首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work aimed to evaluate the skin anti-photoaging properties of ginsenoside Rb3 (Rb3), one of the main protopanaxdiol-type ginsenosides from ginseng, in HaCaT keratinocytes. The skin anti-photoaging activity was assessed by analyzing the levels of reactive oxygen species (ROS), pro-matrix metalloproteinase-2 (proMMP-2), pro-matrix metalloproteinase-9 (proMMP-9), total glutathione (GSH), and superoxide dismutase (SOD) activity as well as cell viability in HaCaT keratinocytes under UV-B irradiation. When HaCaT keratinocytes were exposed to Rb3 prior to UV-B irradiation, Rb3 exhibited suppressive activities on UV-B-induced ROS, proMMP-2, and proMMP-9 enhancements. On the contrary, Rb3 displayed enhancing activities on UV-B-reduced total GSH and SOD activity levels. Rb3 could not interfere with cell viabilities in UV-B-irradiated HaCaT keratinocytes. Rb3 plays a protective role against UV-B-induced oxidative stress in human HaCaT keratinocytes, proposing its potential skin anti-photoaging properties.  相似文献   

2.
Melanocytes are the melanin-producing cells by melanogenesis, and the pigment melanin is primarily responsible for the color of skin. These cells contain dendrites that are in close contact with neighboring keratinocytes. Keratinocytes produce and secrete factors that regulate the proliferation and melanogenesis of melanocytes in vitro. Therefore, adopting only melanocyte pure culture may not clearly reflect the skin physiology in vivo. In this study, we applied a two-culture model using melanocytes and keratinocytes from human skin, such as melanocyte pure culture and melanocyte co-culture with keratinocyte. And then, there was compared the responses of melanocytes under different culture conditions (treatment with arbutin, MSH-α and UV-B irradiation). The results show that there was no significant difference in melanocyte proliferation and melanogenesis between arbutin and MSH-α treatment. However, the co-culture model was more stable than the pure culture model in terms of melanocyte proliferation and melanogenesis upon UV-B irradiation. Therefore, the co-culture model was superior to the pure culture as a useful method for the study of melanocytes and epidermal melanin unit.  相似文献   

3.
4.
Ultraviolet (UV) radiation from the sun is widely considered as a major cause of human skin photoaging and skin cancer. Granzyme B (GrB) and perforin (PFN) are two proteins contained in granules and implicated in one of the mechanisms by which cytotoxic lymphocytes and natural killer cells exert their cytotoxicity against virus-infected, alloreactive, or transformed cells. The distribution of GrB and PFN in the skin has received little attention. However, Berthou and co-workers (Berthou, C., Michel, L., Soulie, A., Jean-Louis, F., Flageul, B., Dubertret, L., Sigaux, F., Zhang, Y., and Sasportes, M. (1997) J. Immunol. 159, 5293-5300) described that, whereas freshly isolated epidermal cells did not express GrB or PFN, keratinocyte growth to confluence was associated with GrB and PFN mRNA and protein synthesis. In this work, we have investigated the possible role of UV-B on GrB and PFN expression in keratinocytes. We found that UV-B induces GrB and PFN expression in these cells through redox-, epidermal growth factor receptor-, and mitogen-activated protein kinase-dependent signaling. Furthermore, under UV irradiation, keratinocytes acquire a significant cytotoxicity, which is GrB and PFN dependent, toward a variety of cellular targets including transformed T-lymphocytes, melanocytes, and keratinocytes. This phenomenon may have important functional consequences in the regulation of skin inflammatory response and in the emergence of cancer skin.  相似文献   

5.
sAPPalpha, the soluble form of the beta-amyloid precursor protein, has been shown to act as a potent epidermal growth factor by stimulating keratinocyte proliferation and migration. In this report we provide evidence for a cytoprotective role of sAPPalpha. As a model we used HaCaT cells and normal human keratinocytes (NHK) cultured in the absence of fetal calf serum and bovine pituitary extract. Under these conditions keratinocytes began to undergo apoptosis at increasing rates after 96 h of culture. Surprisingly, keratinocytes were protected from apoptosis by the addition of 50 nM recombinant sAPPalpha. Subsequent experiments were performed to elucidate the regulatory basis of the cytoprotective role of sAPPalpha. We found that recombinant sAPPalpha facilitated the substrate adhesion of keratinocytes in the first 30 minutes after seeding. The basis for this adhesion-promoting function was shown by the ability of recombinant sAPPalpha to continuously coat the culture dish thereby promoting the ability to bind keratinocytes. A second mechanism explaining the cytoprotective role was found in the significant inhibition of apoptosis by recombinant sAPPalpha. In HaCaT cells moderate UV-B irradiation was sufficient to induce apoptosis. In contrast, induction of apoptosis in NHK required additionally the depletion of endogenous sAPPalpha suggesting that sAPPalpha mediates protection against UV-B irradiation. Staurosporine-induced apoptosis rates were significantly reduced by about 59% after addition of recombinant sAPPalpha. These results show that sAPPalpha exerts a pronounced cytoprotective effect and that this effect is mediated by facilitated cell adhesion and by the antiapoptotic function of sAPPalpha.  相似文献   

6.
Reactions of keratinocytes to in vitro millimeter wave exposure.   总被引:2,自引:0,他引:2  
The effects of millimeter waves (MW) on human keratinocytes were studied in vitro using the HaCaT keratinocyte cell line. MW-induced modulation of keratinocyte function was studied in proliferation, adhesion, chemotaxis, and interleukin-1beta (IL-1beta) production assays. Spontaneous proliferation, adhesion to tissue culture plate, random migration, and IL-8- and RANTES induced chemotaxis were not affected by exposure of cells to millimeter waves under the following conditions: frequency, 61.22 GHz; SAR, 770 W/kg; duration of exposure, 15-30 min. However, MW irradiation resulted in a modest but statistically significant increase in the intracellular level of IL-1beta. These data suggest that exposure of human skin (with keratinocytes being the major component of epidermis) to MW can cause activation of basal keratinocytes resulting in an elevated level of IL-1beta production.  相似文献   

7.
UV-B is an abiotic environmental stress in both plants and animals. Abscisic acid (ABA) is a phytohormone regulating fundamental physiological functions in plants, including response to abiotic stress. We previously demonstrated that ABA is an endogenous stress hormone also in animal cells. Here, we investigated whether autocrine ABA regulates the response to UV-B of human granulocytes and keratinocytes, the cells involved in UV-triggered skin inflammation. The intracellular ABA concentration increased in UV-B-exposed granulocytes and keratinocytes and ABA was released into the supernatant. The UV-B-induced production of NO and of reactive oxygen species (ROS), phagocytosis, and cell migration were strongly inhibited in granulocytes irradiated in the presence of a monoclonal antibody against ABA. Moreover, presence of the same antibody strongly inhibited release of NO, prostaglandin E2 (PGE(2)), and tumor necrosis factor-α (TNF-α) by UV-B irradiated keratinocytes. Lanthionine synthetase C-like protein 2 (LANCL2) is required for the activation of the ABA signaling pathway in human granulocytes. Silencing of LANCL2 in human keratinocytes by siRNA was accompanied by abrogation of the UV-B-triggered release of PGE(2), TNF-α, and NO and ROS production. These results indicate that UV-B irradiation induces ABA release from human granulocytes and keratinocytes and that autocrine ABA stimulates cell functions involved in skin inflammation.  相似文献   

8.
X Zhu  Z Li  W Pan  L Qin  G Zhu  Y Ke  J Wu  P Bo  S Meng 《Molecular and cellular biochemistry》2012,369(1-2):255-266
Interleukin-22 (IL-22) is one of the key mediators of keratinocyte alterations in psoriasis. IL-22 inhibits keratinocyte differentiation and induces the migration of human keratinocytes. Grb2-associated binder 1 (Gab1) has been shown to mediate epidermal growth factor-induced epidermal growth and differentiation via interaction with the Src homology-2-containing protein-tyrosine phosphatase (Shp2). In this investigation, we explore the role of Gab1 and Gab2 in IL-22-mediated keratinocyte activities. We show that both Gab1 and Gab2 were tyrosine phosphorylated in IL-22-stimulated HaCaT cells and human primary epidermal keratinocytes and contributed to the activation of Extracellular signal regulated kinase 1/2 (Erk1/2) through interaction with Shp2. We further demonstrate that HaCaT cells infected with adenoviruses expressing Shp2-binding-defective Gab1/2 mutants exhibited decreased cell proliferation and migration, as well as increased differentiation. Moreover, similar results were observed in HaCaT cells infected with adenovirus-based small interfering RNAs targeting Gab1 and/or Gab2. Altogether, these data underscore the critical roles of Gab1 and Gab2 in IL-22-mediated HaCaT cell proliferation, migration, and differentiation.  相似文献   

9.
10.
The purpose of this study was to determine the production of metalloproteinases (MMP) 2 and 9 following UV-B irradiation in human corneal epithelial cells and fibroblasts. Epithelial cells and fibroblasts were separated from human donor corneas and exposed to UV-B lamp irradiation for 20, 40, 80 and 120 s. Media samples were collected at 8, 24, 48 and 72 h and gelatinase A and B production was assayed by the ELISA test. Statistical significance of production was assessed by the paired t-test. Increased production of MMP-2 was found in human corneal fibroblasts in response to UV-B irradiation. A statistically significant production of MMP-2 was not observed in human corneal epithelial cells following UV-B exposure. We did not detect any increase in MMP-9 after irradiation in either epithelial cells or fibroblasts. MMP-2 is produced by the corneal fibroblasts in the acute phase after UV-B irradiation. MMP-9 is not released in vitro following UV-B irradiation damage and therefore does not directly participate in the pathophysiology of acute photokeratitis.  相似文献   

11.
To increase the contents of medicinally effective ginsenosides, we used high-temperature and high-pressure thermal processing of ginseng by exposing it to microwave irradiation. To determine the anti-melanoma effect, the malignant melanoma SK-MEL-2 cell line was treated with an extract of microwave-irradiated ginseng. Microwave irradiation caused changes in the ginsenoside contents: the amounts of ginsenosides Rg1, Re, Rb1, Rb2, Rc, and Rd were disappeared, while those of less polar ginsenosides, such as Rg3, Rg5, and Rk1, were increased. In particular, the contents of Rk1 and Rg5 markedly increased. Melanoma cells treated with the microwave-irradiated ginseng extract showed markedly increased cell death. The results indicate that the microwave-irradiated ginseng extract induced melanoma cell death via the apoptotic pathway and that the cytotoxic effect of the microwave-irradiated ginseng extract is attributable to the increased contents of specific ginsenosides.  相似文献   

12.
UV irradiation is a major natural and artificial stress factor that may cause severe skin injury. UV irradiation induces DNA damage, which, eventually, may lead to cell death, senescence or oncogenic mutations and tumor growth. Wip1 is a phosphatase involved in the regulation of DNA damage response and oncogenic stress. Here, we studied response to UV-B irradiation in wild-type and Wip1-depleted murine cells of epidermal and mesenchymal lineages. We found that both cell types, skin keratinocytes and fibroblasts, responded to UV-B in a similar manner with increased cytotoxicity in Wip1–/–cells. The number of nuclear foci of histone γH2A-X, a DNA damage marker and aWip1 target protein, was higher in Wip1–/–cells before and after UV-B. We observed a twofold increase in cell number with active caspase-3 in Wip1-deficient keratinocytes. Thus, Wip1 deficiency sensitizes cells to UV-B irradiation by promoting cell death, possibly by caspase-3 dependent apoptosis.  相似文献   

13.
Striking differences are observed in the melanogenic response of normal human melanocytes to UVA and UVB irradiation depending on culture conditions and the presence of keratinocytes. Exposure of melanocytes co‐cultured with keratinocytes to UVB irradiation triggered, already at low doses (5 mJ/cm2), an increase in melanin synthesis whereas in melanocyte mono‐cultures, UVB doses up to 50 mJ/cm2 had no melanogenic effect. Unlike UVB, UVA exposure caused the same melanogenic response in both mono‐ and co‐cultures. Removing certain keratinocyte growth factors from the co‐culture medium abolished the melanogenic response to UVB, but not to UVA exposure. When integrated into the basal layer of a reconstructed human epidermis, human melanocytes similarly reacted to UVA and UVB irradiation as in vivo by increasing their production and transfer of melanin to the neighboring keratinocytes which resulted in a noticeable tanning of the reconstructed epidermis. The presence of a dense stratum corneum, known to scatter and absorb UV light, is responsible for higher minimal UVB and UVA doses required to trigger a melanogenic response in the reconstructed epidermis compared to keratinocyte–melanocyte co‐cultures. Furthermore, an immediate tanning response was observed in the pigmented epidermis following UVA irradiation. From these results we conclude that: (i) keratinocytes play an important role in mediating UVB‐induced pigmentation, (ii) UVA‐induced pigmentation is the result of a rather direct effect on melanocytes and (iii) reconstructed pigmented epidermis is the most appropriate model to study UV‐induced pigmentation in vitro.  相似文献   

14.
uv sensitivity of cultured human epidermal keratinocytes was analyzed at different growth conditions and compared with the sensitivity of dermal fibroblasts derived from the same skin specimen. No significant differences in survival curves were found between these two cell types, although keratinocytes grown under standard conditions were slightly more resistant to uv irradiation than fibroblasts. The extracellular concentration of calcium appeared to be critical not only in the regulation of keratinocyte proliferation and differentiation, but also in the uv sensitivity of these cells: keratinocytes grown under conditions which favor cell proliferation (low calcium concentration) are more resistant to uv irradiation than those grown under conditions favoring differentiation (high calcium concentration). Two-dimensional protein gel electrophoresis was used to detect a possible effect of uv irradiation on the accumulation of specific mRNAs in the cytoplasm and/or on the synthesis of specific proteins. Proteins were pulse labeled in vivo with [35S]methionine or synthesized in vitro in rabbit reticulocyte lysates on mRNA isolated from keratinocytes that were irradiated with different uv doses at different periods of time prior to isolation. Alterations in expression were demonstrated for several proteins in both in vivo and in vitro experiments.  相似文献   

15.
Epidermal keratinocytes are able to produce 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and induce vitamin D activity upon UVB irradiation. To find out whether this property is keratinocyte specific, we investigated this characteristic in two other cell types, namely intestinal CaCo-2 cells and the macrophage-like differentiated THP-1 cells. THP-1 macrophages and preconfluent CaCo-2 cells contain the vitamin D receptor (VDR), possess 25-hydroxylase (CYP2R1 and CYP27A1) and 1alpha-hydroxylase (CYP27B1) activity, and survive the low UVB doses essential for vitamin D3 photoproduction. Upon irradiation, 24-hydroxylase (CYP24) mRNA is induced in both cell types pretreated with the sterol Delta7-reductase inhibitor BM15766 whereby the 7-dehydrocholesterol (7-DHC) content was increased. Transfection studies in CaCo-2 cells with a vitamin D response element-containing construct revealed the involvement of the VDR in this UVB-dependent CYP24 induction. The CYP24 inducing activity in BM15766-pretreated UVB-irradiated CaCo-2 cells and THP-1 macrophages was identified as 1,25(OH)2D3 by combined high-performance liquid chromatography radioimmunoassay. Addition of vitamin D binding protein to the CaCo-2 cells attenuated UVB-induced CYP24 induction suggesting the possibility of a paracrine or autocrine role for the photoproduced 1,25(OH)2D3. In conclusion, preconfluent CaCo-2 cells and THP-1 macrophages are able to induce vitamin D activity upon UVB irradiation and hence combine all parts of the vitamin D photoendocrine system, a characteristic which is therefore not keratinocyte specific.  相似文献   

16.
The technique of allele-specific PCR (AS-PCR) enables the detection of a small number of mutant alleles in a large number of wild-type (WT) alleles. We used the AS-PCR technique and Southern blotting, using a nonradioactive labeled probe to analyze the formation of point mutations in the tumor-suppressor gene p53 of primary keratinocytes after UV-B irradiation. These permanent mutations resulting from CC dimers occur at distinct "hot-spots", one of which is affected in the human keratinocyte cell line HaCaT. This enabled us to establish the method with a defined positive control template, which also allowed semiquantitative determination of the mutation frequency. This, and the determination of the detection limit, was done with the use of serial dilutions of WT genomic DNA from primary keratinocytes with mutant genomic HaCaT DNA in the AS-PCR assay.  相似文献   

17.
Human keratinocytes proliferate and differentiate in an epidermal environment where induction of apoptosis can be triggered by ultraviolet radiation (UVR), activated lymphocytes and cytokines. The purpose of this study was to determine whether keratinocytes were susceptible to apoptosis induced by ionophore, ultra-violet radiation, cytokines or crosslinking of CD95 (Fas/APO-1). In normal human skin exposed to two minimal erythema doses of ultraviolet radiation, suprabasal cells were the first keratinocytes to demonstrate apoptotic nuclei, and by 48 h apoptotic cells were identified throughout the mid to upper epidermis. However, most keratinocytes resisted apoptosis and UVR-induced apoptosis was not observed in basal cells, or in the most differentiated epidermis. Human keratinocytes and keratinocyte cell lines cultured in vitro developed maximal apoptosis 48 h after radiation. Human keratinocytes cultured in full growth factor supplements were resistant to UVR-induced apoptosis compared to keratinocyte cell lines or to a lymphoid cell line (HL60) susceptible to apoptosis. Keratinocyte cell lines were completely resistant to apoptosis induced by interferon-, interferon-, IL-2, IL-6, TNF-, IL-1Ra, and GM-CSF. A subset of the cells in cultures of keratinocytes and transformed keratinocyte cell lines died by apoptosis in response to anti-Fas, IL-1 and TNF- plus IFN- and ionophore. Second passage freshly isolated human keratinocytes were much more resistant to apoptosis induced by ionophore, anti-Fas and cytokines than were transformed keratinocyte cell lines. Calcium shift to induce differentiation in second-passage keratinocyte cultures made keratino-cytes even more resistant to UVR-induced apoptosis. This parallels the lack of UVR-induced apoptosis observed in the most differentiated keratinocytes in irradiated human skin. Both keratinocytes and kerati-nocyte cell lines express rather low levels of the anti-apoptotic proteins bcl-2 and bcl-x compared to other apoptosis-resistant cell types. The differences between keratinocytes and keratinocyte cell lines in suscepti-bility to apoptosis are not explained by difference in expression of bcl-2 or bcl-x. Finally, withdrawal of growth factors from keratinocytes decreased cell survival following UVR and increased the induction of apoptosis. Inhibition of protein synthesis with cyclo-heximide also made keratinocytes more susceptible to UVR-induced apoptosis, indicating that anti-apop-totic defences in cultured keratinocytes are dependent on active protein synthesis. These experiments show that the strong keratinocyte defences against apoptosis are stratified within the epidermis, and can be altered by differentiation and growth factor withdrawal.  相似文献   

18.
Ca(2+) is an essential factor inducing keratinocyte differentiation due to the natural Ca(2+) gradient in the skin. However, the membrane mechanisms that mediate calcium entry and trigger keratinocyte differentiation had not previously been elucidated. In this study we demonstrate that Ca(2+)-induced differentiation up-regulates both mRNA and protein expression of a transient receptor potential highly Ca(2+)-selective channel, TRPV6. The latter mediates Ca(2+) uptake and accounts for the basal [Ca(2+)](i) in human keratinocytes. Our results show that TRPV6 is a prerequisite for keratinocyte entry into differentiation, because the silencing of TRPV6 in human primary keratinocytes led to the development of impaired differentiated phenotype triggered by Ca(2+). The expression of such differentiation markers as involucrin, transglutaminase-1, and cytokeratin-10 was significantly inhibited by small interfering RNA-TRPV6 as compared with differentiated control cells. TRPV6 silencing affected cell morphology and the development of intercellular contacts, as well as the ability of cells to stratify. 1,25-Dihydroxyvitamin D3, a cofactor of differentiation, dose-dependently increased TRPV6 mRNA and protein expression in human keratinocytes. This TRPV6 up-regulation led to a significant increase in Ca(2+) uptake in both undifferentiated and differentiated keratinocytes. We conclude that TRPV6 mediates, at least in part, the pro-differentiating effects of 1,25-dihydroxyvitamin D3 by increasing Ca(2+) entry, thereby promoting differentiation. Taken together, these data suggest that the TRPV6 channel is a key element in Ca(2+)/1,25-dihydroxyvitamin D3-induced differentiation of human keratinocytes.  相似文献   

19.
Purinergic receptors, which bind adenosine 5′-triphosphate (ATP), are expressed on human cutaneous keratinocytes and in squamous cell carcinomas. Studies on normal human epidermis and primary keratinocyte cultures have suggested that P2X5 receptors are likely to be involved in keratinocyte differentiation and P2X7 receptors are likely to be part of the machinery of end stage terminal differentiation/apoptosis of keratinocytes. P2X7 receptor agonists can significantly reduce primary keratinocyte cell numbers in culture. Human papillomaviruses are increasingly recognised as important human carcinogens in the development of non-melanoma skin cancers. In our study, immunohistochemical analysis for P2X5 and P2X7 receptors was performed on paraffin sections of normal human skin, warts, raft cultures of normal human keratinocytes and raft cultures of CIN 612 cells, a model of keratinocytes infected with human papillomavirus type 31. In warts there was up-regulation of the expression of P2X5 receptors. A similar pattern was seen in the CIN 612 raft cultures. Both P2X5 and P2X7 receptors were found in the nuclei of koilocytes, abnormal keratinocytes characteristic of human papillomavirus infection. P2X5 and P2X7 receptors may provide a new focus for therapeutic research into treatments for warts because these receptors can induce cell differentiation and cell death.An erratum to this article can be found at  相似文献   

20.

Background

The human epidermis is comprised of several layers of specialized epithelial cells called keratinocytes. Normal homoeostasis of the epidermis requires that the balance between keratinocyte proliferation and terminal differentiation be tightly regulated. The mammalian serine/threonine kinases (ROCK1 and ROCK2) are well-characterised downstream effectors of the small GTPase RhoA. We have previously demonstrated that the RhoA/ROCK signalling pathway plays an important role in regulation of human keratinocyte proliferation and terminal differentiation. In this paper we addressed the question of which ROCK isoform was involved in regulation of keratinocyte differentiation.

Methodology and Principal Findings

We used RNAi to specifically knockdown ROCK1 or ROCK2 expression in cultured human keratinocytes. ROCK1 depletion results in decreased keratinocyte adhesion to fibronectin and an increase in terminal differentiation. Conversely, ROCK2 depletion results in increased keratinocyte adhesion to fibronectin and inhibits terminal differentiation.

Conclusion

These data suggest that ROCK1 and ROCK2 play distinct roles in regulating keratinocyte adhesion and terminal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号