首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of photoperiods in the regulation of annual testicular events in the carp Catla catla was evaluated by subjecting them to either long (16 h light : 8 h dark) or short (8 h light : 16 h dark) photoperiods for 30 days during the preparatory, prespawning, spawning and postspawning phases of an annual gonadal cycle. In each reproductive phase, testicular responsiveness to subjected photoperiods was determined by comparing the gonadal status in corresponding groups of control or natural photoperiodic fish. The values of testicular weight, gametogenic index, as well as testicular activity of two steroidogenic enzymes (Δ53β‐, and 17β‐hydroxysteroid dehydrogenase), and the serum titre of testosterone were considered as the indices of functional status of the testis in the fish concerned. During the prespawning phase, exposure of fish to a daily long photoperiod schedule resulted in precocious maturation of testis, while retardation of testicular growth was noted under the influences of short photoperiod. However, none of the employed photo‐schedules could influence the gametogenic and steroidogenic functions of the testis in the remaining part of the gonadal cycle. Collectively, the present study provides evidence for the first time that in the case of a commercially important carp, Catla catla, artificial, long photoperiods may be used for advanced testicular maturation, while reductions in maturation‐associated growth and deterioration in flesh quality may be avoided by submitting the fish to shorter day lengths during the prespawning phase of the reproductive cycle.  相似文献   

2.
There are two effects of long day length on reproductive responses in birds, one is the photoinduction of gonadal growth and maturation and the other is the induction of gonadal regression and photorefractoriness. Although it is likely that the same photoreceptors are involved in the photoinduction of gonadal growth and the onset and maintenance of photorefractoriness. and so the influence of wavelength should be similar, this has not been investigated. Therefore, we investigated the influence of light wavelength on reproductive photorefractoriness in the migratory male blackheaded bunting held under long photoperiods. In mid May, when photoperiod was approximately 14L:10D (14 hours light:10 hours darkness), eight groups of sexually mature birds were moved indoors on an artificial photoperiod of 14L:10D (L - 450 lux. D - 0 lux). Then after 3 weeks, for six groups, a 4-h light period in the morning (zt 0-4; zt 0 [zeitgeber time 0] refers to the beginning of lights-on period) or in the evening (zt 10-14) was substituted with green (428 nm), red (654 nm) or white light at 16 +/- 2 lux intensity. Of the remaining two groups, one was maintained on 14L: 10D and the other transferred to 10L:14D: these served as controls. At the end of 4 weeks, all birds were found to have undergone testicular regression, irrespective of LD cycle they were exposed to. When these gonadally regressed birds were subjected to 16L:8D for another 4 weeks, to test their responsiveness to the stimulatory effects of long day lengths, only those exposed to 10L:14D and 14L:10D with a 4-h green light period showed testicular regrowth. On the other hand, birds exposed to 14L:10D with a 4-h white or red light period remained fully regressed, similar to 14L:10D controls. Except for some individual difference, there was no difference in response between the groups that received a 4-h light period in the morning and that received it in the evening. These results suggest that the wavelengths of light influence induction of buntings from the photosensitive state into the photorefractory state. Whereas the short light wavelengths facilitated recovery from the photorefractoriness, the long light wavelengths were more effective in maintaining the photorefractoriness.  相似文献   

3.
A. DAWSON 《Ibis》1998,140(1):35-40
Two photoperiodic mechanisms controlling gonadal regression in birds have been identified: absolute photorefractoriness, typical of species with short breeding seasons, where gonadal regression occurs spontaneously during long days, and relative photorefractoriness, where a decrease in daylength is required to induce regression. An experiment was designed to test whether these simply represent extremes of one underlying mechanism. Three groups of male House Sparrows Passer domesticus were transferred from a short photoperiod, 8 h of light: 16 h of darkness per day (8L:16D) to long photoperiods of either 18L:6D, 16L:8D or 13L:11D. Gonadal maturation rates were similar in all three groups; gonadal regression and moult began latest in the 13L:11D group. Four additional groups of sparrows were transferred from 8L:16D to 18L:6D and then transferred to either 13L: 11D or 16L:8D prior to, or shortly after, the onset of gonadal regression. The decrease in daylength prior to regression had no effect on the timing of regression but did advance the onset of moult. Decrease in daylength after the onset of regression increased the rate of regression and the rate of moult. Because a decrease in daylength did not affect the timing of regression, the data do not support the hypothesis that absolute and relative photorefractoriness represent extremes of a single underlying photoperiodic control mechanism. The adaptive significance of the effects of decreasing daylength on the rate of regression and moult is discussed.  相似文献   

4.
The Turkish hamster (Mesocricetus brandti) is a photoperiodic species. In this investigation, we characterized the photoperiodic requirements for termination of gonadal refractoriness, defined as the inability of the animal to respond to short-day treatment with gonadal regression. Paired testes weights were reduced to less than 20% of their original weight by 10 wk of 12L:12D treatment. This was followed by spontaneous testicular recrudescence (completed by Week 25 of 12L:12D treatment), the overt indication of refractoriness to short photoperiods. Next, the period of long-day exposure sufficient for termination of refractoriness was determined. Refractory males were exposed to 16L:8D for 5 to 20 wk. Ten weeks of 16L:8D treatment was enough for the animals to regain the sensitivity to a second challenge of 12L:12D treatment. Fifteen weeks of 20L:4D or 16L:8D terminated refractoriness in female Turkish hamsters; 20L:4D therefore was not interpreted as a short day by refractory hamsters. This was unexpected because in photosensitive animals this photoperiod acts like a short day, causing gonadal regression. These results suggest that Turkish hamsters are similar to Syrian hamsters in that both species require two or more months of long days in summer to recover sensitivity to the short days of the following fall.  相似文献   

5.
Pocket mice captured in the field at various times of year were introduced into laboratory experiments to examine the short-term sensitivity of reproductive function to environmental factors, principally day length, and the tendency of the reproductive system to become active spontaneously over longer durations. Spontaneous enlargement and partial activation of the gonads occurred over the course of 4-5 mo in continuous darkness during the hibernation season. Males held for 13 mo in 12L:12D showed patterns of testicular enlargement, but with only partial regression; the degree of endogeneity in the reproductive control system of P. parvus is therefore considerably below that of the pronounced and persistent "endogenous circannual rhythms" shown by certain rodents of the squirrel family. Responses to day length varied seasonally. The partially activated reproductive system of mice that emerged from hibernation in spring was further stimulated by long days (16L:8D); in summer gonadal growth was insensitive to differences in day length, and in autumn the gonads remained undeveloped in short days (8L:16D) but were sensitive to stimulation by long days. This "photoperiodic" response of P. parvus is based on an endogenous circadian rhythm of photosensitivity as proposed by Bünning (1936). We also found that reproductive function of P. parvus is somewhat retarded by low temperature and reduced availability of water. We discuss the general nature of environmental sensitivity of reproductive function and the ways in which the photoperiodic response and spontaneous pattern of winter gonadal development in P. parvus are likely to interact with environmental factors that lead to fine-tuning the final reproductive response.  相似文献   

6.
The Djungarian hamster exhibits an agouti pelage in the summer and a predominantly white pelage in the winter. This pelage color cycle is known to be regulated by the length of the daily photoperiod probably acting through the pineal gland, as is the seasonal cycle of reproductive function with which it is closely correlated ( Figala et al., '73; Hoffmann, ' 78b ). The possibility of a causal relationship between the decline in gonadal hormone secretion and the coat color change occurring in short photoperiod was examined. Gonadectomized and intact male and female hamsters were exposed to either long (16L:8D) or short ( 10L : 14D ) photoperiod for several months. Gonadectomy neither induced the change to the winter pelage color in long photoperiod-housed animals, nor prevented either the change to the winter pelage or the spontaneous return to summer pelage color in short photoperiod-housed animals. Chronic implants of testosterone in castrated males delayed and attenuated the short photoperiod-induced coat color change. Administration of ovine prolactin (100 micrograms/day) stimulated pigmentation in hamsters with the winter pelage, whereas administration of a alpha MSH (30 micrograms/day) was without effect. These results suggest that changes in pelage color may be regulated largely by changes in pituitary prolactin secretion and modified to some extent by changes in gonadal steroid hormone secretion.  相似文献   

7.
The Siberian hamster, Phodopus sungorus, breeds seasonally. In the laboratory, the seasonal breeding can be controlled by photoperiod, which affects the durations of nightly melatonin secretions. Winterlike short day lengths induce gonadal regression in adult animals, and pups born and maintained in short days undergo gonadal development much later than animals born into long days. The spinal nucleus of the bulbocavernosus (SNB) and its target muscles, the bulbocavernosus (BC) and levator ani (LA), comprise a sexually dimorphic, androgen-sensitive neuromuscular system involved in male reproduction. The SNB neuromuscular system was studied in male Siberian hamsters maintained from conception in short-day (8:16 h light/dark cycle) versus long-day (16:8 h light/dark cycle) conditions. At 40–47 days of age, development of three components of the SNB neuromuscular system were all significantly delayed in hamsters raised in the short photoperiod: BC/LA muscle weight, the size of SNB motoneuronal somata, and the area of the neuromuscular junctions at the BC/LA muscles of short-day hamsters were each significantly reduced relative to those of long-day counterparts. Thus, development of the SNB reproductive system is delayed under short day lengths in this species. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 355–360, 1998  相似文献   

8.
The pine caterpillar, Dendrolimus punctatus (Walker) (Lepidoptera: Lasiocampidae), is a multivoltine pest of pine trees in China, overwintering as larvae. Winter diapause was induced by short day length. The critical night length was about 10 h 40 min at 25, 28, and 31 °C in the field, showing a temperature‐compensated diapause induction. Transfer experiments from a short night (L16:D8) to a long night (L12:D12) or vice versa at different times after hatching showed that sensitivity to day length was restricted to the first 14 days; the required day number for a 50% response at 25 °C was about 3.5 days for short nights but 7.5 days for long nights, indicating that short nights are photoperiodically more effective. When four successive short nights (L16:D8) were used to interrupt the long‐night regime (L12:D12) at different development stages and vice versa, the results showed that the highest sensitivity to photoperiod occurred on the 4th?8th day, corresponding to the second larval instar. Experiments of alternating short‐night (L16:D8) and long‐night (L12:D12) cycles during the larval period showed that the information of short nights as well as long nights could be accumulated. By rearing the larvae under conditions other than 24‐h light–dark cycles, we clearly showed that the dark period (scotophase) played a major role in the determination of diapause. The Nanda‐Hamner and Bünsow experiments failed to reveal rhythmic fluctuations with a period of about 24 h in the occurrence of diapause. Therefore, the photoperiodic clock in D. punctatus is an hourglass timer or a damped circadian oscillator.  相似文献   

9.
The roseringed parakeet has been shown to exhibit a variable testicular responsiveness to both altered photoperiodic regimens and to treatment with melatonin during different phases of the annual gonadal cycle. Adult male roseringed parakeets were held under either natural photoperiods (NP), or long photoperiods (LP; 16L 8D), or short photoperiods (SP; 8L 16D) for a total period of 90 days. From day 46 onward, half of the total birds in each group were administered with the vehicle of melatonin, and the other birds were injected daily in the afternoon with melatonin (25 µg/ 100 g body wt.) till the end of the experiment. An identical experimental schedule was followed during the four different (preparatory, progressive, pre-breeding, and breeding) phases of the annual testicular cycle. The testicular activities in various bird groups were evaluated by volumetric, gravimetric, histometric and karyometric measurements, and by quantitative histological studies. The findings revealed that exogenous melatonin may exert either a suppressive influence or none at all on the testicular functions in relation to the photoperiodic schedule as well as to the reproductive phase of the concerned bird, but in no case modulates gonadal responsiveness to artificially altered photoperiods.  相似文献   

10.
The roseringed parakeet has been shown to exhibit a variable testicular responsiveness to both altered photoperiodic regimens and to treatment with melatonin during different phases of the annual gonadal cycle. Adult male roseringed parakeets were held under either natural photoperiods (NP), or long photoperiods (LP; 16L 8D), or short photoperiods (SP; 8L 16D) for a total period of 90 days. From day 46 onward, half of the total birds in each group were administered with the vehicle of melatonin, and the other birds were injected daily in the afternoon with melatonin (25 µg/ 100 g body wt.) till the end of the experiment. An identical experimental schedule was followed during the four different (preparatory, progressive, pre-breeding, and breeding) phases of the annual testicular cycle. The testicular activities in various bird groups were evaluated by volumetric, gravimetric, histometric and karyometric measurements, and by quantitative histological studies. The findings revealed that exogenous melatonin may exert either a suppressive influence or none at all on the testicular functions in relation to the photoperiodic schedule as well as to the reproductive phase of the concerned bird, but in no case modulates gonadal responsiveness to artificially altered photoperiods.  相似文献   

11.
Male and female Djungarian hamsters maintained from birth in a short photoperiod (8 h light per day; 8L:16D) showed substantial testicular and uterine growth in response to a single long photoperiod or a 15-min light pulse that interrupted the 16-h dark period at 18 days of age. These light regimens resulted in heavier testes and uteri at 30 and 35 days of age when compared with those of control animals. Similar results were obtained in hamsters maintained from birth to Day 18 in a long photoperiod (16L:8D), given a single longer day (20L:4D) or constant light on Day 18 and then transferred to a short photoperiod (8L:16D) on Day 19. At 35 days of age animals that received extended light treatment on Day 18 had significantly more developed reproductive structures than did control hamsters. The marked effects of brief light treatment in producing long-term changes in the reproductive axis provide a convenient mammalian model system in which to study neuroendocrine events that underlie photoperiodism.  相似文献   

12.
Summary N-acetyltransferase (NAT) activity in pineal glands exhibits a circadian rhythm with peak activity occurring in the dark-time. We previously showed that inGallus domesticus chicks pretreated with LD12:12, NAT activity was increased by dark exposure (peak dark sensitivity occurred during the expected dark-time) or decreased by light at night (peak light sensitivity occurred early in the night during the time of dark sensitivity). In this study we mapped dark sensitivity vs time (for NAT activity increase in response to 2 h dark pulses), and light sensitivity vs time (for NAT activity decrease in response to 10 min or 30 min light pulses) over a cycle for 3-week old chicks,Gallus domesticus, pretreated with long (LD16:8) or short photoperiod (LD8:16). Sensitivity to light was increased in the second 8 h after L/D by LD8:16. Sensitivity to dark was increased in the first 8 h after L/D by LD16:8.Abbreviations LD16:8 a light-dark cycle consisting of 16 h of light alternating with 8 h of dark - LD8:16 a light-dark cycle consisting of 8 h of light alternating with 16 h of dark - DD constant dark - LL constant light - L/D lights-off - D/L lights-on - NAT pineal serotonin N-acetyltransferase - NAT activity is given in nmoles/pineal gland/h - chick used here to denote a young bird of either sex of the speciesGallus domesticus from hatching to three weeks of age  相似文献   

13.
Adult male marbled newts (Triturus marmoratus) were collected at the end of the spermatogenesis period and exposed to different photoperiods (natural-daylength-simulated photoperiod, total darkness, 8L:16D, 12L:12D, 16L:8D, and continuous light) for 3 mo. Temperature was maintained at 20 degrees C. Two additional groups of newts were blinded and exposed to either the natural-simulated photoperiod and to 16 h of light per day respectively. Quantitative histologic studies on testicular development and germ cell volume per testis were performed. The newts captured in the field at the beginning (initial controls) or at the end of the experiments (final controls) were in the period of testicular quiescence. Newts kept in total darkness or exposed to a short photoperiod (8L:16D) showed germ cell development up to primary spermatocytes, whereas germ cell development in the newts exposed to long photoperiods (12L:12D or 16L:8D) progressed to elongated spermatids. The newts exposed either to intermediate photoperiods (natural-simulated photoperiod) or to constant light showed an intermediate degree of germ cell development (up to round spermatids). No significant differences between non-blinded and blinded animals were found. These results suggest that (1) mild temperature initiates testicular development in the period of testicular quiescence, (2) long photoperiods associated with mild temperatures produce spermatogenesis in this period, (3) complete darkness or constant light are less effective than some intermediate photoperiod, and (4) the effect of photoperiod on testicular function in newts is not related to ocular photoreception.  相似文献   

14.
The aim of the current investigation was to study the effect of lithium on circadian rhythms of pineal - testicular hormones by quantitations of pineal and serum serotonin, N-acetylserotonin and melatonin, and serum testosterone at four time points (06.00, 12.00, 18.00 and 24.00) of a 24-hr period under normal photoperiod (L:D), reversed photoperiod (D:L), constant light (L:L) and constant dark phase (D:D) in rats. Circadian rhythms were observed in pineal hormones in all the combinations of photoperiodic regimens, except in constant light, and in testosterone levels in all the photoperiodic combinations. Pineal and serum N-acetylserotonin and melatonin levels were higher than serotonin at night (24.00 hr), in natural L:D cycle, in reversed L:D cycle or similar to normal L:D cycle in constant dark phase, without any change in constant light. In contrast, testosterone level was higher in light phase (12.00 hr through 18.00 hr) than in the dark phase (24.00 hr through 06.00 hr) in normal L:D cycle, in reversed L:D cycle, similar to normal L:D cycle in constant dark (D:D), and reversed to that of the normal L:D cycle in constant light (L:L). Lithium treatment (2 mEq/kg body weight daily for 15 days) suppressed the magnitude of circadian rhythms of pineal and serum serotonin, N-acetylserotonin and melatonin, and testosterone levels by decreasing their levels at four time points of a 24-hr period in natural L:D or reversed D:L cycle and in constant dark (D:D). Pineal indoleamine levels were reduced after lithium treatment even in constant light (L:L). Moreover, lithium abolished the melatonin rhythms in rats exposed to normal (L:D) and reversed L:D (D:L) cycles, and sustained the rhythms in constant dark. But testosterone rhythm was abolished after lithium treatment in normal (L:D)/reversed L:D (D:L) cycle or even in constant light/dark. The findings indicate that the circadian rhythm exists in pineal hormones in alternate light - dark cycle (L:D/D:L) and in constant dark (D:D), but was absent in constant light phase (L:L) in rats. Lithium not only suppresses the circadian rhythms of pineal hormones, but abolishes the pineal melatonin rhythm only in alternate light - dark cycles, but sustains it in constant dark. The testosterone rhythm is abolished after lithium treatment in alternate light - dark cycle and constant light/dark. It is suggested that (a) normal circadian rhythms of pineal hormones are regulated by pulse dark phase in normal rats, (b) lithium abolishes pineal hormonal rhythm only in pulse light but sustains it in constant dark phase, and (c) circadian testosterone rhythm occurs in both pulse light or pulse dark phase in normal rats, and lithium abolishes the rhythm in all the combinations of the photoperiod. The differential responses of circadian rhythms of pineal and testicular hormones to pulse light or pulse dark in normal and lithium recipients are discussed.  相似文献   

15.
The Siberian hamster, Phodopus sungorus, breeds seasonally. In the laboratory, seasonal breeding can be controlled by photoperiod, which affects the duration of nightly melatonin secretion. Winterlike, short day lengths induce gonadal regression in adult animals, and pups born and maintained in short days undergo pubertal gonadal development later than animals born into long days. However, to date there have been no reports of gestational photoperiod affecting fetal development of reproductive systems. The spinal nucleus of the bulbocavernosus (SNB) and its target muscles, the bulbocavernosus (BC) and levator ani (LA), compose a sexually dimorphic, androgen-sensitive neuromuscular system involved in male reproduction. The SNB neuromuscular system was studied in male Siberian hamsters maintained from conception in short-day (8 h light, 16 h dark; 8L:16D) versus long-day (16L:8D) conditions. On the day of birth, and at postnatal (PN) days 2 and 18, the BC/LA muscles of hamsters gestated and raised in the short photoperiod were significantly reduced relative to those of their long-day counterparts. Testes weights were not significantly different between groups until day 18. Thus, photoperiod exposure during gestation and after birth affects perinatal development of the SNB system in this species, and these effects can be seen as early as the day of birth. Because photoperiod did not significantly affect testes weights until PN18, these results suggest that either perinatal photoperiod affects fetal androgen production without affecting testes weight or it influences BC/LA development independently from androgen.  相似文献   

16.
We investigated the daily rhythm of the response to noradrenaline injections in Djungarian hamsters (Phodopus sungorus sungorus) at neutral ambient temperature, under long photoperiod (L:D 12:12) and after four weeks of acclimation to cold (10ºC) and short photoperiod (L:D 8:16). Animals were injected with noradrenaline (0.6 mg/kg) every four hours. Body temperature and gross motor activity were measured with MiniMitter transmitters implanted into abdominal cavity. Additionally, we measured body weight and food intake prior to, and after acclimation. After four weeks of acclimation, the experiment was performed under LD cycle and then repeated during one-day of constant light (LL) and constant darkness (DD). In animals acclimated to L:D 12:12 and ambient temperature of 25ºC, noradrenaline injections caused short-lasting increase in body temperature followed by marked decrease. There was no significant difference in the magnitude of the reaction between light and dark phase of the day. After acclimation to cold and L:D 8:16, under LD conditions, we recorded significant differences between the responses to the noradrenaline injections during light and dark phase of the day. Post-injection increase was higher during the day than during the night while following noradrenaline-induced hypothermia was much more pronounced in darkness. In experiments performed after acclimation to cold and short photoperiod but during one day of LL and DD regimes, these differences were attenuated. Data presented here indicate that in cold acclimated hamsters, the response to exogenous noradrenaline depends on the time of injection and it exhibits clear daily rhythm. The rhythmicity is altered under LL and DD regimes. It seems that post-injection increase in body temperature elicits following hypothermia. This hypothermia might be of a great ecological importance. Reasonable lowering of body temperature would be a protective mechanism, allowing for energy charge restoration.  相似文献   

17.
Abstract This study examined the diel activity pattern and the effect of diel activity pattern on predation rate and prey finding of Dicyphus hesperus Knight (Heteroptera: Miridae). To determine the diel activity pattern of D. hesperus, starved females were placed on tomato leaflets Lycopersicon esculentum Mill. (Solanaceae) under zero, low, or high light intensities at 02:00, 08:00, and 14:00 h, respectively, and the amount of time spent walking or resting during a 30‐min interval was recorded. Predation rates of D. hesperus females on Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) egg patches were determined under either a L16:D8 (long day) or L8:D16 (short day) diel period. Egg patches were removed from D. hesperus females after either 8 or 16 h of dark or 16 or 8 h of light, and the number of eggs consumed was counted. Dicyphus hesperus females spent more time searching for prey at night than during the day. Females ate eggs at a higher rate during the night than during the day. Overall, D. hesperus females had higher predation rates when reared under a long day diel cycle compared with females reared under a short day diel cycle. More females reared at the L16:D8 diel cycle found the egg patch during the night than during the day. There was no difference in egg patch finding between night and day for females reared at L8:D16. Overall, L16:D8 reared females found more egg patches than females reared at L8:D16. Therefore, D. hesperus females are more active and find and consume prey at a higher rate at night than day.  相似文献   

18.
Two experiments studied the relative effects on body mass and testicular growth of stimulatory photoperiods applied simultaneously to two photosensitive species, the house sparrow (Passer domesticus) and brahminy myna (Sturnus pagodarum). Experiment 1 on the house sparrow consisted of two parts. In experiment 1A, beginning on 24 March 2002, short day pretreated sparrows were exposed for 12 weeks to 13L: 11D (13 h light: 11 h darkness), 20L: 4D and NDL (control). Experiment 1B was similar to 1A except that it used sparrows that were not treated with short days. This experiment was repeated at three different times in the year. Beginning on 29 December 2002 (for 24 weeks), 26 March 2003 (for 12 weeks) and 16 August 2003 (for 8 weeks), sparrows captured from the wild and acclimated to captive condition for 1 week were exposed to 13L: 11D and 20L: 4D. Each time, a group was maintained in NDL and served as the control. Experiment 2 was performed on myna and used an identical protocol. Beginning on 24 March 2002, myna that were captured from the wild and acclimated to captivity conditions were exposed for 16 weeks to 13L: 11D and 20L: 4D; a group was maintained in NDL and served as the control. There was photostimulation and subsequent regression of the testes on all day lengths except in the August group of experiment 1B. The effect on body mass was variable. Interestingly, however, the response to 20L:4D was relatively smaller as compared to 13L:11D. Taken together, these results confirm that the two species use photoperiods in control of their reproductive cycle, and tend to indicate that exposure to unnatural long photoperiods may in fact be unfavorable and could compromise gonadal growth and development.  相似文献   

19.
Entrainment experiments have been carried out with geographically widely separated populations of the sand beach isopod Eurydice pulchra Leach subjected to periods of simulated tidal agitation imposed concurrently with a 24-h light: dark (L: D) cycle. Circatidal swimming rhythms of greatest amplitude were induced when agitation was applied with the subjective timing, within the L: D cycle, of local spring high tides. This occurred in a normal L: D regime and also when the L: D regime was phase shifted through 90°. Animals previously maintained in constant darkness (D: D) and subsequently exposed to simulated tidal disturbance at various times in constant darkness were unable to modulate the amplitude of circatidal swimming activity. Isopods previously maintained in a normal L: D cycle and subsequently subjected to artificial tidal agitation in constant darkness were, however, able to modulate circatidal activity. This indicates that E. pulchra is capable of detecting tidal agitation and daily light cues and using them in conjunction with its circadian “clock” to modulate its endogenous circatidal rhythmicity. The free-running semilunar rhythm of swimming activity entrained only when the timing of agitation within the day/night cycle mimicked the pattern of local spring high tides. Agitation with the timing of neap high tides entrained no free-running circa-semilunar activity pattern.  相似文献   

20.
The adult emergence rhythm of Telenomus busseolae, an egg parasitoid of Sesamia nonagrioides, was examined when parasitoids were exposed to different light-dark regimes. Most of the adult parasitoids emerged throughout the whole period of the photoperiodic cycle. Peak male emergence occurred 2–5 hours earlier than that of females. Adult emergence was asynchronous in continuous darkness or light. However, regimes of alternative light and dark phases such as L4:D20, L8:D16, L12:D12, L16:D8 and L20:D4 h generated a population rhythm with a period length of 24 hours. The peak of the emergence activity moves from the scotophase to the middle of the photophase with an increase of the photophase from 4 to 20 h. Rhythmical activity of adults was synchronised within 2 cycles when immature stages of parasitoid grow under continuous light conditions (LL) and then transferred to L12:D12. Moreover, emergence rhythm persisted and continued in a free-run with a period length of less than 24 hours by transferring a rhythmic culture from L12:D12 h to LL or RR (continuous red light) conditions, indicating the existence of a circadian rhythm. The ecological implications of the expression rhythm relate to better survival of the parasitoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号