The latter is non-parametric, data-driven, and captures a lower bound for the probability of neural responses to sensory stimulation. Both methods are compared with a standard test that assumes normal probability distributions. We applied the sensitivity estimation based on the proposed method to experimental data recorded from the mushroom body (MB) of locusts. We show that there is a broad range of sensitivity that the MB response sweeps during odor stimulation. The neurons are initially tuned to specific odors, but tend to demonstrate a generalist behavior towards the end of the stimulus period, meaning that the emphasis shifts from discrimination to feature learning.  相似文献   

19.
In this work we have studied what mechanisms might possibly underlie arm trajectory modification when reaching toward visual targets. The double-step target displacement paradigm was used with inter-stimulus intervals (ISIs) in the range of 10-300 ms. For short ISIs, a high percentage of the movements were found to be initially directed in between the first and second target locations (averaged trajectories). The initial direction of motion was found to depend on the target configuration, and on : the time difference between the presentation of the second stimulus and movement onset. To account for the kinematic features of the averaged trajectories two modification schemes were compared: the superposition scheme and the abort-replan scheme. According to the superposition scheme, the modified trajectories result from the vectorial addition of two elemental motions: one for moving between the initial hand position and an intermediate location, and a second one for moving between that intermediate location and the final target. According to the abort-replan scheme, the initial plan for moving toward the intermediate location is aborted and smoothly replaced by a new plan for moving from the hand position at the time the trajectory is modified to the final target location. In both tested schemes we hypothesized that due to the quick displacement of the stimulus, the internally specified intermediate goal might be influenced by both stimuli and may be different from the location of the first stimulus. It was found that the statistically most successful model in accounting for the measured data is based on the superposition scheme. It is suggested that superposition of simple independent elemental motions might be a general principle for the generation of modified motions, which allows for efficient, parallel planning. For increasing values of the inferred locations of the intermediate targets were found to gradually shift from the first toward the second target locations along a path that curved toward the initial hand position. These inferred locations show a strong resemblance to the intermediate locations of saccades generated in a similar double-step paradigm. These similarities in the specification of target locations used in the generation of eye and hand movements may serve to simplify visuomotor integration. Received: 22 June 1994 / Accepted in revised form: 15 September 1994  相似文献   

20.
In previous experiments two extreme modes of visual discrimination performance have been investigated by measuring small differences in pattern shape at points along a continuum of pattern shapes. These two modes, associated with discrete and continuous encoding processes, were obtained by simultaneously manipulating the number of pattern components in the display and the effective duration of the display. In this experiment, discrimination performance was measured for a fixed number of pattern components, namely three, and variable display time course. The stimuli used were curved lines drawn from a continuum with curvature parameter s. There were three stimulus time courses: (1) 2-s stimulus display, (2) 100-ms stimulus display, and (3) 100-ms stimulus display followed by a post-stimulus mask. Discrimination performance declined smoothly and monotonically with s for (1), but varied non-monotonically with s revealing a central peak for (3). Performance for (2) was intermediate between that for (1) and that for (3). A reduction in effective stimulus duration alone was thus sufficient to cause a transition from continuous to discrete modes of discrimination performance, a result which may be compatible with an explanation of variable discrimination modes based on a method of successive internal approximations of the stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号