首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study is to examine mastication-specific activity of orofacial neurons in the motor and masticatory cortices of the awake cat. We examine properties of mastication-related neurons (MRNs) in masticatory (MA, the rostral region of the orbital gyrus) and motor (area P, the lateral wall of the presylvian sulcus) cortical areas that are related to mastication of cats. MRNs in MA and area P had in common mechanoreceptive fields (RFs) in perioral, mandibular and lingual regions, and many MRNs had bilateral RFs in the tongue and mandibular regions. Facial RF size was the largest in area P. Eleven percent of MRN recording sites in MA, and 43% in area P evoked various motor effects with the use of intracortical microstimulation (ICMS). MRNs of the pre-movement type showing activities prior to mastication, or masticatory or lingual EMG, were 14% in MA and 45% in area P. Based on wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injection into area P and MA, cortico-cortical connections were examined. After the unilateral area P injection, were reciprocal connections between the contralateral area P and bilateral MA were demonstrated. After the unilateral MA injection, there were reciprocal connections between the contralateral MA, bilateral area P and bilateral orofacial SI (the orofacial region of the first somatosensory area). These findings suggest that accurate masticatory movements may be executed by the cortical processing in MA and area P.  相似文献   

2.
We proposed that cortical organization for the execution of adequate licking in cats was processed under the control of two kinds of affiliated groups for face and jaw & tongue movements (Hiraba H, Sato T. 2005A. Cerebral control of face, jaw, and tongue movements in awake cats: Changes in regional cerebral blood flow during lateral feeding Somatosens Mot Res 22:307–317). We assumed the cortical organization for face movements from changes in MRN (mastication-related neuron) activities recorded at area M (motor cortex) and orofacial behaviors after the lesion in the facial SI (facial region in the primary somatosensory cortex). Although we showed the relationship between facial SI (area 3b) and area M (area 4δ), the property of area C (area 3a) was not fully described. The aim of this present study is to investigate the functional role of area C (the anterior part of the coronal sulcus) that transfers somatosensory information in facial SI to area M, as shown in a previous paper (Hiraba H. 2004. The function of sensory information from the first somatosensory cortex for facial movements during ingestion in cats Somatosens Mot Res 21:87--97). We examined the properties of MRNs in area C and changes in orofacial behaviors after the area C or area M lesion. MRNs in area C had in common RFs in the lingual, perioral, and mandibular parts, and activity patterns of MRNs showed both post- and pre-movement types. Furthermore, cats with the area C lesion showed similar disorders to cats with the area M lesion, such as the dropping of food from the contralateral mouth, prolongation of the period of ingestion and mastication, and so on. From these results, we believe firmly the organization of unilateral cortical processing in facial SI, area C, and area M for face movements during licking.  相似文献   

3.
The aim of the present study was to investigate the relationship between the facial region of the first somatosensory cortex (facial SI) and facial region of the motor cortex (facial MI), as the basis of orofacial behaviors during ingestion of fish paste. Area M in the ventral cortex of the cruciate sulcus that was defined as part of the facial MI by Hiraba et al. (1992 and 1993), showed various facial twitches evoked by intracortical microstimulation (ICMS) and recorded many mastication-related neurons (MRNs). Many MRNs in area M had receptive fields (RFs) in lingual, perioral and mandibular regions. The 60% value of activity patterns of MRNs (n?=?124) recorded in area M of normal cats, were the pre-SB type (the sustained and pre-movement type) that showed increased firing prior to the start of mastication and then tonic activity during the masticatory period. MRNs recorded in area M of cats with the facial SI lesion, showed a noticeable decrease in MRNs with RFs in the perioral and mandibular regions and with activity of the pre-SB type. These results strongly suggest that blocking facial SI sensory inputs evoked by mastication interferes with the relay of important facial sensory information to area M required for the appropriate manipulation of food during mastication.  相似文献   

4.
The aim of the present study was to investigate the relationship between the facial region of the first somatosensory cortex (facial SI) and facial region of the motor cortex (facial MI), as the basis of orofacial behaviors during ingestion of fish paste. Area M in the ventral cortex of the cruciate sulcus that was defined as part of the facial MI by and, showed various facial twitches evoked by intracortical microstimulation (ICMS) and recorded many mastication-related neurons (MRNs). Many MRNs in area M had receptive fields (RFs) in lingual, perioral and mandibular regions. The 60% value of activity patterns of MRNs (n = 124) recorded in area M of normal cats, were the pre-SB type (the sustained and pre-movement type) that showed increased firing prior to the start of mastication and then tonic activity during the masticatory period. MRNs recorded in area M of cats with the facial SI lesion, showed a noticeable decrease in MRNs with RFs in the perioral and mandibular regions and with activity of the pre-SB type. These results strongly suggest that blocking facial SI sensory inputs evoked by mastication interferes with the relay of important facial sensory information to area M required for the appropriate manipulation of food during mastication.  相似文献   

5.
In a previous paper (Hiraba and Sato ) we reported that an accurate mastication might be executed by the cortical processing in bilateral masticatory area (MA)and motor cortices. The aim of this study was to determine if cats with lesion of either unilateral or bilateral MA showed changes in mastication. After exploring mechanoreceptive fields and motor effects of mastication-related neurons (MRNs) in MA using the single unit recording and intracortical microstimulation methods, we made various lesions in MAs with injections of kainic acid (0.1%, 2.0?µl). Since the MA was divided into facial (F) and intraoral (I) projection areas as reported in the previous paper, cats with the unilateral lesion in F or I, and with the bilateral lesion in F & F, I & I or F & I (F on one side and I on other side) were prepared. Cats with unilateral lesion in F or I and with bilateral lesion in F & I showed no changes in mastication except for prolongation of the food intake and masticatory periods. Cats with bilateral lesion into F & F, or I & I showed wider jaw-opening during mastication. Particularly, the latter group showed enormous jaw-opening, delay in the start of mastication and difficulty in manipulating food on the tongue. In all cats with lesions of each type, masticatory and swallowing rhythms remained normal. These findings suggest that accurate mastication is executed by the close integration between F & F and I & I of the bilateral MA.  相似文献   

6.
In a previous paper (Hiraba and Sato 2004) we reported that an accurate mastication might be executed by the cortical processing in bilateral masticatory area (MA)and motor cortices. The aim of this study was to determine if cats with lesion of either unilateral or bilateral MA showed changes in mastication. After exploring mechanoreceptive fields and motor effects of mastication-related neurons (MRNs) in MA using the single unit recording and intracortical microstimulation methods, we made various lesions in MAs with injections of kainic acid (0.1%, 2.0 microl). Since the MA was divided into facial (F) and intraoral (I) projection areas as reported in the previous paper, cats with the unilateral lesion in F or I, and with the bilateral lesion in F and F, I and I or F and I (F on one side and I on other side) were prepared. Cats with unilateral lesion in F or I and with bilateral lesion in F and I showed no changes in mastication except for prolongation of the food intake and masticatory periods. Cats with bilateral lesion into F and F, or I and I showed wider jaw-opening during mastication. Particularly, the latter group showed enormous jaw-opening, delay in the start of mastication and difficulty in manipulating food on the tongue. In all cats with lesions of each type, masticatory and swallowing rhythms remained normal. These findings suggest that accurate mastication is executed by the close integration between F and F and I and I of the bilateral MA.  相似文献   

7.
We proposed that cortical organization for the execution of adequate licking in cats was processed under the control of two kinds of affiliated groups for face and jaw & tongue movements (Hiraba H, Sato T. 2005A. Cerebral control of face, jaw, and tongue movements in awake cats: Changes in regional cerebral blood flow during lateral feeding Somatosens Mot Res 22:307-317). We assumed the cortical organization for face movements from changes in MRN (mastication-related neuron) activities recorded at area M (motor cortex) and orofacial behaviors after the lesion in the facial SI (facial region in the primary somatosensory cortex). Although we showed the relationship between facial SI (area 3b) and area M (area 4delta), the property of area C (area 3a) was not fully described. The aim of this present study is to investigate the functional role of area C (the anterior part of the coronal sulcus) that transfers somatosensory information in facial SI to area M, as shown in a previous paper (Hiraba H. 2004. The function of sensory information from the first somatosensory cortex for facial movements during ingestion in cats Somatosens Mot Res 21:87-97). We examined the properties of MRNs in area C and changes in orofacial behaviors after the area C or area M lesion. MRNs in area C had in common RFs in the lingual, perioral, and mandibular parts, and activity patterns of MRNs showed both post- and pre-movement types. Furthermore, cats with the area C lesion showed similar disorders to cats with the area M lesion, such as the dropping of food from the contralateral mouth, prolongation of the period of ingestion and mastication, and so on. From these results, we believe firmly the organization of unilateral cortical processing in facial SI, area C, and area M for face movements during licking.  相似文献   

8.
In the orofacial area of the first somatosensory cortex (SI), we recorded single unit activity from 699 neurons in 11 awake cats. Fifty-two percent (362/699) were mastication-related neurons (MRNs) showing activity related to some aspects of masticatory movements. MRNs were divided into three types by their activity patterns: (1) the rhythmical type, showing rhythmical bursts in pace with the masticatory rhythm; (2) the sustained type, showing a sustained firing during the period of taking food and (3) the transient (biting) type, showing intense discharges in coincidence with biting hard food. MRNs had mechanoreceptive fields in the perioral, tongue, periodontal and mandibular regions. The activities of perioral rhythmical-MRNs, mandibular transient-MRNs, tongue rhythmical-MRNs and periodontal transient-MRNs were correlated with food texture, while perioral rhythmical-MRNs, perioral sustained-MRNs and tongue sustained-MRMs were not. Both facial and intraoral MRNs were scattered throughout the facial and intraoral projection areas in SI. These findings provide evidence that the orofacial SI monitors masticatory movements for food ingestion.  相似文献   

9.
Based on area P lesion experiments, we hypothesized that tongue protrusion adapted for licking might be regulated by the lateral wall of the presylvian sulcus (bilateral areas P) of the cerebral cortex (Hiraba H, Sato T, Nakakawa K, Ueda K. . Cortical control of appropriate tongue protrusion during licking in cats—Increase in regional cerebral blood flow (rCBF) of the contralateral area P and in tongue protrusion after the unilateral area P lesion. Somatosens Mot Res 26:82–89). We propose that the right and left lingual muscles are dominated by the right and left hypoglossal nucleus, respectively, and that right and left pyramidal cells projecting to the right and left hypoglossal nucleus, respectively, exist in unilateral area P. These cells project via an inhibitory interneuron relay to the lateral branches toward the left or right pyramidal cells in contralateral area P. In this study, we aimed to demonstrate the existence of inhibitory interneurons using injections of a gamma-aminobutyric acid (GABA) agonist (muscimol), a GABA antagonist (bicuculline), and kainic acid into unilateral area P, followed by examination of tongue protrusion and lateral movements during trained licking and changes in regional cerebral blood flow (rCBF) values in the contralateral area P. We found disordered protrusion toward both sides and a marked decrease in rCBF values in the contralateral area P after bicuculline injection. We also found abnormal tongue protrusion toward the front and a marked increase in rCBF values after muscimol and kainic acid injections. These results suggest that cortical networks between the bilateral areas P are relayed by inhibitory interneurons.  相似文献   

10.
Adequate tongue protrusion may be regulated by cat bilateral area P (the motor cortex for jaw and tongue movements) (Hiraba and Sato, Somatosens Mot Res 2005b;22:183–192). The ICMS (intracortical microstimulation) in the unilateral area P evoked motor effects of tongue protrusion without deviation (Hiraba and Sato, Somatosens Mot Res 2004;23:1–12), and cats with the unilateral lesion of area P showed abnormal tongue protrusion without deviation during licking (Hiraba and Sato, Somatosens Mot Res 2005b;22:183–192). Further, the measurements of the regional cerebral blood flow (rCBF) in the bilateral jaw and tongue motor cortical areas were shown to have the same activity rate during the lateral licking (Hiraba and Sato, Somatosens Mot Res 2005c;22:307–317). We assumed from these results that cortical control for tongue protrusion was executed by networks between the bilateral area P including inhibitory interneurons. We prepared the measurable cats of the rCBF in the contralateral side after the unilateral area P lesion. Changes in the rates of rCBF and tongue protrusion during licking were examined over a long time course of about 1–2 months after the unilateral area P lesion. All cats after the unilateral area P lesion showed increased rate (double or triple in comparison with the normal ones) of rCBF of the contralateral area P in the early (0–20 days) phase. On the other hand, increased rates of tongue protrusion were about 120% in the early phase, and about 180% in the middle (21–35 days) and late (36–last days) phases. The results support the organization of networks between bilateral area P including the inhibitory interneurons.  相似文献   

11.
Our previous study suggested that area P in the lateral wall of the presylvian sulcus and MA (masticatory cortex) in the rostral part of the orbital gyrus play an important role in execution of mastication. The aim of this present study is to examine if changes in orofacial behaviors and masticatory movements occur in cats with lesions of area P. First, we explored the locations in area P through the use of single unit recording and ICMS (intracortical microstimulation). Since mastication related neurons (MRNs) with the mechanical receptive field (RF) in facial or intraoral region were intermingled in area P, we performed either a partial or entire lesion in area P by injections of 2 microl or 4 microl of 0.1% kainic acid. Cats with the entire lesion in area P showed a decrease of food intake rates associated with abnormal tongue protrusion and wide jaw-opening, fluctuation of masticatory start, and prolongation of masticatory and food intake periods. Abnormal movements of tongue and jaw did not recover, although their prolongation and fluctuation returned to normal levels in one month. On the other hand, all deficits evoked by cats with the partial lesion recovered in about one month. In cats with the partial and entire lesions, masticatory rhythm remained normal. These findings suggest that area P may regulate accurate and suitable tongue and jaw movements during mastication depending on cortical processing.  相似文献   

12.
Mastication is achieved by cooperation among facial, masticatory, and lingual muscles. However, cortical control in cats for the masticatory performance is processed by two systems: facial movement processed by facial SI (the first somatosensory cortex), area C, and area M (motor areas), and jaw and tongue movements performed by intraoral SI, masticatory area, and area P (motor area). In particular, outputs from area P organized in the corticobulbar tract are projected bilaterally in the brainstem. In this present study, the aim is to explore changes in the regional cerebral blood flow (rCBF) in the facial SI, area M, and area P during trained lateral feeding (licking or chewing from the right or left side) of milk, fish paste, and small dry fish. The rCBF in area M showed contralateral dominance, and rCBF in area P during chewing or licking from the right or left side was almost the same value. Furthermore, activities of genioglossus and masseter muscles in the left side showed almost the same values during licking of milk and of fish paste, and chewing of small dry fish during lateral feeding. These findings suggest that the cortical process for facial, jaw, and tongue movements may be regulated by the contralateral dominance of area M and the bilateral one of area P.  相似文献   

13.
Mastication is achieved by cooperation among facial, masticatory, and lingual muscles. However, cortical control in cats for the masticatory performance is processed by two systems: facial movement processed by facial SI (the first somatosensory cortex), area C, and area M (motor areas), and jaw and tongue movements performed by intraoral SI, masticatory area, and area P (motor area). In particular, outputs from area P organized in the corticobulbar tract are projected bilaterally in the brainstem. In this present study, the aim is to explore changes in the regional cerebral blood flow (rCBF) in the facial SI, area M, and area P during trained lateral feeding (licking or chewing from the right or left side) of milk, fish paste, and small dry fish. The rCBF in area M showed contralateral dominance, and rCBF in area P during chewing or licking from the right or left side was almost the same value. Furthermore, activities of genioglossus and masseter muscles in the left side showed almost the same values during licking of milk and of fish paste, and chewing of small dry fish during lateral feeding. These findings suggest that the cortical process for facial, jaw, and tongue movements may be regulated by the contralateral dominance of area M and the bilateral one of area P.  相似文献   

14.
Optoelectronic analysis of mandibular movement and electromyography (EMG) of masticatory muscles in Cavia porcellus indicate bilateral, unilateral, and gnawing cycles. During bilateral and unilateral cycles, the mandibular tip moves forward, lateral, and down during the lingual phase of the power stroke to bring the teeth into occlusion. EMG activity is generally asymmetric, with the exception of activity of the temporalis muscle during bilateral cycles. During gnawing cycles, the mandible moves in an anteroposterior direction that is opposite that during bilateral and unilateral chew cycles. Bilateral and unilateral cycles of pellets were significantly longer than carrot. With the exception of the width of bilateral cycles, the magnitude of cycle width, length, and height during the mastication of carrots was greater than that during the mastication of pellets. Significant differences exist between EMG durations during mastication of pellets and carrots. The lateral pterygoid displays continuous activity during gnawing cycles. Significant differences also exist in the durations of EMG activity between the working and balancing side during all three cycle types. High level activity of balancing side temporalis and anterior belly of digastric (ABD) during bilateral cycles occurs during rotation and depression of the mandible during the power stroke. The temporalis apparently provides a ?braking”? or compensatory role during closing and power strokes. Differences between Cavia masticatory patterns and those shown by Rattus and Mesocricetus are apparently due to differences in dental morphology, occlusal relationships, and, possibly, the poorly developed temporalis in Cavia. The large number and wide diversity of rodent groups afford students of mammalian mastication an opportunity to investigate and compare different masticatory specializations.  相似文献   

15.
The aim of this study was to evaluate masticatory muscle activity and kinematics of mandible changes in children with unilateral posterior cross-bite (UPXB) after orthodontic treatment, and one year after retention. Twenty-five children with UPXB and functional mandibular shift were evaluated before treatment (mean age 12.5years), after treatment (mean age 14.9years), and one year after retention (mean age 16.8years). The same data were collected in a control group of thirty age-matched normocclusive children. Simultaneous bilateral surface electromyographic (sEMG) activity from anterior temporalis (AT), posterior temporalis (PT), masseter (MA), and supra-hyoid (SH) muscle areas were evaluated at rest, during swallowing, mastication and clenching. Kinematic records of rest position, mandibular lateral shift, swallowing and mastication were analyzed. Results showed a lateral shift of the mandible present at rest. During swallowing, sEMG activity of SH predominated before and post-treatment and retention. High frequency of immature swallowing was maintained post-treatment and retention. During mastication, MA activity increased significantly and its asymmetry was corrected post-treatment. During clenching, cross-bite side AT and MA activity increased significantly posttreatment and remained stable after retention, and MA/AT ratio reversed. These findings reinforce the advantages of treating children with UPXB and functional shift as early as possible.  相似文献   

16.
During mastication, reflexes are modulated and sensory transmission is altered in interneurons and ascending pathways of the rostral trigeminal sensory complex. The current experiment examines the modulation of sensory transmission through the most caudal part of the trigeminal sensory system, the medullary dorsal horn, during fictive mastication produced by cortical stimulation. Extracellular single unit activity was recorded from the medullary dorsal horn, and multiple unit activity was recorded from the trigeminal motor nucleus in anesthetized, paralyzed rabbits. The masticatory area of sensorimotor cortex was stimulated to produce rhythmic activity in the trigeminal motor nucleus (fictive mastication). Activity in the dorsal horn was compared in the presence and absence of cortical stimulation. Fifty-two percent of neurons classified as low threshold and 83% of neurons receiving noxious inputs were influenced by cortical stimulation. The cortical effects were mainly inhibitory, but 21% of wide dynamic range and 6% of low threshold cells were excited by cortical stimulation. The modulation produced by cortical stimulation, whether inhibitory or excitatory, was not phasically related to the masticatory cycle. It is likely that, when masticatory movements are commanded by the sensorimotor cortex, the program includes tonic changes in sensory transmission through the medullary dorsal horn.  相似文献   

17.
There is disagreement as to whether the mandibular condyles are stress-bearing or stress-free during mastication. In support of alternative models, analogies have been drawn with Class III levers, links, and couple systems. Physiological data are reviewed which indicate that maximum masticatory forces are generated when maxillary and mandibular teeth are in contact, and that this phase lasts for over 100 msec during many chewing strokes. During this period, the mandible can be modeled as a beam with multiple supports. Equations of simple beam theory suggest that large condylar reaction forces are present during mastication. With unilateral molar biting in man, the total condylar reaction force may be over 75% of the bite force. Analysis of a frontal projection demonstrates that up to 80% of the total condylar reaction force is borne by the contralateral (balancing side) condyle during unilateral molar biting. A comparison of human, chimpanzee (P. troglodytes), spider monkey (A. belzebuth), and macaque (Macaca sp.) morphology indicates that the frugivorous chimpanzee and spider monkey have a relatively lower condylar reaction force than the omnivorous macaque or man during molar biting. The percentage reaction force during incisal biting is lower in man than in the other primates, and lower in the frugivorous primates than in the macaque.  相似文献   

18.
A stress analysis of the primate mandible suggests that vertically deep jaws in the molar region are usually an adaptation to counter increased sagittal bending stress about the balancing-side mandibular corpus during unilateral mastication. This increased bending stress about the balancing side is caused by an increase in the amount of balancing-side muscle force. Furthermore, this increased muscle force will also cause an increase in dorso-ventral shear stress along the mandibular symphysis. Since increased symphyseal stress can be countered by symphyseal fusion and as increased bending stress can be countered by a deeper jaw, deep jaws and symphyseal fusion are often part of the same functional pattern. In some primates (e.g., Cercocebus albigena), deep jaws are an adaptation to counter bending in the sagittal plane during powerful incisor biting, rather than during unilateral mastication. The stress analysis of the primate mandible also suggests that jaws which are transversely thick in the molar region are an adaptation to counter increased torsion about the long axis of the working-side mandibular corpus during unilateral mastication. Increased torsion of the mandibular corpus can be caused by an increase in masticatory muscle force, an increase in the transverse component of the postcanine bite force and/or an increase in premolar use during mastication. Patterns of masticatory muscle force were estimated for galagos and macaques, demonstrating that the ratio of working-side muscle force to balancing-side muscle force is approximately 1.5:1 in macaques and 3.5:1 in galagos during unilateral isometric molar biting. These data support the hypothesis that mandibular symphyseal fusion is an adaptative response to maximize unilateral molar bite force by utilizing a greater percentage of balancing-side muscle force.  相似文献   

19.
Single-element and/or rosette strain gages were bonded to mandibular cortical bone in Galago crassicaudatus and Macaca fascicularis. Five galago and eleven macaque bone strain experiments were performed and analyzed. In vivo bone strain was recorded from the lateral surface of the mandibular corpus below the postcanine tooth row during transducer biting and during mastication and ingestion of food objects. In macaques and galagos, the mandibular corpus on the balancing side is primarily bent in the sagittal plane during mastication and is both twisted about its long axis and bent in the sagittal plane during transducer biting. On the working side, it is primarily twisted about its long axis and directly sheared perpendicular to its long axis, and portions of it are bent in the sagittal plane during mastication and molar transducer biting. In macaques, the mandibular corpus on each side is primarily bent in the sagittal plane and twisted during incisal transducer biting and ingestion of food objects, and it is transversely bent and slightly twisted during jaw opening. Since galagos usually refused to bite the transducer or food objects with their incisors, an adequate characterization of mandibular stress patterns during these behaviors was not possible. In galagos the mandibular corpus experiences very little transverse bending stress during jaw opening, perhaps in part due to its unfused mandibular symphysis. Marked differences in the patterns of mandibular bone strain were present between galagos and macaques during the masticatory power stroke and during transducer biting. Galagos consistently had much more strain on the working side of the mandibular corpus than on the balancing side. These experiments support the hypothesis that galagos, in contrast to macaques, employ a larger amount of working-side muscle force relative to the balancing-side muscle force during unilateral biting and mastication, and that the fused mandibular symphysis is an adaption to use a maximal amount of balancing-side muscle force during unilateral biting and mastication. These experiments also demonstrate the effects that rosette position, bite force magnitudes, and types of food eaten have on recorded mandibular strain patterns.  相似文献   

20.
The purpose of this study was to determine the role of somatosensory cortex (SI) in the control of orofacial movements during eating.We identified perioral and tongue projection regions of the cat SI and destroyed cells in one region by injecting kainic acid. The effects on orofacial behavior were then studied over a period of 4-6 weeks. Cats with unilateral lesions in the perioral region (PL-cats) dropped food from the contralateral side of the mouth in the early phase. Failure in erection of the contralateral whisker hairs during masticatory movements and delay of the masticatory start were observed throughout the experimental period. Furthermore, in the late phase, PL-cats showed prolongations of the masticatory and food intake periods, which were accompanied by the increase in the number of swallows and chewing cycles. Cats with unilateral lesions in the tongue region (TL-cats) showed the prolongation of the masticatory period in the early phase, which was accompanied by the increase in the number of swallows and chewing cycles. TL-cats did not show the prolongation of the food intake period and failure in erection of the contralateral whisker hairs. In both PL- and TL-cats, masticatory and swallowing rhythms were normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号