首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Recording myoelectric motor-evoked potentials is frequently used as an in vivo evaluation technique in experimental studies of spinal cord injury (SCI). The aim of the present study was to determine whether specific neuronal pathways conduct these potentials. Stainless steel screws were permanently implanted into the cranium of 18 rats for stimulation of brainstem-evoked muscle potentials (B-MPs). Twelve rats were subjected to spinal cord lesions that restricted the continuity of the spinal cord to different discrete sections of the lateral and/or ventral white matter (WM) of the left hemicord. Sham rats (n = 6) were subjected to laminectomy only. Left hind limb B-MPs and motor function (open field walking test) were recorded before surgery and weekly thereafter for six consecutive weeks. Motor function was severely affected by SCI in all rats but recovered significantly during the first 14 postoperative days. The degree of functional recovery depended not only on the amount of spared WM but also on the particular section of WM that had been spared. In contrast, B-MP amplitudes also were severely reduced by SCI, but did not recover during the survival period. Moreover, B-MP amplitudes correlated only weakly with the amount of sparedWM and were not influenced by which section ofWM had been spared. While functional recovery correlated significantly with the amount of spared WM, no correlation was found between B-MP amplitudes and functional recovery. B-MP conduction velocities were not affected by SCI. It is therefore believed that B-MPs have little prognostic value for experimental studies of SCI in the rat.  相似文献   

2.
目的:探讨三七总皂苷对大鼠脊髓损伤(SCI)后运动功能恢复的作用。方法:正常SD大鼠随机分为5组(n=8):正常对照组(Normal)、假手术组(Sham)、脊髓损伤(SCI)和脊髓损伤+三七总皂苷组(PNS)(n=8)。所有大鼠分别在造模前及造模后第1、3、7、14、21和28天接受运动功能评分(BBB)和运动诱发电位(MEP)检查,观察大鼠后肢运动功能的恢复情况。结果:造模后,Sham组、PNS组、SCI组BBB评分低于正常;MEP波幅低于正常;潜伏期较正常延长。PNS组与同期SCI组比较,第7、14、21、28天的BBB评分差异有统计学意义(P<0.05);第7天、14天、21天、28天,MEP检查波幅(Amp)和潜伏期(Lat)组内有显著差异,并且与同期SCI组比较差异有统计学意义(P<0.05)。结论:三七总皂苷可促进大鼠SCI后运动功能的恢复。  相似文献   

3.
Accordingly to its known function in corticospinal tract (CST) developmental growth, previous reports have shown an inhibitory role of Wnt5a in CST regeneration after spinal cord injury (SCI). Interestingly, it has been subsequently demonstrated that Wnt5a also modulates the developmental growth of non-CST axons and that different Wnt5a receptors are expressed in neurons, oligodendrocytes, NG2+ glial precursors and reactive microglia/macrophages and astrocytes after SCI. However, the role of Wnt5a in the response of these cell types, in the regeneration of non-CST axons and in functional recovery after SCI is currently unknown. To evaluate this, rats were subjected to spinal cord contusion and injected with a lentiviral vector generated to overexpress Wnt5a. Histological analyses were performed in spinal cord sections processed for the visualization of myelin, oligodendrocytes, neurons, microglia/macrophages, astrocytes, NG2+ glial precursors and serotonergic axons. Motor and bladder function recovery were also assessed. Further advancing our knowledge on the role of Wnt5a in SCI, we found that, besides its previously reported functions, Wnt5a overexpression elicits a reduction on neuronal cell density, the accumulation of NG2+ glial precursors and the descending serotonergic innervation in the affected areas, along with impairment of motor and bladder function recovery after SCI.  相似文献   

4.
Spinal cord injury (SCI), as a major cause of disability, usually causes serious loss of motor and sensory functions. As a bifunctional axonal guidance cue, netrin-1 can attract axons via the deleted in colorectal cancer (DCC) receptors and repelling others via Unc5 receptors, but its exact role in the recovery of motor and sensory function has not well been studied, and the mechanisms remains elusive. The aim of this experiment is to determine whether lentiviral (LV)-mediated overexpression of netrin-1 or RNA interference (RNAi) can regulate the functional recovery in rats subjected to spinal cord transection (SCT). Firstly, two lentiviral vectors including Lv-exNtn-1 (netrin-1 open reading frame (ORF)) and Lv-shNtn-1 (netrin-1 sh) were constructed and injected into spinal cords rostral and caudal to the transected lesion site. Overexpressing netrin-1 enhanced significantly locomotor function, and reduced thermal and mechanical stimuli in vivo, compared with the control, while silencing netrin-1 did not significantly change the situation. Western blot and immunostaining analysis confirmed that netrin-1 ORF treatment not only effectively increased the expression level of netrin-1, also up-regulated the level of synaptophysin (SYP) in spinal cord rostral to the lesion, but also enhanced growth-associated protein-43 (GAP-43) expression in spinal cord caudal to the lesion site. Comparatively, knockdown of netrin-1 did not give rise to positive findings in our experimental condition. These findings therefore pointed that Lv-mediated netrin-1 overexpression could promote motor and sensory functional recoveries following SCT, and the underlying mechanisms were associated with SYP and GAP-43 expressions. The present study therefore provided a novel strategy for the treatment of SCI and explained the possible mechanisms for the functional improvement.  相似文献   

5.
Human mesenchymal stem cells (hMSCs) derived from adult bone marrow represent a potentially useful source of cells for cell replacement therapy after nervous tissue damage. They can be expanded in culture and reintroduced into patients as autografts or allografts with unique immunologic properties. The aim of the present study was to investigate (i) survival, migration, differentiation properties of hMSCs transplanted into non-immunosuppressed rats after spinal cord injury (SCI) and (ii) impact of hMSC transplantation on functional recovery. Seven days after SCI, rats received i.v. injection of hMSCs (2×106 in 0.5 mL DMEM) isolated from adult healthy donors. Functional recovery was assessed by Basso–Beattie–Bresnahan (BBB) score weekly for 28 days. Our results showed gradual improvement of locomotor function in transplanted rats with statistically significant differences at 21 and 28 days. Immunocytochemical analysis using human nuclei (NUMA) and BrdU antibodies confirmed survival and migration of hMSCs into the injury site. Transplanted cells were found to infiltrate mainly into the ventrolateral white matter tracts, spreading also to adjacent segments located rostro-caudaly to the injury epicenter. In double-stained preparations, hMSCs were found to differentiate into oligodendrocytes (APC), but not into cells expressing neuronal markers (NeuN). Accumulation of GAP-43 regrowing axons within damaged white matter tracts after transplantation was observed. Our findings indicate that hMSCs may facilitate recovery from spinal cord injury by remyelinating spared white matter tracts and/or by enhancing axonal growth. In addition, low immunogenicity of hMSCs was confirmed by survival of donor cells without immunosuppressive treatment.  相似文献   

6.
急性脊髓损伤后大鼠电刺激运动诱发电位的变化   总被引:3,自引:0,他引:3  
目的:比较不同程度脊髓损伤(SCI)与运动诱发电位(MEP)变化之间的关系,探索MEP检查在SCI早期诊断及预后中的价值。方法:27只雄性SD大鼠以改良Allen‘s打击法致伤T8-T9脊髓,按打击冲量随机分为空白对照组(n=5),SCI A组(50gcf,n=8),SCI B组(70gcf,n=8)和SCI C组(100gcf,n=6),采用单极经皮层电刺激,分别于损伤前、伤后即刻、15min、30min、1h、3h和6h连续观察scMEP变化,并计算脊髓出血坏死区域占脊髓横截面积的比率。结果:对照组MEP无显著改变,SCI A组和SCI B组动物MEP早成份波幅立即减低或消失,以后有所恢复,晚成份波消失后未再出现。SCI C组动物除2只大鼠SCI后MEP仍有所恢复外,其余动物再未出现MEP波。脊髓损伤随打击冲量增大而增加,与伤后1h scMEP最大波幅呈显著相关(r=-0.821)。结论:SCI后scMEP的变化程度与打击冲量和脊髓病理损伤面积相关,提示scMEP可以作为一种脊髓功能检测的客观指标。  相似文献   

7.
The pathophysiology of spinal cord injury (SCI) involves primary injury and secondary injury. For the irreversibility of primary injury, therapies of SCI mainly focus on secondary injury, whereas inflammation is considered to be a major target for secondary injury; however the regulation of inflammation in SCI is unclear and targeted therapies are still lacking. In this study, we found that the expression of BRD4 was correlated with pro‐inflammatory cytokines after SCI in rats; in vitro study in microglia showed that BRD4 inhibition either by lentivirus or JQ1 may both suppress the MAPK and NF‐κB signalling pathways, which are the two major signalling pathways involved in inflammatory response in microglia. BRD4 inhibition by JQ1 not only blocked microglial M1 polarization, but also repressed the level of pro‐inflammatory cytokines in microglia in vitro and in vivo. Furthermore, BRD4 inhibition by JQ1 can improve functional recovery and structural disorder as well as reduce neuron loss in SCI rats. Overall, this study illustrates that microglial BRD4 level is increased after SCI and BRD4 inhibition is able to suppress M1 polarization and pro‐inflammatory cytokine production in microglia which ultimately promotes functional recovery after SCI.  相似文献   

8.
Sensory input from the periphery to the brain can be severely compromised or completely abolished after an injury to the spinal cord. Evidence from animal models suggests that endogenous repair processes in the spinal cord mediate extensive sprouting and that this might be further attenuated by targeted therapeutic interventions. However, the extent to which sprouting can contribute to spontaneous recovery after human spinal cord injury (SCI) remains largely unknown, in part because few measurement tools are available in order to non-invasively detect subtle changes in neurophysiology. The proposed application of segmental sensory evoked potentials (e.g., dermatomal contact heat evoked potentials and somatosensory evoked potentials) to assess conduction in ascending pathways (i.e., spinothalamic and dorsal column, respectively) differs from conventional approaches in that individual spinal segments adjacent to the level of lesion are examined. The adoption of these approaches into clinical research might provide improved resolution for measuring changes in sensory impairments and might determine the extent by which spontaneous recovery after SCI is mediated by similar endogenous repair mechanisms in humans as in animal models.  相似文献   

9.
The transplantation of neural stem/progenitor cells is a promising therapeutic strategy for spinal cord injury (SCI). In this study, we tested whether combination of neurotrophic factors and transplantation of glial-restricted precursor (GRPs)-derived astrocytes (GDAs) could decrease the injury and promote functional recovery after SCI. We developed a protocol to quickly produce a sufficiently large, homogenous population of young astrocytes from GRPs, the earliest arising progenitor cell population restricted to the generation of glia. GDAs expressed the axonal regeneration promoting substrates, laminin and fibronectin, but not the inhibitory chondroitin sulfate proteoglycans (CSPGs). Importantly, GDAs or its conditioned medium promoted the neurite outgrowth of dorsal root ganglion neurons in vitro. GDAs were infected with retroviruses expressing EGFP or multi-neurotrophin D15A and transplanted into the contused adult thoracic spinal cord at 8 days post-injury. Eight weeks after transplantation, the grafted GDAs survived and integrated into the injured spinal cord. Grafted GDAs expressed GFAP, suggesting they remained astrocyte lineage in the injured spinal cord. But it did not express CSPG. Robust axonal regeneration along the grafted GDAs was observed. Furthermore, transplantation of D15A-GDAs significantly increased the spared white matter and decreased the injury size compared to other control groups. More importantly, transplantation of D15A-GDAs significantly improved the locomotion function recovery shown by BBB locomotion scores and Tredscan footprint analyses. However, this combinatorial strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. These results demonstrate that transplantation of D15A-expressing GDAs promotes anatomical and locomotion recovery after SCI, suggesting it may be an effective therapeutic approach for SCI.  相似文献   

10.
It is well known that neural stem cells (NSC) could promote the repairment after spinal cord injury, but the underlying mechanism remains to be elucidated. This study showed that the transplantation of NSC significantly improved hindlimb locomotor functions in adult rats subjected to transection of the spinal cord. Biotin dextran amine tracing together with the stimulus experiment in motor sensory area showed that little CST regeneration existed and functional synaptic formation in the injury site. Immunocytochemistry and RT-PCR demonstrated the secretion of NGF, BDNF, and NT-3 by NSC in vitro and in vivo, respectively. However, only mRNA expression of BDNF and NT-3 but not NGF in injury segment following NSC transplantation was upregulated remarkably, while caspase-3, a crucial apoptosis gene, was downregulated simultaneously. These provided us a clue that the functional recovery was correlated with the regulation of BDNF, NT-3, and caspase-3 in spinal cord transected rats following NSC transplantation.  相似文献   

11.
Shen  He  Chen  Xi  Li  Xing  Jia  Ke  Xiao  Zhifeng  Dai  Jianwu 《中国科学:生命科学英文版》2019,62(6):725-733
Grafted embryonic central neural tissue pieces can recover function of hemisected spinal cord in neonatal rats and promote axonal growth in adults. However, spinal cord segments from adults have not been used as donor segments for allogeneic transplantation. Here, we utilized adult spinal cord tissue grafts(aSCGs) as donor constructs for repairing complete spinal cord injury(SCI). Moreover, to provide a favourable microenvironment for SCI treatment, a growth factor cocktail containing three growth factors(brain-derived neurotrophic factor, neurotrophin-3 and vascular endothelial growth factor), was applied to the aSCG transplants. We found that the locomotor function was significantly improved 12 weeks after transplantation of aSCGs into the spinal cord lesion site in adult rats. Transplantation of aSCGs combined with these growth factors enhanced neuron and oligodendrocyte survival and functional restoration. These encouraging results indicate that treatment of complete SCI by transplanting aSCGs, especially in the presence of growth factors, has a positive effect on motor functional recovery, and therefore could be considered as a possible therapeutic strategy for SCI.  相似文献   

12.
SUMMARY 1. After traumatic spinal cord injury (SCI), histological and neurological consequences are developing for several days and even weeks. However, little is known about the dynamics of changes in spinal axonal conductivity. The aim of this study was to record and compare repeated spinal cord evoked potentials (SCEP) after SCI in the rat during a 4 weeks’ interval. These recordings were used: (i) for studying the dynamics of functional changes in spinal axons after SCI, and (ii) to define the value of SCEP as an independent outcome parameter in SCI studies.2. We have used two pairs of chronically implanted epidural electrodes for stimulation/recording. The electrodes were placed below and above the site of injury, respectively. Animals with implanted electrodes underwent spinal cord compression injury induced by epidural balloon inflation at Th8–Th9 level. There were five experimental groups of animals, including one control group (sham-operated, no injury), and four injury groups (different degrees of SCI).3. After SCI, SCEP waveform was either significantly reduced or completely lost. Partial recovery of SCEPs was observed in all groups. The onset and extent of recovery clearly correlated with the severity of injury.There was good correlation between quantitated SCEP variables and the volumes of the compressing balloon. However, sensitivity of electropohysiological parameters was inferior compared to neurological and morphometric outcomes.4. Our study shows for the first time, that the dynamics of axonal recovery depends on the degree of injury. After mild injury, recovery of signal is rapid. However, after severe injury, axonal conductivity can re-appear after as long as 2 weeks postinjury.In conclusion, SCEPs can be used as an independent parameter of outcome after SCI, but in general, the sensitivity of electrophysiological data were worse than standard morphological and neurological evaluations.  相似文献   

13.
Background aimsOlfactory ensheathing glia (OEG) and mesenchymal stromal cells (MSC) are suitable candidates for transplantation therapy of spinal cord injury (SCI). Both facilitate functional improvement after SCI by producing trophic factors and cytokines. In this study, the co-transplantation of both types of cells was studied to clarify their additive and/ or synergistic effects on SCI.MethodsA balloon-induced compression lesion was used to produce SCI in rats. OEG, MSC or both OEG and MSC (3 × 105 cells of each cell type) were implanted by intraspinal injection 1 week after SCI. The effect of transplantation was assessed using behavioral, electrophysiologic and histologic methods.ResultsHindlimb function was examined with Basso, Beattie and Bresnahan (BBB) and Plantar tests. Improvement was found in all three groups of transplanted rats with different time–courses, but there was no significant difference among the groups at the end of the experiment. Motor-evoked potentials after SCI decreased in amplitude from 7 mV to 10 µV. Linear regression analysis showed a modest recovery in amplitude following transplantation, but no change in the control rats. Histologic findings showed that the white and gray matter were significantly spared by transplantation after SCI.ConclusionsFunctional improvement was achieved with transplantation of OEG and/or MSC, but the co-transplantation of OEG and MSC did not show synergistic effects. The poor migration of OEG and MSC might prevent their concerted action. Pre-treatment with a Rho antagonist and a combination of intraspinal and intravenous injection of the cells might be beneficial for SCI therapy.  相似文献   

14.
Mature adipocyte-derived dedifferentiated fat cells (DFAT) have a potential to be useful as new cell-source for cell-based therapy for spinal cord injury (SCI), but the mechanisms remain unclear. The objective of this study was to examine whether DFAT-induced functional recovery is achieved through remyelination and/or glial scar reduction in a mice model of SCI. To accomplish this we subjected adult female mice (n = 22) to SCI. On the 8th day post-injury locomotor tests were performed, and the mice were randomly divided into two groups (control and DFAT). The DFAT group received stereotaxic injection of DFAT, while the controls received DMEM medium. Functional tests were conducted at repeated intervals, until the 36th day, and immunohistochemistry or staining was performed on the spinal cord sections. DFAT transplantation significantly improved locomotor function of their hindlimbs, and promoted remyelination and glial scar reduction, when compared to the controls. There were significant and positive correlations between promotion of remyelination or/and reduction of glial scar, and recovery of locomotor function. Furthermore, transplanted DFAT expressed markers for neuron, astrocyte, and oligodendrocyte, along with neurotrophic factors, within the injured spinal cord. In conclusion, DFAT-induced functional recovery in mice after SCI is probably mediated by both cell-autonomous and cell-non-autonomous effects on remyelination of the injured spinal cord.  相似文献   

15.
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced pathology. Blood–spinal cord barrier (BSCB) permeability, tissue edema formation, microglial activation, neuronal cell death and myelin loss were determined in rats subjected to spinal cord contusion. The results showed that tamoxifen, administered at 30 min post-injury, significantly decreased interleukin-1β (IL-1β) production induced by microglial activation, alleviated the amount of Evans blue leakage and edema formation. In addition, tamoxifen treatment clearly reduced the number of apoptotic neurons post-SCI. The myelin loss and the increase in production of myelin-associated axonal growth inhibitors were also found to be significantly attenuated at day 3 post-injury. Furthermore, rats treated with tamoxifen scored much higher on the locomotor rating scale after SCI than did vehicle-treated rats, suggesting improved functional outcome after SCI. Together, these results demonstrate that tamoxifen provides neuroprotective effects for treatment of SCI-related pathology and disability, and is therefore a potential neuroprotectant for human spinal cord injury therapy.  相似文献   

16.
Blood–spinal cord barrier (BSCB) disruption following spinal cord injury (SCI) significantly compromises functional neuronal recovery. Autophagy is a potential therapeutic target when seeking to protect the BSCB. We explored the effects of lithium chloride (LiCl) on BSCB permeability and autophagy-induced SCI both in a rat model of SCI and in endothelial cells subjected to oxygen–glucose deprivation. We evaluated BSCB status using the Evans Blue dye extravasation test and measurement of tight junction (TJ) protein levels; we also assessed functional locomotor recovery. We detected autophagy-associated proteins in vivo and in vitro using both Western blotting and immunofluorescence staining. We found that, in a rat model of SCI, LiCl attenuated the elevation in BSCB permeability, improved locomotor recovery, and inhibited the degradation of TJ proteins including occludin and claudin-5. LiCl significantly induced the extent of autophagic flux after SCI by increasing LC3-II and ATG-5 levels, and abolishing p62 accumulation. In addition, a combination of LiCl and the autophagy inhibitor chloroquine not only partially eliminated the BSCB-protective effect of LiCl, but also exacerbated TJ protein degradation both in vivo and in vitro. Together, these findings suggest that LiCl treatment alleviates BSCB disruption and promotes locomotor recovery after SCI, partly by stimulating autophagic flux.  相似文献   

17.
Fang KM  Chen JK  Hung SC  Chen MC  Wu YT  Wu TJ  Lin HI  Chen CH  Cheng H  Yang CS  Tzeng SF 《PloS one》2010,5(12):e15299
The aim of this study is to understand if human mesenchymal stem cells (hMSCs) and neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) have synergistic protective effect that promotes functional recovery in rats with severe spinal cord injury (SCI). To evaluate the effect of delayed combinatorial therapy of PACAP and hMSCs on spinal cord tissue repair, we used the immortalized hMSCs that retain their potential of neuronal differentiation under the stimulation of neurogenic factors and possess the properties for the production of several growth factors beneficial for neural cell survival. The results indicated that delayed treatment with PACAP and hMSCs at day 7 post SCI increased the remaining neuronal fibers in the injured spinal cord, leading to better locomotor functional recovery in SCI rats when compared to treatment only with PACAP or hMSCs. Western blotting also showed that the levels of antioxidant enzymes, Mn-superoxide dismutase (MnSOD) and peroxiredoxin-1/6 (Prx-1 and Prx-6), were increased at the lesion center 1 week after the delayed treatment with the combinatorial therapy when compared to that observed in the vehicle-treated control. Furthermore, in vitro studies showed that co-culture with hMSCs in the presence of PACAP not only increased a subpopulation of microglia expressing galectin-3, but also enhanced the ability of astrocytes to uptake extracellular glutamate. In summary, our in vivo and in vitro studies reveal that delayed transplantation of hMSCs combined with PACAP provides trophic molecules to promote neuronal cell survival, which also foster beneficial microenvironment for endogenous glia to increase their neuroprotective effect on the repair of injured spinal cord tissue.  相似文献   

18.
Background aimsSeveral studies have reported functional improvement after transplantation of in vivo-derived neural progenitor cells (NPC) into injured spinal cord. However, the potential of human embryonic stem cell-derived NPC (hESC-NPC) as a tool for cell replacement of spinal cord injury (SCI) should be considered.MethodsWe report on the generation of NPC as neural-like tubes in adherent and feeder-free hESC using a defined media supplemented with growth factors, and their transplantation in collagen scaffolds in adult rats subjected to midline lateral hemisection SCI.ResultshESC-NPC were highly expressed molecular features of NPC such as Nestin, Sox1 and Pax6. Furthermore, these cells exhibited the multipotential characteristic of differentiating into neurons and glials in vitro. Implantation of xenografted hESC-NPC into the spinal cord with collagen scaffold improved the recovery of hindlimb locomotor function and sensory responses in an adult rat model of SCI. Analysis of transplanted cells showed migration toward the spinal cord and both neural and glial differentiation in vivo.ConclusionsThese findings show that transplantation of hESC-NPC in collagen scaffolds into an injured spinal cord may provide a new approach to SCI.  相似文献   

19.
These studies examined Fos protein expression in spinal cord neurons synaptically activated by stimulation of bladder afferent pathways after spinal cord injury (SCI). In urethan-anesthetized Wistar rats after SCI for 6 wk, intravesical saline distension significantly (P 相似文献   

20.

Background

Spinal cord injury (SCI) is a widely spread pathology with currently no effective treatment for any symptom. Regenerative medicine through cell transplantation is a very attractive strategy and may be used in different non-exclusive ways to promote functional recovery. We investigated functional and structural outcomes after grafting human embryonic neural progenitors (hENPs) in spinal cord-lesioned rats.

Methods and Principal Findings

With the objective of translation to clinics we have chosen a paradigm of delayed grafting, i.e., one week after lesion, in a severe model of spinal cord compression in adult rats. hENPs were either naïve or engineered to express Neurogenin 2 (Ngn2). Moreover, we have compared integrating and non-integrating lentiviral vectors, since the latter present reduced risks of insertional mutagenesis. We show that transplantation of hENPs transduced to express Ngn2 fully restore weight support and improve functional motor recovery after severe spinal cord compression at thoracic level. This was correlated with partial restoration of serotonin innervations at lumbar level, and translocation of 5HT1A receptors to the plasma membrane of motoneurons. Since hENPs were not detectable 4 weeks after grafting, transitory expression of Ngn2 appears sufficient to achieve motor recovery and to permit axonal regeneration. Importantly, we also demonstrate that transplantation of naïve hENPs is detrimental to functional recovery.

Conclusions and Significance

Transplantation and short-term survival of Ngn2-expressing hENPs restore weight support after SCI and partially restore serotonin fibers density and 5HT1A receptor pattern caudal to the lesion. Moreover, grafting of naïve-hENPs was found to worsen the outcome versus injured only animals, thus pointing to the possible detrimental effect of stem cell-based therapy per se in SCI. This is of major importance given the increasing number of clinical trials involving cell grafting developed for SCI patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号