首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
2.
AIMS: To profile the quorum-sensing (QS) signals in Yersinia ruckeri and to examine the possible regulatory link between QS signals and a typical QS-regulated virulence phenotype, a protease. METHODS AND RESULTS: Liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) showed that Y. ruckeri produced at least eight different acylated homoserine lactones (AHLs) with N-(3-oxooctanoyl)-L-homoserine lactone (3-oxo-C8-HSL) being the dominant molecule. Also, some uncommon AHL, N-(3-oxoheptanoyl)-L-homoserine lactone (3-oxo-C7-HSL) and N-(3-oxononanoyl)-L-homoserine lactone (3-oxo-C9-HSL), were produced. 3-oxo-C8-HSL was detected in organs from fish infected with Y. ruckeri. Protease production was significantly lower at temperatures above 23 degrees C than below although growth was faster at the higher temperatures. Neither addition of sterile filtered high-density Y. ruckeri culture supernatant nor the addition of pure exogenous AHLs induced protease production. Furthermore, three QS inhibitors (QSIs), sulfur-containing AHL analogues, did not inhibit protease production in Y. ruckeri. CONCLUSIONS: Exogenous AHL or sulfur-containing AHL analogues did not influence the protease production indicating that protease production may not be QS regulated in Y. ruckeri. SIGNIFICANCE AND IMPACT OF THE STUDY: The array of different AHLs produced indicates that the QS system of Y. ruckeri is complex and could involve several regulatory systems. In this case, neither AHLs nor QSI would be likely to directly affect a QS-regulated phenotype.  相似文献   

3.
To restore species‐rich terrestrial ecosystems on ex‐agricultural land, establishing nutrient limitation for dominant plant growth is essential because in nutrient‐rich soils, fast‐growing species often exclude target species. However, N‐limitation is easier to achieve than P‐limitation (because of a difference in biogeochemical behavior), biodiversity is generally highest under P‐limitation. Commonly used restoration methods to achieve low soil P‐concentrations are either very expensive or take a very long time. A promising restoration technique is P‐mining, an adjusted agricultural technique that aims at depleting soil‐P. High biomass production and hence high P‐removal with biomass are obtained by fertilizing with nutrients other than P. A pot experiment was set up to study P‐mining with Lolium perenne L. on sandy soils with varying P‐concentrations: from an intensively used agricultural soil to a soil near the soil P‐target for species‐rich Nardus grassland. All pots received N‐ and K‐fertilization. The effects of biostimulants on P‐uptake were also assessed by the addition of arbuscular mycorrhiza (Glomus spp.), humic substances or phosphate‐solubilizing bacteria (Bacillus sp. and Pseudomonas spp.). In our P‐rich soil (111 µg POlsen/g), P‐removal rate was high but bioavailable soil‐P did not decrease. At lower soil P‐concentrations (64 and 36 µg POlsen/g), bioavailable soil‐P had decreased but the P‐removal rate had by then dropped 60% despite N‐ and K‐fertilization and despite that the target (<10 µg POlsen/g) was still far away. None of the biostimulants altered this trajectory. Therefore, restoration will still take decades when starting with ex‐agricultural soils unless P‐fertilization history was much lower than average.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号