首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compared the exercise catecholamine and metabolic responses to a caffeine challenge in trained subjects before and after a 6-wk period of increased caffeine ingestion. Trained subjects (n = 6) were challenged with 500 mg of caffeine followed by prolonged exercise before and after 6 wk of increased caffeine ingestion (500 mg ingested before each daily run). A control group (n = 6) of trained subjects followed the same protocol except for caffeine ingestion. Acute caffeine ingestion resulted in increased plasma epinephrine and decreased respiratory exchange ratio (RER) during exercise. After 6 wk of caffeine supplementation, the epinephrine response to exercise or caffeine plus exercise was decreased, although the latter still resulted in a lower RER value compared with exercise without caffeine ingestion. Activity of key metabolic enzymes (hexokinase, citrate synthase, phosphorylase, and 3-hydroxyacyl-coenzyme A dehydrogenase) from biopsies of the gastrocnemius showed no response to 6 wk of this increased adrenergic receptor stimulation and, on the basis of the lower RER, enhanced fat metabolism. This study suggests that caffeine ingestion by trained subjects causes increases in plasma epinephrine and reduces the RER during exercise. However, habitual stimulation results in a general dampening of the epinephrine response to caffeine or exercise. There was no indication that increased adrenergic stimulation and fat oxidation caused any adaptation in the activity of metabolic enzymes.  相似文献   

2.
In this study, the inhibiting action of theanine on the excitation by caffeine at the concentration regularly associated with drinking tea was investigated using electroencephalography (EEG) in rats. First, the stimulatory action by caffeine i.v. administration at a level higher than 5 micromol/kg (0.970 mg/kg) b.w. was shown by means of brain wave analysis, and this level was suggested as the minimum dose of caffeine as a stimulant. Next, the stimulatory effects of caffeine were inhibited by an i.v. administration of theanine at a level higher than 5 micromol/kg (0.781 mg/kg) b.w., and the results suggested that theanine has an antagonistic effect on caffeine's stimulatory action at an almost equivalent molar concentration. On the other hand, the excitatory effects were shown in the rat i.v. administered 1 and 2 micromol/kg (0.174 and 0.348 mg/kg) b.w. of theanine alone. These results suggested two effects of theanine, depending on its concentration.  相似文献   

3.
Cold stress and caffeine ingestion are each reported to increase plasma catecholamines, free fatty acid (FFA) concentrations, and energy metabolism. This study examined the possible interaction of these two metabolic challenges in four double-blind counterbalanced trials. Young adult men (n = 6) ingested caffeine (5 mg/kg) or placebo (dextrose, 5 mg/kg) and rested for 2 h in 28 or 5 degrees C air. Cold stress alone elevated (P less than 0.05) plasma norepinephrine, metabolism (O2 consumption, VO2), and respiratory exchange ratio (RER). Caffeine alone increased (P less than 0.05) plasma epinephrine and FFA but not RER. When the two challenges were combined (caffeine plus 5 degrees C for 2 h) norepinephrine and epinephrine were increased (P less than 0.05) as was FFA. However, VO2, RER, and skin and rectal temperatures were not different from the responses observed at 5 degrees C after placebo ingestion. The data suggest that caffeine selectively increases plasma epinephrine, whereas cold air increases norepinephrine. During the cold exposure, increasing epinephrine and FFA above normal levels did not appear to influence the metabolic or thermal responses to the cold stress. In fact the increase in RER suggested a greater carbohydrate oxidation.  相似文献   

4.
5.
BackgroundCyclophosphamide (CTX), which has been used to treat common female cancers for several years, often causes ovarian damage, early menopause and infertility. However, strategies for the effective prevention and treatment of CTX-induced ovarian damage are still lacking. Epigallocatechin gallate (EGCG) and theaflavins (TFs), key molecules derived from green tea or black tea, have been shown to exert preventive effects on many ageing-related diseases.PurposeWe aimed to explore the potential preventive and protective effects of EGCG and TFs on CTX-induced ovarian damage and compare the two compounds.Study DesignSix-week-old female mice were administered a low or high dose of EGCG or TFs. The low dose was equivalent to the average daily amount of tea consumed by a drinker.MethodsWe determined the oestrous cycle and serum hormone levels to evaluate ovarian endocrine function, and we performed mating tests for reproductivity. We also assessed the follicle count and AMH level to evaluate ovarian reserve, and we performed Masson's trichrome and Sirius red staining to evaluate ovarian fibrosis. We conducted γ-H2AX and TUNEL analyses to evaluate DNA damage, and we also measured the relevant indicators of oxidative stress and follicular activation, including NRF2, HO-1, SOD2, AKT, mTOR and RPS6.ResultsEGCG and TFs treatment independently improved the ovarian endocrine function and reproductivity of mice that were administered CTX. EGCG and TFs also increased the ovarian reserve of these animals. Furthermore, EGCG and TFs alleviated oxidation-induced damage to ovarian DNA in mice by activating the NRF2/HO-1 and SOD2 pathways and reducing the apoptosis of growing follicles. At the same time, EGCG and TFs reduced the overactivation of primordial follicles by inhibiting the AKT/mTOR/RPS6 pathway.ConclusionThe present study showed that EGCG and TFs independently improved ovarian function in mice with CTX-induced ovarian damage, thereby providing useful information for designing a potential clinical strategy that will protect against chemotherapy-induced ovarian damage.  相似文献   

6.
7.
BackgroundThe consumption of green tea catechins (GTCs) suppresses age-related cognitive dysfunction in mice. GTCs are composed of several catechins, of which epigallocatechin gallate (EGCG) is the most abundant, followed by epigallocatechin (EGC). Orally ingested EGCG is hydrolyzed by intestinal biota to EGC and gallic acid (GA). To understand the mechanism of action of GTCs on the brain, their permeability of the blood brain barrier (BBB) as well as their effects on cognitive function in mice and on nerve cell proliferation in vitro were examined.MethodsThe BBB permeability of EGCG, EGC and GA was examined using a BBB model kit. SAMP10, a mouse model of brain senescence, was used to test cognitive function in vivo. Human neuroblastoma SH-SY5Y cells were used to test nerve cell proliferation and differentiation.ResultsThe in vitro BBB permeability (%, in 30 min) of EGCG, EGC and GA was 2.8±0.1, 3.4±0.3 and 6.5±0.6, respectively. The permeability of EGCG into the BBB indicates that EGCG reached the brain parenchyma even at a very low concentration. The learning ability of SAMP10 mice that ingested EGCG (20 mg/kg) was significantly higher than of mice that ingested EGC or GA. However, combined ingestion of EGC and GA showed a significant improvement comparable to EGCG. SH-SY5Y cell growth was significantly enhanced by 0.05 µM EGCG, but this effect was reduced at higher concentrations. The effect of EGC and GA was lower than that of EGCG at 0.05 µM. Co-administration of EGC and GA increased neurite length more than EGC or GA alone.ConclusionCognitive dysfunction in mice is suppressed after ingesting GTCs when a low concentration of EGCG is incorporated into the brain parenchyma via the BBB. Nerve cell proliferation/differentiation was enhanced by a low concentration of EGCG. Furthermore, the additive effect of EGC and GA suggests that EGCG sustains a preventive effect after the hydrolysis to EGC and GA.  相似文献   

8.
Tea (Camellia sinensis [L.] O. Kuntze.) is an important cash crop, which mainly uses tender shoots and young leaves for manufacturing. Due to the marketing characteristic that earlier made tea has higher price, the time of the breaking of winter dormancy buds in spring is extremely important in tea industry. Strigolactones are a group of carotenoids-derived metabolites which regulates bud outgrowth, shoot branching, tiller angle and environmental stress responses. The role of strigolactones in tea plant was briefly summarized in the current review, with an emphasis of the association of strigolactones on bud ecodormancy and shoot branching. The involvement of strigolactones on the biosynthesis of the tea characteristic metabolites flavonoids, caffeine and theanine were also discussed. Moreover, recent advances on the biosynthesis of strigolactones and its regulation by microRNAs and environmental stresses were also presented. This review provides a basis for future investigations underlying the mechanisms of strigolactones on bud winter dormancy and tea secondary metabolism.  相似文献   

9.
张群  陈鹏程  郑璞 《微生物学报》2018,58(7):1255-1265
【目的】通过琥珀酸放线杆菌Actinobacillus succinogenes CGMCC1593对酸胁迫的生理应答和转录组学分析,探究琥珀酸放线杆菌酸胁迫的机制。【方法】测定不同pH对细胞生长、H+-ATPase、细胞内pH的影响;测定酸胁迫前后细胞膜和谷氨酸脱氢酶的变化、谷氨酸对琥珀酸放线杆菌生长的影响;通过RNA-seq测序分析酸胁迫条件下的差异表达基因。【结果】随pH值的降低,细胞生长受抑制,H+-ATPase的活性下降。pH 4.7酸胁迫后,细胞膜受到严重损伤,谷氨酸对酸胁迫后的细胞有保护作用,GDH酶活响应酸胁迫后略有增加。酸胁迫后,39个基因差异表达较为显著,其中49%基因属于应激蛋白、转运蛋白,小部分基因与代谢相关。【结论】本文探究了琥珀酸放线杆菌酸胁迫下的生理及转录应答,研究结果可为寻找增强琥珀酸放线杆菌耐酸性策略提供参考。  相似文献   

10.

Background

L-theanine, an amino acid contained in green tea leaves, is known to block the binding of L-glutamic acid to glutamate receptors in the brain, and has been considered to cause anti-stress effects by inhibiting cortical neuron excitation. Both L-theanine and caffeine, which green tea contains, have been highlighted for their beneficial effects on cognition and mood.

Methods

In this study, we investigated the effects of orally administered L-theanine or caffeine on mental task performance and physiological activities under conditions of physical or psychological stress in humans. Fourteen participants each underwent three separate trials, in which they orally took either L-theanine + placebo, caffeine + placebo, or placebo only.

Results

The results after the mental tasks showed that L-theanine significantly inhibited the blood-pressure increases in a high-response group, which consisted of participants whose blood pressure increased more than average by a performance of a mental task after placebo intake. Caffeine tended to have a similar but smaller inhibition of the blood-pressure increases caused by the mental tasks. The result of the Profile of Mood States after the mental tasks also showed that L-theanine reduced the Tension-Anxiety scores as compared with placebo intake.

Conclusions

The findings above denote that L-theanine not only reduces anxiety but also attenuates the blood-pressure increase in high-stress-response adults.  相似文献   

11.
This study determined the physiological effects of caffeine on cross-country runners during submaximal exercise. Ten college-age subjects (5 women; 5 men) volunteered to participate in this study. After completing a VO2max test, each subject completed 2 30-minute runs at 70% VO2max on the treadmill, 1 after ingesting caffeine and the other after ingesting a placebo. A caffeine dosage of 7 mg.kg(-1) of body weight was administered. The same dosage of vitamin C was used as a placebo. The order of treatments was randomly assigned, and the trials followed a double-blind format. The physiological data were analyzed using a repeated measures analysis of variance (SPSS). Tidal volume (TV), alveolar ventilation (VA), and rating of perceived exertion (RPE) were significantly different (p < 0.05) between treatment and control groups. The results suggest that the ingestion of caffeine at 7 mg.kg(-1) of body weight prior to submaximal running might provide a modest ergogenic effect via improved respiratory efficiency and a psychological lift.  相似文献   

12.
Recently we found that caffeine ingestion did not enhance either thermal or fat metabolic responses to resting in cold air, despite an increase in plasma epinephrine and free fatty acids. Theophylline, another methylxanthine, has been shown to be effective during exercise but not at rest during cold stress. Therefore we hypothesized that caffeine ingestion before exercise in cold air would have a thermal-metabolic impact by increasing fat metabolism and increasing oxygen consumption. Young adult men (n = 6) who did not normally have caffeine in their diet performed four double-blind trials. Thirty minutes after ingesting placebo (dextrose, 5 mg/kg) or caffeine (5 mg/kg) they either exercised (60 W) or rested for 2 h in 5 degrees C air. Cold increased (P less than 0.05) plasma norepinephrine while both caffeine and exercise increased (P less than 0.05) epinephrine. Serum free fatty acids and glycerol were increased, but there were no differences between rest and exercise or placebo and caffeine. Caffeine had no influence on either respiratory exchange ratio or oxygen consumption either at rest or during exercise. The exercise trials did not significantly warm the body, and they resulted in higher plasma norepinephrine concentrations and lower mean skin temperatures for the first 30 min. The data suggest that skin temperature stimulates plasma norepinephrine while caffeine has little effect. In contrast, caffeine and exercise stimulate plasma epinephrine while cold has minimal effect. Within the limits of this study caffeine gave no thermal or metabolic advantage during a cold stress.  相似文献   

13.
《Free radical research》2013,47(8):966-974
Abstract

To evaluate the psychosocial effect on lifespan and cognitive function, this study investigated the effect of confrontational housing on mice because conflict among male mice is a psychosocial stress. In addition, it investigated the anti-stress effect of theanine (γ-glutamylethylamide), an amino acid in tea. Mice were housed under confrontation. That is, two male mice were separately housed in the same cage with a partition for establishing the territorial imperative in each mouse. Then, the partition was removed and mice were co-housed confrontationally (confront-housing) using a model mouse of accelerated-senescence (SAMP10) that exhibited cerebral atrophy and cognitive dysfunction with ageing. It was found that mice began to die earlier under confront-housing than group-housed control mice. Additionally, it was found that cerebral atrophy, learning impairment and behavioural depression were higher in mice under the stressed condition of confront-housing than age-matched mice under group-housing. Furthermore, the level of oxidative damage in cerebral DNA was higher in mice housed confrontationally than group-housed control mice. On the other hand, the consumption of purified theanine (20 μg/ml, 5–6 mg/kg) suppressed the shortened lifespan, cerebral atrophy, learning impairment, behavioural depression and oxidative damage in cerebral DNA. These results suggest that psychosocial stress accelerates age-related alterations such as oxidative damage, lifespan, cognitive dysfunction and behavioural depression. The intake of theanine might be a potential candidate for suppression of disadvantage under psychosocial stress.  相似文献   

14.
15.
A dipping method was developed to extract the catechins (EGCG) and alkaloids (caffeine) from green tea (Korea) and black tea (Sri Lanka). The effects of the solvent composition (water vs. ethanol), extraction time, temperatures, and solvent pH on the amount of catechins (EGCG) and alkaloids (caffeine) extracted from green and black tea were investigated. Reversedphase high-performance liquid chromatography (RP-HPLC) was used to analyze the catechins (EGCG) and alkaloids (caffeine) extracted. The content of EGCG and caffeine in green tea extracts was in the range of 2.04∼0.30 and 10.22∼0.85 mg/g, respectively. The amount of EGCG and caffeine in black tea extracts was in the range of 0.32∼0.24 and 5.26∼1.01 mg/g, respectively. The amount of caffeine extracted from green and black tea was greater than the amount of EGCG. Pure water is the best solvent for extracting EGCG and caffeine from green tea. The amount of caffeine extracted from green and black tea increased as the temperature, extraction time, and hydrogen ion concentration of the solvent increased. Although the amount of EGCG extracted from green tea increased as the temperature increased, the amount of EGCG extracted from black tea was not affected by temperature. The extraction of EGCG from both green and black tea was not affected by the hydrogen ion concentration of the solvent.  相似文献   

16.
ABSTRACT. Ingestion rate of Paraphysomonas imperforata was found to be a hyperbolic function of prey density. But the same flagellate clone had multiple ingestion responses to prey density, depending on its physiological state and physical stress it suffers. The flagellates in a physiological state of higher growth tended to have higher maximum ingestion and clearance rates than ones in a physiological state of lower growth. The same trend was observed for volume-specific maximum ingestion and volume-specific clearance rate. In response to changing prey density, the growth rate did not change as quickly as the ingestion rate, suggesting imbalance between the two. The tested physical stresses, including shaking, centrifugation, and filtration, also resulted in reduction of ingestion parameters of the flagellates. But half-saturation constants did not show any trend in response to either physiological state or physical stress. In light of the dynamic nature of protistan ingestion response to prey abundance, short incubation, which minimizes the physiological change, and careful handling, which prevents the possible physical stress, should be employed in order to avoid underestimation of in situ ingestion rates. Previously reported ingestion parameters of lab-cultured protists, which are thought to be unrealistic in natural conditions, may represent only one of multiple ingestion responses, probably prey-rich condition.  相似文献   

17.
The purpose of the present study was to evaluate the effect of caffeine ingestion on elite judo players’ mood states, simple reaction time, and muscle power during the Wingate test in the afternoon. Ten elite judo players (age: 21.08 ± 1.16 years, body mass: 83.75 ± 20.2 kg, height: 1.76 ± 0.07 m) took part in this study. The performance variables were measured during two test sessions scheduled at 17:00 h, after placebo or caffeine (5 mg/k) ingestion. The results revealed an increase in anxiety and vigour (p < 0.05) and a reduction in simple reaction time (p < 0.005) following caffeine ingestion. However, muscle power and fatigue during the Wingate test were unaffected. It is concluded that afternoon caffeine ingestion has no ergogenic effect on anaerobic performance.  相似文献   

18.
Normally, caffeineingestion results in a wide spectrum of neural and hormonal responses,making it difficult to evaluate which are critical regulatory factors.We examined the responses to caffeine (6 mg/kg) ingestion in a group ofspinal cord-injured subjects [7 tetraplegic(C5-7) and 2 paraplegic(T4) subjects] at rest andduring functional electrical stimulation of their paralyzed limbs tothe point of fatigue. Plasma insulin did not change, caffeine had noeffect on plasma epinephrine, and there was a slight increase(P < 0.05) in norepinephrine after15 min of exercise. Nevertheless, serum free fatty acids were increased (P < 0.05) after caffeine ingestionafter 60 min of rest and throughout the first 15 min of exercise, butthe respiratory exchange ratio was not affected. The exercise time wasincreased (P < 0.05) by 6% or 1.26 ± 0.57 min. These data suggest that caffeine had direct effects onboth the adipose tissue and the active muscle. It is proposed that theergogenic action of caffeine is occurring, at least in part, by adirect action of the drug on muscle.

  相似文献   

19.
The influence of gender, exercise, and thermal stress on caffeine pharmacokinetics is unclear. We hypothesized that these factors would not have an effect on the metabolism of caffeine. Eight women participated in four 8-h trials and six men participated in two 8-h trials after the ingestion of 6 mg/kg caffeine. The women performed two resting trials (1 in the follicular phase and 1 in the luteal phase of the menstrual cycle) and two exercise trials (90 min of cycling exercise at 65% of maximal O(2) uptake, 1 h after caffeine ingestion) in the follicular phase (1 without and 1 with an additional thermal stress). The men performed one exercise and one resting trial. Menstrual cycle, gender, and exercise, with or without an additional thermal stress, had no effect on the pharmacokinetic measurements or urine caffeine. There was a trend for higher plasma caffeine and lower plasma paraxanthine concentrations in the women. These results confirm that gender, exercise, and thermal stress have no effect on caffeine pharmacokinetics in men and women.  相似文献   

20.
《Endocrine practice》2007,13(3):239-243
ObjectiveTo test whether caffeine administered in coffee increases postprandial hyperglycemia in patients with type 2 diabetes who are habitual coffee drinkers.MethodsThe study used a within-subject, double-blind, placebo-controlled experimental design. Twenty adult coffee drinkers (11 women and 9 men) with type 2 diabetes treated with diet, exercise, orally administered antidiabetic agents, or some combination of these factors completed two mixed-meal tolerance tests (MMTT) after an overnight fast. Before the MMTT, each study participant received 250 mg of caffeine in 16 oz (475 mL) of decaffeinated coffee or decaffeinated coffee alone, with the treatment order counterbalanced in the group. Fasting and 1-hour and 2-hour postprandial blood samples were collected for measurement of plasma glucose and insulin concentrations.ResultsGlucose and insulin responses to the MMTT were quantified by the incremental areas under the 2-hour concentration-time curves (AUC2h). Administration of caffeine in decaffeinated coffee increased postprandial glucose and insulin responses (both P = 0.02). The mean plasma glucose AUC2h was 28% larger and the mean plasma insulin AUC2h was 19% larger after administration of caffeine than after administration of placebo.ConclusionOther constituents in coffee did not prevent the exaggeration of postprandial hyperglycemia by caffeine in these patients with type 2 diabetes, who were habitual coffee drinkers. Repeated on a daily basis, such effects could impair long-term glucose control in those patients with type 2 diabetes who habitually drink coffee or other caffeinated beverages. (Endocr Pract. 2007;13: 239-243)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号