首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Response of Aphanizomenon ovalisporum to certain environmental parameters was studied to gain a better understanding of the conditions which may have stimulated its autumnal bloom in Lake Kinneret. Optimal temperature for A. ovalisporum growth was 26–30?°C, resulting in growth rates of 0.2–0.3?day?1, similar to those observed in the lake. Maximal rate of CO2 fixation (assimilation numbers of 6–8?μg?C?μg?1?Chl?h?1) was obtained at low irradiances (I k of 40–100?μmol?photons?m?2?s?1), 200?μM Pi and low N:Pi ratios. Growth was strongly affected by phosphorus availability, reaching a maximum at Pi concentrations above 40?μM. The high demand for phosphorus was indicated by an increase in alkaline phosphatase activity. The relative abundance of Pi in the cells increased by 4-fold in Pi-rich compared with Pi-limited cultures. Uptake of Pi was faster in Pi-depleted compared with Pi-sufficient cells. Maximal photosynthetic rates and K1/2(HCO3 ?) were 140–220?μmol?O2?mg?1?Chl?h?1 and 10–24?μM, respectively. At pH 7.0 the K 1/2(CO2) was 2.2 and fell to 0.04?μM at pH 9.0. These data indicated that A. ovalisporum is a HCO3 ? user, and can explain its high photosynthetic rates during the bloom, under high pH and low dissolved CO2 conditions. Na+ concentrations of about 5?mM were essential for A. ovalisporum growth at high pH approaching values in the lake.  相似文献   

2.
Abstract: Electron probe x-ray microanalysis (EPMA) was used to measure water content (percent water) and dry weight elemental concentrations (in millimoles per kilogram) of Na, K, Cl, and Ca in axoplasm and mitochondria of rat optic and tibial nerve myelinated axons. Myelin and cytoplasm of glial cells were also analyzed. Each anatomical compartment exhibited characteristic water contents and distributions of dry weight elements, which were used to calculate respective ionized concentrations. Free axoplasmic [K+] ranged from ≈155 mM in large PNS and CNS axons to ≈120–130 mM in smaller fibers. Free [Na+] was ≈15–17 mM in larger fibers compared with 20–25 mM in smaller axons, whereas free [Cl?] was found to be 30–55 mM in all axons. Because intracellular Ca is largely bound, ionized concentrations were not estimated. However, calculations of total (free plus bound) aqueous concentrations of this element showed that axoplasm of large CNS and PNS axons contained ≈0.7 mM Ca, whereas small fibers contained 0.1–0.2 mM. Calculated ionic equilibrium potentials were as follows (in mV): in large CNS and PNS axons, EK = ?105, ENa = 60, and ECl = ?28; in Schwann cells, EK = ?107, ENa = 33, and ECl = ?33; and in CNS glia, EK = ?99, ENa = 36, and ECl = ?44. Calculated resting membrane potentials were as follows (in mV, including the contribution of the Na+,K+-ATPase): large axons, about ?80; small axons, about ?72 to ?78; and CNS glia, ?91. ECl is more positive than resting membrane potential in PNS and CNS axons and glia, indicating active accumulation. Direct EPMA measurement of elemental concentrations and subsequent calculation of ionized fractions in axons and glia offer fundamental neurophysiological information that has been previously unattainable.  相似文献   

3.
Summary Hard- and softwater acclimated adult rainbow trout were statically exposed to copper (12.5, 25, 50, 100, and 200 ppb) for two, 12 h periods at neutral and pH 5.0. Unidirectional Na+, and Cl, and net Na+, Cl, K+, and ammonia fluxes were monitored as a measure of branchial ionoregulatory disturbance. Copper concentrations as low as 12.5 ppb led to measurable ion losses. Net Na+, Cl, and K+ losses were concentration dependent and unaffected by prior acclimation to either hard- or softwater at both neutral pH and pH 5. From 12.5 to 50 ppb net NaCl losses arose primarily as a result of the inhibition ofJ in, and at higher concentrations,J out was also stimulated. In softwater,J in was more resistant to inhibition than in hardwater. However, in hardwater,J out recovered to normal levels during the second 12 h period, but no such recovery was found in softwater. Plasma NaCl was inversely correlated with [copper], while plasma glucose and ammonia increased with [copper]. At pH 5.0 and [copper] from 12.5 to 50 ppb, H+ contributed significantly to the total ion loss, while at 100 and 200 ppb, ion losses were no greater at pH 5.0 than at neutral pH. In no case were the effects of copper and H+ strictly additive.  相似文献   

4.
Salt‐affected farmlands are increasingly burdened by chlorides, carbonates, and sulfates of sodium, calcium, and magnesium. Intriguingly, the underlying physiological processes are studied almost always under NaCl stress. Two faba bean cultivars were subjected to low‐ and high‐salt treatments of NaCl, Na2SO4, and KCl. Assimilation rate and leaf water vapor conductance were reduced to approximately 25–30% without biomass reduction after 7 days salt stress, but this did not cause severe carbon shortage. The equimolar treatments of Na+, K+, and Cl? showed comparable accumulation patterns in leaves and roots, except for SO42? which did not accumulate. To gain a detailed understanding of the effects caused by the tested ion combinations, we performed nontargeted gas chromatography–mass spectrometry‐based metabolite profiling. Metabolic responses to various salts were in part highly linearly correlated, but only a few metabolite responses were common to all salts and in both cultivars. At high salt concentrations, only myo‐inositol, allantoin, and glycerophosphoglycerol were highly significantly increased in roots under all tested conditions. We discovered several metabolic responses that were preferentially associated with the presence of Na+, K+, or Cl?. For example, increases of leaf proline and decreases of leaf fumaric acid and malic acid were apparently associated with Cl? accumulation.  相似文献   

5.
Four selected NaCl-tolerant cell lines of Sour orange (Citrus aurantium) were compared with the nonselected cell line in their growth and internal ion content of Na+, K+, and Cl when exposed to increasing NaCl concentrations. No difference was found among the various NaCl-tolerant cell lines in Na+ and Cl uptake, and all these cell lines took up similar or even larger amounts of Na+ and Cl than the NaCl-sensitive cell line. Exposure of cells of NaCl-sensitive and NaCl-tolerant lines to equal external concentrations of NaCl, resulted in a greater loss of K+ from the NaCl-sensitive cell line. This observation leads to the conclusion that growth and ability to retain high levels of internal K+ are correlated. Exposure of the NaCl-tolerant cell lines to salts other than NaCl resulted in even greater tolerance to Na2SO4, but rather poor tolerance to K+ introduced as either K2SO4 or KCl; the latter has a stronger inhibitory effect. The NaCl-sensitive cell line proved to be more sensitive to replacement of Na+ by K+. Analyses of internal Na+, K+, and Cl concentrations failed to identify any particular internal ion concentration which could serve as a reliable marker for salt tolerance.  相似文献   

6.
Growth yield of the halotolerant bacterium A505 was increased by the supplement of Na+, K+, or Rb+ into the culture media with pH 7.5, and inhibited by Li+ or Cs+. In the presence of less than 0.1 M NaCl or KCl alkaline growth media, pH 9.2 to 9.7, afforded optimal growth of this strain. Intracellular ion content of this microbe changed reflecting on the Na+ or K+ concentration in the media, although it tended to accumulate K+ and extrude Na+ in the media without NaCl supplemented. A 1.2 to 1.4-fold stimulation of in vitro NADH oxidase activity was obtained by supplement of salts, except for LiCl. The rate of NADH oxidation in the absence of salts correlated with the pH and showed clear maxima at pH about 8, irrespective of growth conditions. In the presence of 0.5 M NaCl or KCl, on the other hand, pH dependence was less significant and showed only a flat maximum at pH around 7. Effects of anions on NADH oxidase were realized following the lyotropic series: SO 4 2- >F->CH3COO->Cl->I->SCN-, aside from NO 3 - , which exhibited the largest stimulation on enzyme activity in all the anions examined.Abbreviations HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - HQNO 2-heptyl-4-hydroxyquinoline-N-oxide - MES 4-morpholineethanesulfonic acid - Tris tris(hydroxy-methyl)methylamine  相似文献   

7.
The activity of a partially purified bovine heart Na+,K+-ATPase is inhibited by DL- and L- palmitylcarnitine (I50=44–48μM). Palmitylcarnitine with a I50 of 25μM also markedly inhibits K+-phosphatase activity. Palmityl-CoA decreases Na+,K+-ATPase activity, but to a lesser extent (I50=80μM). Both palmitic acid and hexanoic acid produce 10 to 15% inhibition of activity at concentrations of 70μM and 3–5mM, respectively. These free fatty acids protect the enzyme against inhibition by 40μM palmitylcarnitine. However, at 50μM palmitylcarnitine, the protective effect by hexanoic acid is no longer apparent. Addition of 40μM palmitylcarnitine to the Na+,K+-ATPase in the presence of varying concentrations of palmityl-CoA produces an additive inhibition of enzyme activity, suggesting two different sites on the enzyme susceptible to inhibition by the two ester forms of the fatty acid.  相似文献   

8.
Plants of two wheat (Triticum aestivum L.) cultivars differing in salt tolerance were grown in sand with nutrient solutions. 35-d-old plants were subjected to 5 levels of salinity created by adding NaCl, CaCl2 and Na2SO4. Growth reduction caused by salinity was accompanied by increased Na+ and Cl- concentrations, Na+/K+ ratio, and decreased concentration of K+. The salt tolerant cv. Kharchia 65 showed better ionic regulation. Salinity up to 15.7 dS m-1 induced increased uptake of Na+ and Cl- but higher levels of salinity were not accompanied by further increase in uptake of these ions. Observed increases in Na+ and Cl- concentrations at higher salinities seemed to be the consequence of reduction in growth. Uptake of K+ was decreased; more in salt sensitive cultivar. This was also accompanied by differences in its distribution.  相似文献   

9.
This study assessed the capacity of Jatropha curcas to physiologically adjust to salinity. Seedlings were exposed to increasing NaCl concentrations (25, 50, 75 and 100 mm ) for 15 days. Treatment without NaCl was adopted as control. Shoot dry weight was strongly reduced by NaCl, reaching values of 35% to 65% with 25 to 100 mm NaCl. The shoot/root ratio was only affected with 100 mm NaCl. Relative water content (RWC) increased only with 100 mm NaCl, while electrolyte leakage (EL) was much enhanced with 50 mm NaCl. The Na+ transport rate to the shoot was more affected with 50 and 100 mm NaCl. In parallel, Cl? transport rate increased with 75 and 100 mm NaCl, while K+ transport rate fell from 50 mm to 100 mm NaCl. In roots, Na+ and Cl? transport rates fell slightly only in 50 mm (to Na+) and 50 and 100 mm (to Cl?) NaCl, while K+ transport rate fell significantly with increasing NaCl. In general, our data demonstrate that J. curcas seedlings present changes in key physiological processes that allow this species to adjust to salinity. These responses are related to accumulation of Na+ and Cl? in leaves and roots, K+/Na+ homeostasis, transport of K+ and selectivity (K–Na) in roots, and accumulation of organic solutes contributing to osmotic adjustment of the species.  相似文献   

10.
Solution culture-grown, six-month old jack pine (Pinus banksiana Lamb.) seedlings were treated with naphthenic acids (NAs) (150 mg l–1) and sodium chloride (45 mM NaCl) which were applied together or separately to roots for four weeks. NAs aggravated the effects of NaCl in inhibiting stomatal conductance (g s) and root hydraulic conductance (Kr). Naphthenic acids did not affect needle and root electrolyte leakage in the absence of NaCl. However, in plants treated with NaCl, NAs further increased electrolyte leakage from needles and NaCl induced electrolyte leakage from needles, but not from roots. Both NaCl and NAs treatments resulted in a reduction in root respiration. The measured Na+ and Cl concentrations in the shoots for combined NaCl + NAs treatments were lower than in NaCl-only treatments. These decreases were correlated with a reduction in water conductance. The accumulation of Na+ and Cl in shoots was accompanied by an increased in needle electrolyte leakage. However, greater concentrations of Cl compared with Na+ were present in shoots and in the xylem sap suggesting that roots had relatively lower capacity for Cl storage compared with Na+.  相似文献   

11.
All of the common cytochalasins activate superoxide anion release and exocytosis of β-N-acetylglucosaminidase and lysozyme from guinea-pig polymorphonuclear leukocytes (neutrophils) incubated in a buffered sucrose medium. Half-maximal activation of both processes is produced by approx. 2 μM cytochalasin A, C >μM cytochalasin B ? 4–5 μM cytochalasin D, E. While maximal rates of O2? release and extents of exocytosis require extracellular calcium (1–2 mM), replacing sucrose with monovalent cation chlorides is inhibitory to neutrophil activation by cytochalasins. Na+, K+ or choline inhibited either cytochalasin B- or E-stimulated O2? production with IC50 values of 5–10 mM and inhibition occurs whether Cl?, NO3? or SCN? is the anion added with Na+ or K+. Release of β-N-acetylglucosaminidase in control or cytochalasin B-stimulated cells is inhibited by NaCl (IC50 ≈ 10 mM), while cytochalasin E-stimulated exocytosis is reduced less and K+ or choline chloride are ineffective in inhibiting either cytochalasin B- or E-stimulated exocytosis. Release of β-glucuronidase, myeloperoxidase or acid phosphatase from neutrophils incubated in buffered sucrose is not stimulated by cytochalasin B. Stimulation of either O2? or β-N-acetylglucosaminidase release by low concentrations of cytochalasin A is followed by inhibition of each at higher concentrations. It appears that all cytochalasins can activate both NAD(P)H oxidase and selective degranulation of neutrophils incubated in salt-restricted media and that differential inhibition of these two processes by monovalent cations and/or anions is produced at some step(s) subsequent to cytochalasin interaction with the cell.  相似文献   

12.
Prosopis farcta was grown on hydroculture with additions of 0.5, 10, 50, and 100 mM NaCl and without salt treatment. In plants from a 0.5 mM NaCl treatment, Cl? was taken up into stems and leaves, but Na+ was withheld from the shoot. At 10 mM NaCl, shoot K+ concentration was below that of the control; Na+ and Cl? were taken up to stems and cotyledons in nearly equimolar amounts. However, in the leaves, Na+ concentrations were only half of those of Cl?. With increasing salt stress, Na+ and Cl? were transported to the shoot, but kept at relatively low levels in the roots. Na+/ K+ ratios in roots did not increase proportionally to those in the solution. At an external Na+/K+ of > 5 and a root Na+/K+ of >1 (10 mM NaCl treatment), K+ selectivity was induced which rose exponentially with increasing salt stress; and cell wall protuberances were discovered in the hypodermis at the zone of side root formation. These transfer cells were found neither in roots from the 0.5 mM NaCl treatment nor in the controls. Their possible role in the Na+/K+ selectivity of the roots of Prosopis farcta is discussed.  相似文献   

13.
Previous studies indicate that the roots of nonhalophytes showed negative halotropism to salt stress to avoid salt damage. However, halotropism of euhalophytes and their possible reasons are little known. Limonium bicolor, a typical recretohalophyte with multicellular salt glands, was used to study halotropism compared with Arabidopsis thaliana under NaCl, KCl and Na2SO4 stress. The elongation of the roots in L. bicolor was significantly promoted by the appropriate concentrations of NaCl, KCl and Na2SO4, but those of A. thaliana was markedly inhibited. However, isosmotic mannitol with 200?mM NaCl did not affect the root growth of both L. bicolor and A. thaliana. The root activity of both L. bicolor and A. thaliana was enhanced by salts. Compared with K+, Cl, and SO42?, Na+ played a critical role in halotropism of L. bicolor. Furthermore, the gravitropic setpoint angle of L. bicolor increased under NaCl, KCl and Na2SO4 treatments compared with controls, and the phenomenon was most apparent under NaCl treatments. The endogenous IAA content of the NaCl-treated L. bicolor seedlings was significantly higher than that of the controls. These results suggest that the recretohalophyte L. bicolor has positive halotropism and Na+ plays a pivotal role in L. bicolor’s positive root halotropism by regulating IAA.  相似文献   

14.
ABSTRACT The relative capacity of Na+, K+ and Cl- to stimulate germination of spores of the microsporidian Nosema algerae, a pathogen of mosquitoes, was examined by ion substitution experiments. Sodium at 0.1 M was ineffective to produce the high percentage of germination that typically occurs with 0.1 M NaCl (the normal stimulation solution) if Cl- was substituted with the usually impermeant anions SO42-, HPO42-, or the organic acids oxalate, cacodylate, EGTA, MES and HEPES. However, substantial concentration- and pH-dependent germination was seen with Na2SO4 in the 0.2-0.8 M Na+ range. Similar results were obtained with solutions of K+ accompanied by impermeant anions. In contrast, the chloride salts of usually impermeant cations, like choline and triethanolamine, failed to germinate spores even at 0.8 M unless Na+ or K+ was independently added. The presence of 0.5 M choline chloride in the medium reduced the levels of Na2SO4 required to produce germination down to equivalence with those of Na+ in the normal stimulation solution. Monensin, a Na+ ionophore, facilitated the germination induced by a medium-level stimulus (0.04 M NaCl) in sonicated samples. These findings indicate that N. algerae spores germinate in response to the alkali metal cations, while CI- plays a passive role by diffusing to maintain internal electroneutrality during cation influx. A possible mechanism of cation action in spore germination is suggested on the basis of these results and observations on other systems of intracellular motility.  相似文献   

15.
The bioluminescent activity of intact Vibrio harveyicells loaded with different concentrations of NaCl and KCl at different pH values was studied. In the pH range of 6.5–8.5, the effect of Na+was significantly higher than that of K+at all concentrations studied. Maximum luminescent activity was observed in cells loaded with 0.68 M NaCl. When Na+was nonuniformly distributed on the plasma membrane, the cell luminescence kinetics was nonstationary in the 20-min range: during incubation, the luminescence intensity increased at pH 6.5 and decreased at pH 8.5. The activation and damping rate constants depended on the Na+gradient value. The maximum of luminescent activity shifted during incubation from pH 8.5 to 6.5–7.0. The luminescence kinetics in the systems with KCl was stationary; the maximum level of luminescence was observed in the pH range of 7.0–7.5. Under Na+-controlled conditions, the cell respiration and luminescence changed in synchronism. The protonophore CCP at a concentration of 20 M completely inhibited luminescence at pH 6.5 and was ineffective at pH 8.5.  相似文献   

16.
Active transport of -aminoisobutyric acid (AIB) in Vibrio costicola utilizes a system with affinity for glycine, alanine and, to some extent, methionine. AIB transport was more tolerant of high salt concentrations (3–4 M NaCl) in cells grown in the presence of 1.0 M NaCl than in those grown in the presence of 0.5 M NaCl. The former cells could also maintain much higher ATP contents than the latter in high salt concentrations.Transport kinetic studies performed with bacteria grown in 1.0 M NaCl revealed three effects of the Na+ ion: the first effect is to increase the apparent affinity (K t) of the transport system for AIB at Na+ concentrations <0.2 M, the second to increase the maximum velocity (V max) of transport (Na+ concentrations between 0.2 and 1.0 M), and the third to decrease the V max without affectig K t (Na+ concentrations >1.0 M). Cells grown in the presence of 0.5 M or 1.0 M NaCl had similar affinity for AIV. Thus, the differences in salt response of transport in these cells do not seem due to differences in AIB binding. Large, transport-inhibitory concentrations of NaCl resulted in efflux of AIB from cells preloaded in 0.5 M or 1.0 M NaCl, with most dramatic efflux occurring from the cells whose AIB transport was more salt-sensitive. Our results suggest that the degree to which high salt concentrations affect the transmembrane electrochemical energy source used for transport and ATP synthesis is an important determinant of salt tolerance.Abbreviations AIB -aminoisobutyric acid - pmf proton motive force  相似文献   

17.
This paper concerns tolerance to 50–200 mM NaCl of submerged rice (Oryza sativa cv. Amaroo) during germination and the first 138–186 h of development in aerated solution. Rice was able to germinate and the seedlings even tolerated exposure to 200 mM NaCl, albeit with severe growth restrictions. After return to 0.3 mM NaCl, growth increased, indicating that even at 200 mM NaCl there was no irreparable injury. Osmotic adjustment was achieved by using Na+ and Cl as the major osmotica. At 200 mM NaCl commenced at sowing, the shoot Na+ and Cl concentrations between 50–110 h were about 210 and 260 mM, respectively, i.e. above the external concentration. Thus, there was a high tissue tolerance to NaCl. The internal concentrations declined subsequently, concurrent with a decline in growth. At 50–200 mM NaCl, the contributions from ions to πsap were 81–92% in roots and 62–74% in shoots. The assessed turgor pressures at 200 mM NaCl were 0.33 MPa in shoots and 0.15 MPa in roots, compared to 0.62 and 0.43 MPa at 0.3 mM NaCl. In the General Discussion section, we compare the different responses of submerged seedlings to the responses of transpiring rice plants, reported in the literature, and suggest that the submerged system is useful to evaluate effects of NaCl on turgor pressure and particularly to establish whether there are specific effects of Na+ and Cl in tissues.  相似文献   

18.
White goosefoot plants (Chenopodium album L. of the family Chenopodiaceae) grown at various NaCl concentrations (3–350 mM) in the nutrient solution were used to study the cell ultrastructure as well as the qualitative and quantitative composition of fatty acids in the lipids of vegetative organs. In addition, the biomass of Ch. album vegetative organs, the water content, and the concentrations of K+, Na+, and Cl were determined. The growth rates of plants raised at NaCl concentrations up to 200–250 mM were the same as for the control plants grown at 3 mM NaCl; the growth parameters remained rather high even at NaCl concentrations of 300–350 mM. The water content in Ch. album organs remained high at all NaCl concentrations tested. Analysis of the ionic status of Ch. album revealed a comparatively high K+ content in plant organs. At low NaCl concentrations in the nutrient solution, K+ ions were the dominant contributors to the osmolarity (the total concentration of osmotically active substances) and, consequently, to the lowered cell water potential in leaves and roots. As the concentration of NaCl was increased, the plant organs accumulated larger amounts of Na+ and Cl, and the contribution of these ion species to osmolarity became increasingly noticeable. At 300–350 mM NaCl the contribution of Na+ and Cl to osmolarity was comparable to that of K+. An electron microscopy study of Ch. album cells revealed that, apart from the usual response to salinity manifested in typical ultrastructural changes of chloroplasts, mitochondria, and the cytosol, the salinity response comprised the enhanced formation of endocytic structures and exosomes and stimulation of autophagy. It is supposed that activation of these processes is related to the removal from the cytoplasm of toxic substances and the cell structures impaired by salt stress conditions. The qualitative and quantitative composition of fatty acids in the lipids of Ch. album organs was hardly affected by NaCl level. These findings are consistent with the high salt tolerance of Ch. album, manifested specifically in retention of growth functions under wide-range variations of NaCl concentration in the nutrient solution and in maintenance of K+, Na+, and Cl content in organs at a constant level characteristic of untreated plants.  相似文献   

19.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

20.
The moderate halophile Vibrio costicola, growing on a chemically-defined medium, transformed choline into glycine betaine (betaine) by the membrane-bound enzyme choline dehydrogenase and the cytoplasmic enzyme betainal (betaine aldehyde) dehydrogenase. Choline dehydrogenase was strongly induced and betainal dehydrogenase less strongly induced by choline. The formation of these enzymes was also regulated by the NaCl concentration of the growth medium, increasing with increasing NaCl concentrations. Intracellular betaine concentrations also increased with increasing choline and NaCl concentrations in the medium. This increase was almost completely blocked by chloramphenicol, which does not block the increase in salt-tolerant active transport on transfer from a low to a high salt concentration.Choline dehydrogenase was inhibited by chloride salts of Na+, K+, and NH inf4 su+ , the inhibition being due to the Cl- ions. Betainal dehydrogenase was stimulated by 0.5 M salts and could function in up to 2.0 M salts.Cells grew as well in the presence as in the absence of choline in 0.5 M and 1.0 M NaCl, but formed no intracellular betaine. Choline stimulated growth in 2.0 M NaCl and was essential for growth in 3.0 M NaCl. Thus, while betaine is important for some of the adaptations to high salt concentration by V. costicola, it by no means accounts for all of them.Abbreviations CDMM chemically-defined minimal medium - PPT proteose-peptone tryptone medium - SDS sodium dodecyl sulfate Deceased, 1987  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号