首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV resonance Raman (UVRR) spectroscopy is used to study the binding of biotin and 2-iminobiotin by streptavidin, and the results are compared to those previously obtained from the avidin-biotin complex and new data from the avidin-2-iminobiotin complex. UVRR difference spectroscopy using 244-nm excitation reveals changes to the tyrosine (Tyr) and tryptophan (Trp) residues of both proteins upon complex formation. Avidin has four Trp and only one Tyr residue, while streptavidin has eight Trp and six Tyr residues. The spectral changes observed in streptavidin upon the addition of biotin are similar to those observed for avidin. However, the intensity enhancements observed for the streptavidin Trp Raman bands are less than those observed with avidin. The changes observed in the streptavidin Tyr bands are similar to those observed for avidin and are assigned exclusively to the binding site Tyr 43 residue. The Trp and Tyr band changes are due to the exclusion of water and addition of biotin, resulting in a more hydrophobic environment for the binding site residues. The addition of 2-iminobiotin results in spectral changes to both the streptavidin and avidin Trp bands that are very similar to those observed upon the addition of biotin in each protein. The changes to the Tyr bands are very different than those observed with the addition of biotin, and similar spectral changes are observed in both streptavidin and avidin. This is attributable to hydrogen bond changes to the binding site Tyr residue in each protein, and the similar Tyr difference features in both proteins supports the exclusive assignment of the streptavidin Tyr difference features to the binding site Tyr 43.  相似文献   

2.
The Strep-tag II is a nine-amino acid peptide that was developed as an affinity tool for the purification of corresponding fusion proteins on streptavidin columns. The peptide recognizes the same pocket of streptavidin where the natural ligand is normally bound so that biotin or its chemical derivatives can be used for competitive elution. We report here the crystal structures of the streptavidin mutants '1' and '2,' which had been engineered for 10-fold higher affinity towards the Strep-tag II. Both streptavidin mutants carry mutations at positions 44, 45, and 47, that is, in a flexible loop region close to the binding site. The crystal structures of the two apo-proteins and their complexes with the Strep-tag II peptide were refined at resolutions below 2 A. Both in the presence and absence of the peptide, the lid-like loop next to the ligand pocket--comprising residues 45 through 52--adopts an 'open' conformation in all four subunits within the asymmetric unit. The same loop was previously described to be disordered in the wild-type apo-streptavidin and to close over the pocket upon complexation of the natural ligand biotin. Our findings suggest that stabilization of the 'open' loop conformation in the absence of a ligand abolishes the need for conformational rearrangement prior to the docking of the voluminous peptide. Because no direct contacts between the flexible part of the loop and the peptide ligand were detected, it seems likely that the higher affinity of the two streptavidin mutants for the Strep-tag II is caused by a predominantly entropic mechanism.  相似文献   

3.
Crystal structure of HIV-RT in complex with a DNA template:primer and a dTTP leads us to design and synthesize a new class of nucleoside analog inhibitors containing a branched 3'-group against HIV-RT. An in vitro primer extension assay indicates that three out of five compounds are effective HIV-RT inhibitors.  相似文献   

4.
The defining property of core streptavidin (cSA) is not only its high binding affinity for biotin but also its pronounced thermal and chemical stability. Although potential applications of these properties including therapeutic methods have prompted much biological research, the high immunogenicity of this bacterial protein is a key obstacle to its clinical use. To this end, we have successfully constructed hypoimmunogenic cSA muteins in a previous report. However, the effects of these mutations on the physicochemical properties of muteins were still unclear. These mutations retained the similar electrostatic charges to those of wild‐type (WT) cSA, and functional moieties with similar hydrogen bond pattern. Herein, we performed isothermal titration calorimetry, differential scanning calorimetry, and sodium dodecyl sulfate–polyacrylamide gel electrophoresis to gain insight into the physicochemical properties and functions of these modified versions of cSA. The results indicated that the hypoimmunogenic muteins retained the biotin‐binding function and the tetramer structure of WT cSA. In addition, we discuss the potential mechanisms underlying the success of these mutations in achieving both immune evasion and retention of function; these mechanisms might be incorporated into a new strategy for constructing hypoimmunogenic proteins.  相似文献   

5.
Biomaterials research for the discovery of new generation nanoparticles is one of the most active areas of nanotechnoloy. In the search of nature-made nanometer-sized objects, plant virus particles appear as symmetrically defined entities that can be formed by protein self-assembly. In particular, in the field of plant virology, there is plenty of literature available describing the exploitation of plant viral cages to produce safe vaccine vehicles and nanoparticles for drug delivery. In this context, we have investigated on the use of the artichoke mottled crinkle virus (AMCV) capsid both as a carrier of immunogenic epitopes and for the delivery of anticancer molecules. A dual approach that combines both in silico tools and experimental virology was applied for the rational design of immunologically active chimeric virus-like particles (VLPs) carrying immunogenic peptides. The atomic structures of wild type (wt) and chimeric VLPs were obtained by homology modeling. The effects of insertion of the HIV-1 2F5 neutralizing epitope on the structural stability of chimeric VLPs were predicted and assessed by detailed inspection of the nanoparticle intersubunit interactions at atomic level. Wt and chimeric VLPs, exposing on their surface the 2F5 epitope, were successfully produced in plants. In addition, we demonstrated that AMCV capsids could also function as drug delivery vehicles able to load the chemotherapeutic drug doxorubicin. To our knowledge, this is the first systematic predictive and empirical research addressing the question of how this icosahedral virus can be used for the production of both VLPs and viral nanoparticles for biomedical applications.  相似文献   

6.
The cytokine LIGHT is a promising candidate for cancer therapy. However, the therapeutic effect of LIGHT as a systemic anticancer agent is currently insufficient because of its instability and its binding to nonfunctional soluble decoy receptor 3 (DcR3), which is overexpressed in various tumors. Modification of proteins with polyethylene glycol (PEGylation) can improve their in vivo stability, but PEGylation may occur randomly at all lysine residues and the NH2-terminus; therefore, PEGylated proteins are generally heterogeneous and have decreased bioactivity. In this study, we attempted to create a lysine-deficient LIGHT mutant that could be PEGylated site-specifically and would have lower affinity for DcR3. We prepared phage libraries expressing LIGHT mutants in which all the lysine residues were replaced with other amino acids. A lysine-deficient LIGHT mutant [mLIGHT-Lys(−)] was isolated by panning against lymphotoxin β receptor (LTβR). mLIGHT-Lys(−) could be site-specifically PEGylated at its NH2-terminus, yielding molecular uniformity and in vitro bioactivity equal to that of non-PEGylated, wild-type LIGHT. Furthermore, mLIGHT-Lys(−) was not trapped by the nonfunctional DcR3, despite binding to its functional receptors. These results suggest that mLIGHT-Lys(−) might be a useful candidate for cancer therapy.  相似文献   

7.
For developing a magnetic bioassay system, an investigation to determine the presence of a specific biomolecular interaction between biotin and streptavidin was done using magnetic nanoparticles and a silicon substrate with a self-assembled monolayer. Streptavidin was immobilized on the magnetic particles, and biotin was attached to the monolayer-modified substrate. The reaction of streptavidin-modified magnetic particles on the biotin-modified substrate was clearly observed under an optical microscope. The magnetic signals from the particles were detected using a magnetic force microscope. The results of this study demonstrate that the combination of a monolayer-modified substrate with biomolecule-modified magnetic particles is useful for detecting biomolecular interactions in medical and diagnostic analyses.  相似文献   

8.
The structure-based design and synthesis of a novel class of 2,4-disubstituted thiazoles as Src SH2 inhibitors is described. Initial results are presented, including the X-ray and NMR analysis of one thiazole inhibitor bound to Lck and Src SH2.  相似文献   

9.
The existence of drug resistance caused by mutations in the break-point cluster region-Abelson (BCR-ABL) tyrosine kinase domain remains a clinical challenge due to limited treatment options for effective CML therapies. Here, we report a series of flavone-based common inhibitors equipotent for the wild type and the most drug-resistant T315I mutant of BCR-ABL. The original hit 1 was extensively modified through a structure-based drug design strategy, especially by varying the C7 acetamide appendage of the scaffold to exploit extended interactions with P-loop residues. Structural features relevant to the stabilization of the newly identified inhibitors in the ATP-binding site of ABL are discussed in detail.  相似文献   

10.
The inhibition of cysteine proteases is being studied as a strategy to combat parasitic diseases such as Chagas' disease, leishmaniasis, and malaria. Cruzain is the major cysteine protease of Trypanosoma cruzi, the etiologic agent of Chagas' disease. A crystal structure of cruzain, covalently inactivated by fluoromethyl ketone inhibitor 1 (Cbz-Phe-Ala-FMK), was used as a template to design potential inhibitors. Conformationally constrained γ-lactams containing electrophilic aldehyde (12, 17, 18, 25, 26, and 29) or vinyl sulfone (43, 44, and 46) units were synthesized. Constrained lactam 26 had IC50 values of ca. 20 nM against the Leishmania major protease and ca. 50 nM versus falcipain, an important cysteine protease isolated from Plasmodium falciparum. However, all of the conformationally constrained inhibitors were weak inhibitors of cruzain, compared to unconstrained peptide aldehyde (e.g. 5) and vinyl sulfone inhibitors (e.g. 48, which proved to be an excellent inhibitor of cruzain with an apparent second order inhibition rate constant (kinact/Ki) of 634,000 s−1M−1). A significant reduction in activity was also observed with acyclic inhibitors 30 and 51 containing -methyl phenylalanine residues at the P2 position. These data indicate that the pyrrolidinone ring, especially the quarternary center at P2, interferes with the normal substrate binding mode with cruzain, but not with falcipain or the leishmania protease.  相似文献   

11.
Haidar JN  Pierce B  Yu Y  Tong W  Li M  Weng Z 《Proteins》2009,74(4):948-960
T-cell receptors (TCRs) are proteins that recognize peptides from foreign proteins bound to the major histocompatibility complex (MHC) on the surface of an antigen-presenting cell. This interaction enables the T cells to initiate a cell-mediated immune response to terminate cells displaying the foreign peptide on their MHC. Naturally occurring TCRs have high specificity but low affinity toward the peptide-MHC (pepMHC) complex. This prevents the usage of solubilized TCRs for diagnosis and treatment of viral infections or cancers. Efforts to enhance the binding affinity of several TCRs have been reported in recent years, through randomized libraries and in vitro selection. However, there have been no reported efforts to enhance the affinity via structure-based design, which allows more control and understanding of the mechanism of improvement. Here, we have applied structure-based design to a human TCR to improve its pepMHC binding. Our design method evolved based on iterative steps of prediction, testing, and generating more predictions based on the new data. The final design function, named ZAFFI, has a correlation of 0.77 and average error of 0.35 kcal/mol with the binding free energies of 26 point mutations for this system that we measured by surface plasmon resonance (SPR). Applying the filter that we developed to remove nonbinding predictions, this correlation increases to 0.85, and the average error decreases to 0.3 kcal/mol. Using this algorithm, we predicted and tested several point mutations that improved binding, with one giving over sixfold binding improvement. Four of the point mutations that improved binding were then combined to give a mutant TCR that binds the pepMHC 99 times more strongly than the wild-type TCR.  相似文献   

12.
Influenza is a highly contagious respiratory viral infection responsible for up to 50,000 deaths per annum in the US alone. The need for new therapeutics with novel modes of action is of paramount importance. We determined the X-ray structure of Arbidol with influenza hemagglutinin and found it was located in a distinct binding pocket. Herein, we report a structure-activity relationship study based on the co-complex combined with bio-layer interferometry to assess the binding of our compounds. Addition of a meta-hydroxy group to the thiophenol moiety of Arbidol to replace a structured water molecule in the binding pocket resulted in a dramatic increase in affinity against both H3 (1150-fold) and H1 (98-fold) hemagglutinin subtypes. Our analogues represent novel leads to yield more potent compounds against hemagglutinin that block viral entry.  相似文献   

13.
Peptides consisting solely of D -amino acids (D -peptides) as opposed to their L -counterparts (L -peptides) are resistant towards proteolytic degradation in the organism and may therefore be useful in future efforts to develop new stable peptide-based drugs. Using the random synthetic peptide library technique several L - and D -peptides, capable of binding to both avidin and streptavidin, were found. The L -peptides contained the previously described HPQ/M motifis, and among the D -peptides three binding motifs could be identified, of which the most frequently found one contained an N-terminal aliphatic hydrophobic amino acid (V, L or I) and an aromatic amino acid (Y or F) on the second position. At the third position in this motif several different amino acid residues were found, although N was the most frequent. Peptides representing two of the D -motifs were synthesized as well as peptides containing the HPQ/M motifs, and their binding properties were examined. Although the D -peptides were originally selected using avidin they also inhibited binding between immobilized biotin and soluble streptavidin as well as avidin. The IC50 of some of the peptides were approximately 105 times higher than the IC50 for biotin but some had a lower IC50 than iminobiotin. The D -peptides, which were originally selected from the library using avidin, could also inhibit the binding between streptavidin and biotin. Likewise, L -peptides selected from a library screened with streptavidin, could inhibit the binding of both streptavidin and avidin to immobilized biotin. Furthermore, the D -peptide, VFSVQSGS, as well as biotin could inhibit binding of streptavidin to an immobilized L -peptide (RYHPQSGS). This indicates that the biotin-like structure mimicked by these two seemingly very different peptides may react with the same binding sites in the streptavidin molecule.  相似文献   

14.
Small peptide tags are often fused to proteins to allow their affinity purification in high-throughput structure analysis schemes. To assess the compatibility of small peptide tags with protein crystallization and to examine if the tags alter the three-dimensional structure, the N-terminus of the chicken alpha-spectrin SH3 domain was labeled with a His6 tag and the C-terminus with a StrepII tag. The resulting protein, His6-SH3-StrepII, consists of 83 amino-acid residues, 23 of which originate from the tags. His6-SH3-StrepII is readily purified by dual affinity chromatography, has very similar biophysical characteristics as the untagged protein domain and crystallizes readily from a number of sparse-matrix screen conditions. The crystal structure analysis at 2.3 A resolution proves native-like structure of His6-SH3-StrepII and shows the entire His6 tag and part of the StrepII tag to be disordered in the crystal. Obviously, the fused affinity tags did not interfere with crystallization and structure analysis and did not change the protein structure. From the extreme case of His6-SH3-StrepII, where affinity tags represent 27% of the total fusion protein mass, we extrapolate that protein constructs with N- and C-terminal peptide tags may lend themselves to biophysical and structural investigations in high-throughput regimes.  相似文献   

15.
Janus kinases (JAKs) play a key role in the proliferation, apoptosis and differentiation of immune cells, and JAKs are considered as an attractive target for the treatment of inflammatory and autoimmune diseases. Here we show the design and optimization of pyrimidine-4,6-diamine derivatives as selectivity JAK3 inhibitors. Compound 11e, which might interact with unique cysteine (Cys909) residue in JAK3, exhibited excellent JAK3 inhibitory activity (IC50?=?2.1?nM) and high JAK kinase selectivity. In cellular assay, 11e showed moderate potency inhibiting IL-2-stimulated T cell proliferation. The data supports the further development of novel JAKs inhibitors.  相似文献   

16.
Based on insight from the X-ray crystal structure of human chymase in complex with compound 1, a lactam carbonyl of the diazepane core was exchanged with O-substituted oxyimino group, leading to amidoxime derivatives. This modification resulted in highly potent chymase inhibitors, such as O-phenylamidoxime 5f. X-ray crystal structure analysis indicated that compound 5f induced movement of the Leu99 and Tyr94 side chains at the S2 site, and the increase in inhibitory activity of O-phenyl amidoxime derivatives suggested that the O-phenyl moiety interacted with the Tyr94 residue. Surface plasmon resonance experiments showed that compound 5f had slower association and dissociation kinetics and the calculated residence time of compound 5f to human chymase was extended compared to that of amide compound 1.  相似文献   

17.
Interleukin-1β converting enzyme contributes in various inflammatory and autoimmune diseases by maturing pro-inflammatory cytokines IL-1β, IL-18 and IL-33. Therefore, inhibition caspase-1 may provide a potential therapeutic strategy for the treatment of chronic inflammatory diseases. Here we have reported structure-based design, synthesis and biological evaluation of 2,4-diaminopyrimidine derivatives (6a-6w) as potential caspase-1 inhibitors. Six compounds 6m, 6n, 6o, 6p, 6q and 6r showed significant enzymatic inhibition with IC50 ranging from 0.022 to 0.078 µM. These compounds also displayed excellent cellular potency at sub-micromolar concentration. Moreover, molecular docking studies provided the useful binding insights specific for caspase-1 inhibition. All these results indicated that compounds 6m, 6n and 6o could be potential leads for the development of newer caspase-1 inhibitors as anti-inflammatory agents.  相似文献   

18.
Plinabulin, a synthetic analog of the marine natural product “diketopiperazine phenylahistin,” displayed depolymerization effects on microtubules and targeted the colchicine site, which has been moved into phase III clinical trials for the treatment of non-small cell lung cancer (NSCLC) and the prevention of chemotherapy-induced neutropenia (CIN). To develop more potent anti-microtubule and cytotoxic derivatives, the co-crystal complexes of plinabulin derivatives were summarized and analyzed. We performed further modifications of the tert-butyl moiety or C-ring of imidazole-type derivatives to build a library of molecules through the introduction of different groups for novel skeletons. Our structure–activity relationship study indicated that compounds 17o (IC50 = 14.0 nM, NCI-H460) and 17p (IC50 = 2.9 nM, NCI-H460) with furan groups exhibited potent cytotoxic activities at the nanomolar level against various human cancer cell lines. In particular, the 5-methyl or methoxymethyl substituent of furan group could replace the alkyl group of imidazole at the 5-position to maintain cytotoxic activity, contradicting previous reports that the tert-butyl moiety at the 5-position of imidazole was essential for the activity of such compounds. Immunofluorescence assay indicated that compounds 17o and 17p could efficiently inhibit microtubule polymerization. Overall, the novel furan-diketopiperazine-type derivatives could be considered as a potential scaffold for the development of anti-cancer drugs.  相似文献   

19.
The nucleotide-binding-site and leucine-rich-repeat (NBS–LRR) class of R proteins is abundant and widely distributed in plants. By using degenerate primers designed on the NBS domain in lettuce, we amplified sequences in sugar pine that shared sequence identity with many of the NBS–LRR class resistance genes catalogued in GenBank. The polymerase chain reaction products were used to probe a cDNA library constructed from needle tissue of sugar pine seedlings. A full-length cDNA was obtained that demonstrated high predicted amino acid sequence similarity to the coiled coil (CC)–NBS–LRR subclass of NBS–LRR resistance proteins in GenBank. Sequence analyses of this gene in megagametophytes from two sugar pine trees segregating for the hypersensitive response to white pine blister rust revealed zero nucleotide variation. Moreover, there was no variation found in 24 unrelated sugar pine trees except for three single-nucleotide polymorphisms located in the 3′ untranslated region. Compared to other genes sequenced in Pinaceae, such a low level of sequence variation in unrelated individuals is unusual. Although, numerous studies have reported that plant R genes are under diversifying selection for specificity to evolving pathogens, the resistance gene analog discussed here appears to be under intense purifying selection.An erratum to this article can be found at  相似文献   

20.
The structure-based design, synthesis, and screening of a glucuronic acid scaffold library of affinity ligands directed toward the catalytic cleft on porcine pancreas alpha-amylase are presented. The design was based on the simulated docking to the enzyme active site of 53 aryl glycosides from the Available Chemicals Directory (ACD) selected by in silico screening. Twenty-three compounds were selected for synthesis and screened in solution for binding toward alpha-amylase using nuclear magnetic resonance techniques. The designed molecules include a handle outside of the binding site to allow their attachment to various surfaces with minimal loss of binding activity. After initial screening in solution, one affinity ligand was selected, immobilized to Sepharose (Amersham Biosciences), and evaluated as a chromatographic probe. A column packed with ligand-coupled Sepharose specifically retained the enzyme, which could be eluted by a known inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号