首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biochemical rationale for the inhibition of citric acid fermentation by Aspergillus niger in the presence of Mn2+ ions has been investigated using high citric acid-yielding, Mn2+ ion-sensitive as well as Mn2+ ion-tolerant mutant strains of A. niger. In the presence of Mn2+ (1.5 mg/l), citric acid production by the Mn2+ ion-sensitive strain (KCU 520) was reduced by about 75% with no apparent effect on citric acid yield by the Mn2+ ion-tolerant mutant strain (GS-III) of A. niger. The significantly increased level of the Mn2+ ion-requiring NADP+-isocitrate dehydrogenase activity in KCU 520 cells and the lack of effect on the activity level of the enzyme in GS-III mutant cells by Mn2+ ions during fermentation seem to be responsible for the Mn2+ ion inhibition of citric acid production by the KCU 520 strain and the high citric acid yield by the mutant strain GS-III of A. niger even in the presence of Mn2+.  相似文献   

2.
The activity of NADP+-specific isocitrate dehydrogenase (NADP+-IDH, EC 1.1.1.42) was investigated during the ripening of tomato (Lycopersicon esculentum Mill.) fruit. In the breaker stage, NADP+-IDH activity declined but a substantial recovery was observed in the late ripening stages when most lycopene synthesis occurs. These changes resulted in higher NADP+-IDH activity and specific polypeptide abundance in ripe than in green fruit pericarp. Most of the enzyme corresponded to the predominant cytosolic isoform which was purified from both green and ripe fruits. Fruit NADP+-IDH seems to be a dimeric enzyme having a subunit size of 48 kDa. The K m values of the enzymes from green and ripe pericarp for NADP+, isocitrate and Mg2+ were not significantly different. The similar molecular and kinetic properties and chromatographic behaviour of the enzymes from the two kinds of tissue strongly suggest that the ripening process is not accompanied by a change in isoenzyme complement. The increase in NADP+-IDH in the late stage of ripening also suggests that this enzyme is involved in the metabolism of C6 organic acids and in glutamate accumulation in ripe tissues.  相似文献   

3.
Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.  相似文献   

4.
We have characterized biochemical effects of Idh GB1 in Drosophila melanogaster. This is a null-activity allele for NADP+-dependent isocitrate dehydrogenase (NADP-IDH) isolated from a natural population. The homozygous mutant strain has 5% of the NADP-IDH specific activity found in controls and less than 24% of the immunologically cross-reacting material (CRM). This mutation maps to 27.2 on the third chromosome, to the right of h. The biochemical phenotype of this mutant strain includes a coordinate reduction in malic enzyme (ME) specific activity and CRM and an increase in specific activity for the pentose-phosphate shunt enzymes, 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase. The K m values for purified NADP-IDH are not different from those found for the purified control enzyme for NADP+ or isocitrate. It is suggested that this allele may represent a cis-acting control mutation for one of at least two loci involved in the production of NADP-IDH in D. melanogaster.Research supported by an Alberta Heritage Foundation for Medical Research Establishment Grant to MMB and a Natural Sciences and Engineering Research Council Operating Grant to JHW.  相似文献   

5.
6.
Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.  相似文献   

7.
8.
Summary Chloroplastic (NADP+) glyceraldehyde-3-phosphate dehydrogenase (E.C. 1.2.1.9) catalyzes the second reaction in photosynthesis after the fixation of carbon by RuBisCO. Chloroplast-bound (NADP+) G3PDH was resolved in soybean by starch gel electrophoresis using l-histidine-citrate buffer (pH 5.7). Histochemical staining revealed zymogram patterns indicative of a tetramer. A survey of soybean genotypes revealed differences in zymogram patterns between the principal cytoplasmic sources of the northern and southern US germplasms. In the soybean pedigree, an allelic frequency shift toward a five-banded pattern was observed. G3PDH polymorphism was due to allele associated with gene expression at the slow locus. No linkage was found between the slow locus of (NADP+) G3PDH and AC02, AC03, AC04, ACP, DIA1, IDH1, IDH2, PGM1, and PGM3. Developmental expression in the above-ground tissues was identical, whereas roots as a rule did not express (NADP+) G3PDH activity. The importance of chloroplast-bound (NADP+) G3PDH in photo-synthesis and its interesting mode of inheritance warrants further exploration of this enzyme in soybean.Technical contribution no. 3293 of the South Carolina Agricultural Experiment Station, Clemson University  相似文献   

9.
柠檬酸是利用微生物代谢生产的一种极为重要的有机酸.广泛应用于食品、饮料、化工、冶金、印染等各个领域。在国外,近10年来,利用固定化细胞生产柠檬酸已获得较广泛的研究〔1-6〕,国内也有学者指出,柠檬酸发酵的趋向是利用固定化细胞进行连续化生产⑺。而国内这方面的研究报道很少〔8,9〕。我们利用海藻酸钙凝胶包埋固定化黑曲霉细胞生产柠檬酸.探讨了碳源种类及其浓度对固定化细胞生产柠檬酸的影响。现将结果报道如下。  相似文献   

10.
Isozymes of NADP+-specific isocitrate dehydrogenase (IDP) provide NADPH in cytosolic, mitochondrial, and peroxisomal compartments of eukaryotic cells. Analyses of purified IDP isozymes from yeast and from mouse suggest a general correspondence of pH optima for catalysis and pI values with pH values reported for resident cellular compartments. However, mouse IDP2, which partitions between cytosolic and peroxisomal compartments in mammalian cells, exhibits a broad pH optimum and an intermediate pI value. Mouse IDP2 was found to similarly colocalize in both cellular compartments when expressed in yeast at levels equivalent to those of endogenous yeast isozymes. The mouse enzyme can compensate for loss of yeast cytosolic IDP2 and of peroxisomal IDP3. Removal of the peroxisomal targeting signal of the mouse enzyme precludes both localization in peroxisomes and compensation for loss of yeast IDP3.  相似文献   

11.
Spore suspensions of Aspergillus niger GCB 75, which produced 31.1 g/l citric acid from 15% sugars in molasses, were subjected to u.v.-induced mutagenesis. Among three variants, GCM 45 was found to be the best citric acid producer and was further improved by chemical mutagenesis using NTG. Out of 3 deoxy-D-glucose-resistant variants, GCM 7 was selected as the best mutant which produced 86.1 ± 1.5 g/l citric acid after 168 h of fermentation of potassium ferricyanide + H2SO4-pretreated black strap molasses (containing 150 g sugars/l) in Vogel's medium. On the basis of comparison of kinetic parameters, namely the volumetric substrate uptake rate (Q s), and specific substrate uptake rate (q s), the volumetric productivity, theoretical yield and specific product formation rate, it was observed that the mutants were faster growing organisms and had the ability to overproduce citric acid.  相似文献   

12.
A study was performed to understand the physiology and biochemical mechanism of citric acid accumulation during solid state fermentation of sweet potato using Aspergillus niger Yang No.2. A low citrate-producing mutant was isolated followed by a comparative study of the fermentation process and selected physiological and biochemical parameters. In contrast with the parent strain, the mutant strain displayed lower concentrations, yields and production rates of citric acid, accompanied by higher concentrations, yields and production rates of oxalic acid. In addition, the mutant utilized starch at a lower rate although higher concentrations of free glucose accumulated in the cultures. Biochemical analyses revealed lower rates of glucose uptake and hexokinase activity of the mutant strain in comparison with the parent strain. It is proposed that, in common with submerged fermentation, over-production of citric acid in solid state fermentation is related to an increased glucose flux through glycolysis. At low glucose fluxes, oxalic acid is accumulated.  相似文献   

13.
NADP+ dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP+ was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.  相似文献   

14.
A model of the carbohydrate metabolism and the anaplerotic synthesis of oxalacetate in Aspergillus niger, under conditions of citric and accumulation, is presented. In this first article we set the stage for subsequent analysis within the framework of the biochemical system theory (BST): we formulate the model and develop the system representation in power law forms, showing that the steady state is locally stable. In the second article, the control structure of the system is described and a rationale for the optimization of the process is developed. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Two cDNA clones which appear to encode different subunits of NAD+-dependent isocitrate dehydrogenase (IDH; EC 1.1.1.41) were identified by homology searches from the Arabidopsis EST database. These cDNA clones were obtained and sequenced; both encoded full-length messages and displayed 82.7% nucleotide sequence identity over the coding region. The deduced amino acid sequences revealed preprotein lengths of 367 residues, with an amino acid identity of 86.1%. Genomic Southern blot analysis showed distinct single-copy genes for both IDH subunits. Both IDH subunits were expressed as recombinant proteins in Escherichia coli, and polyclonal antibodies were raised to each subunit. The Arabidopsis cDNA clones were expressed in Saccharomyces cerevisiae mutants which were deficient in either one or both of the yeast NAD+-dependent IDH subunits. The Arabidopsis cDNA clones failed to complement the yeast mutations; although both IDH-I and IDH-II were expressed at detectable levels, neither protein was imported into the mitochondria.  相似文献   

16.
The type of sporulation medium and time of incubation had an effect on spore viability and citric acid production by mycelia grown from Aspergillus niger spores. Shu & Johnson agar (SJA) and potato dextrose agar gave higher citric acid titres than malt-extract agar. SJA also gave better germinability than the other media. Viability increased with time of incubation, but higher production of citric acid was achieved with spores incubated for less than 7 days.  相似文献   

17.
Structural analogues of the NADP+ were studied as potential coenzymes and inhibitors for NADP+ dependent malic enzyme from Zea mays L. leaves. Results showed that 1, N6-etheno-nicotinamide adenine dinucleotide phosphate ( NADP+), 3-acetylpyridine-adenine dinucleotide phosphate (APADP+), nicotinamide-hypoxanthine dinucleotide phosphate (NHDP+) and -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate (23NADPc+) act as alternate coenzymes for the enzyme and that there is little variation in the values of the Michaelis constants and only a threefold variation in Vmax for the five nucleotides. On the other hand, thionicotinamide-adenine dinucleotide phosphate (SNADP+), 3-aminopyridine-adenine dinucleotide phosphate (AADP+), adenosine 2-monophosphate (2AMP) and adenosine 2: 3-cyclic monophosphate (23AMPc) were competitive inhibitors with respect to NADP+, while -nicotinamide adenine dinucleotide 3-phosphate (3NADP+), NAD+, adenosine 3-monophosphate (3AMP), adenosine 2: 5-cyclic monophosphate (25AMPc), 5AMP, 5ADP, 5ATP and adenosine act as non-competitive inhibitors. These results, together with results of semiempirical self-consistent field-molecular orbitals calculations, suggest that the 2-phosphate group is crucial for the nucleotide binding to the enzyme, whereas the charge density on the C4 atom of the pyridine ring is the major factor that governs the coenzyme activity.Abbreviations NADP+ 1, N6-etheno-nicotinamide adenine dinucleotide phosphate - NHDP+ nicotinamide-hypoxanthine dinucleotide phosphate - APADP+ 3-acetylpyridine-adenine dinucleotide phosphate - SNADP+ thionicotinamide-adenine dinucleotide phosphate - AADP+ 3-aminopyridine-adenine dinucleotide phosphate - 23NADPc+ -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate - 3NADP+ -nicotinamide adenine dinucleotide 3-phosphate - 2AMP adenosine 2-monophosphate - 3AMP adenosine 3-monophosphate - 23AMPc adenosine 2: 3 monophosphate cyclic - A adenosine - RuBP ribulose 1,5-bisphosphate - SCF-MO Self-Consistent Field-Molecular Orbitals (method)  相似文献   

18.
We observed a spot on two-dimensional (2-D) gel in the epileptic mutant strain El mice with a similar molecular weight but with a different isoelectric point of approximately 0.2, compared with its mother strain ddY mice. The collected protein from the El mice was identified as cytosolic NADP+-dependent isocitrate dehydrogenase by internal amino acid sequencing. The enzyme is known to be maximally active during the development of the brain and to play an important role in NADPH production for fatty acids and cholesterol synthesis. In addition, alterations in cholesterol synthesis early in the development of the mammalian brain have been reported to lead to chronic epilepsy. The results in the present study therefore suggest that cytosolic NADP+-dependent isocitrate dehydrogenase might be involved in the epileptogenesis of the El mouse.  相似文献   

19.
AIMS: The present study deals with the effect of volume of culture medium on enhanced citric acid productivity by a mutant culture of Aspergillus niger. METHODS AND RESULTS: A laboratory scale stirred fermentor of 15-l capacity was employed for all microbial cultivations. Blackstrap molasses, a by-product of sugar industries is easily and abundantly available for its exploitation as a carbon source in fermentation processes. The parental culture of A. niger was improved by mutation using ultraviolet radiations and N-methyl N-nitro N-nitroso guanidine, i.e. mutagen MNNG. Six MUV and eight MNNG-treated mutant strains were isolated after extensive screening and optimization. Mutant strain of A. niger MNNG-2 showed enhanced citric productivity (87.60 g l-1) over the parental strain BTL-45 (19.53 g l-1) and other mutant derivatives (49.85 g l-1 citric acid in case of mutant MUV-5 and 76.82 g l-1 in case of mutant MNNG-7). The optimal sugar level was found to be 150 g l-1 (optimum volume of the medium, 60%) after 6 days of inoculation, which is economically significant. Specific productivity of the mutant culture MNNG-2 (qp = 0.057 g/g cells h-1) was several folds higher than other strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of the present study are of commercial level. All kinetic parameters including yield coefficients and volumetric rates revealed the hyper-producibility of citric acid by mutant MNNG-2 using blackstrap molasses as the basal medium in stirred fermentor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号