首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we studied the effects of cortisol and cortisone on the age-related decrease in locomotion in the nematode Caenorhabditis elegans and on the tolerance to heat stress at 35 °C and to oxidative stress induced by the exposure to 0.1% H2O2. Changes in mRNA expression levels of C. elegans genes related to stress tolerance were also analyzed. Cortisol treatment restored nematode movement following heat stress and increased viability under oxidative stress, but also shortened worm lifespan. Cortisone, a cortisol precursor, also restored movement after heat stress. Additionally, cortisol treatment increased mRNA expression of the hsp-12.6 and sod-3 genes. Furthermore, cortisol treatment failed to restore movement of daf-16-deficient mutants after heat stress, whereas cortisone failed to restore the movement of dhs-30-deficient mutants after heat stress. In conclusion, the results suggested that cortisol promoted stress tolerance via DAF-16 but shortened the lifespan, whereas cortisone promoted stress tolerance via DHS-30.  相似文献   

2.
ABSTRACT

Rice kefiran is superior in functionality, has high concentration of mucilaginous polysaccharide, and low lipid content, compared to conventional kefiran. However, reports on its physiological functionality, especially studies on life expectancy and aging, in model organisms are rare. In this study, nematodes were used as model organisms that were fed rice kefiran, along with Escherichia coli OP50, as a result of which, the lifespan of nematodes was extended and age-related retardation of mobility was suppressed. It also increased the heat stress resistance in nematodes. Experiments using daf-16 deletion mutant revealed that rice kefiran functions via DAF-16. Thus, this study revealed the longevity, anti-aging and heat stress tolerance effects of rice kefiran in nematodes.  相似文献   

3.
Fatty acids are the major components of the phospholipid bilayer and are involved in several functions of cell membrane. We previously reported that fatty-acid metabolism is involved in the regulation of DAF-2/insulin signal in Caenorhabditis elegans. In this study, we investigate the role of fatty-acid metabolism in stress resistance with respect to daf-16 in nematode. We found that fatty-acid metabolism regulates heat, osmotic, and oxidative-stress resistance in C. elegans. RNA interference (RNAi) of fat-6, fat-7, and elo-2 enhanced heat resistance but decreased oxidative-stress tolerance. RNAi of fat-2 strongly increased osmotic-stress resistance, whereas nhr-49-RNAi remarkably reduced osmotic and oxidative-stress tolerance. In daf-16 mutants (mgDf50), RNAi of fat-2 and fat-7 increased viability under osmotic stress, while RNAi of fat-6, fat-7, and elo-2 enhanced heat resistance. Exposure of saturated fatty acids to RNAi worms of fat-1-, fat-7-, and nhr-49 increased osmotic resistance. On the other hand, polyunsaturated fatty acids (PUFAs) reduced osmotic-stress tolerance in fat-2-RNAi worms, whereas PUFAs enhanced it in nhr-49-RNAi worms. Heat-stress resistance in fat-6- and fat-7-RNAi worms was suppressed by oleic acid.These results suggest that stress-resistance mechanisms are regulated by fatty-acid metabolism with or without DAF-16 activity.  相似文献   

4.
Oxytocin, released in response to different physiological stimuli, could play a key role in reducing stress reaction. It was suggested that it has protective effect against inflammation and consequences of oxidative stress. Mechanisms how oxytocin effects mediated in the brain tissue are unclear. In this study, oxytocin effect on cell growth and neuronal viability was examined. Human neuroblastoma (SH-SY5Y and SK-N-SH) and glioblastoma (U87MG) cells were exposed to different concentrations of oxytocin for 12-96 h. Potential protective effect of oxytocin treatment was investigated after exposing cells to oxidative stress using hydrogen peroxide (50 mM, 2 h) or 6-hydroxydopamine (25 μM, 24 h). Cell proliferation was measured by cell counting and cell viability was examined by MTT assay. Protein expression of selected neurotrophic factors was measured as an additional parameter. Oxytocin (1 μM) significantly increased cell number in all three cell types. Viability of SH-SY5Y cells was increased in the presence of oxytocin without significant effect of dose (0.01-1 μM). Cell death induced by hydrogen peroxide was not prevented by incubation with oxytocin. Oxytocin pretreatment blunted neurotoxin 6-OHDA reduction of cell viability in SH-SY5Y cells. Oxytocin (1 μM, 12 h) elevated amount of total proteins without increasing levels of brain-derived neurotrophic factor and neurotrophic growth factor. In conclusion, oxytocin increases growth and viability of neuroblastoma and glioblastoma cells without activation of neurotrophic factors. Oxytocin does not have protective effect in oxidative stress; however, it might be important for neuroprotection to dopaminergic neurons. Its proliferative effect might be important in native cell life, euplastic processes, and tumor progression.  相似文献   

5.
A major challenge in understanding energy balance is deciphering the neural and molecular circuits that govern behavioral, physiological, and metabolic responses of animals to fluctuating environmental conditions. The neurally expressed TGF-β ligand DAF-7 functions as a gauge of environmental conditions to modulate energy balance in C. elegans. We show that daf-7 signaling regulates fat metabolism and feeding behavior through a compact neural circuit that allows for integration of multiple inputs and the flexibility for differential regulation of outputs. In daf-7 mutants, perception of depleting food resources causes fat accumulation despite reduced feeding rate. This fat accumulation is mediated, in part, through neural metabotropic glutamate signaling and upregulation of peripheral endogenous biosynthetic pathways that direct energetic resources into fat reservoirs. Thus, neural perception of adverse environmental conditions can promote fat accumulation without a concomitant increase in feeding rate.  相似文献   

6.
Convallatoxin is widely used as a cardiac glycoside in acute and chronic congestive heart-failure and paroxysmal tachycardia, with many effects and underlying protective mechanisms on inflammation and cellular proliferation. However, convallatoxin has not been investigated in its antioxidant effects and lifespan extension in Caenorhabditis elegans. In this study, we found that convallatoxin (20?μM) could significantly prolong the lifespan of wild-type C. elegans up to 16.3% through daf-16, but not sir-2.1 signalling and increased thermotolerance and resistance to paraquat-induced oxidative stress. Convallatoxin also improved pharyngeal pumping, locomotion, reduced lipofuscin accumulation and reactive oxygen species levels in C. elegans, which were attributed to hormesis, free radical-scavenging effects in vivo, and up-regulation of stress resistance-related proteins, such as SOD-3 and HSP-16.1. Furthermore, aging-associated genes daf-16, sod-3, and ctl-2 also appeared to contribute to the stress-resistance effect of convallatoxin. In summary, this study demonstrates that convallatoxin can protect against heat and oxidative stress and extend the lifespan of C. elegans, pointing it as a potential novel drug for retarding the aging process in humans.  相似文献   

7.
《Free radical research》2013,47(7):813-820
Abstract

This group has invented a novel deuterohemin containing peptide deuterohemin-AlaHisThrValGluLys (DhHP-6), which has various biological activities including protection of murine ischemia reperfusion injury, improving cell survival and preventing apoptosis. It was hypothesized that DhHP-6 is beneficial on the lifespan of Caenorhabditis elegans (C. elegans) and increases their resistance to heat and oxidative stress. C. elegans were treated with different concentrations of DhHP-6. Survival time and sensitivity to heat and paraquat were investigated. The data demonstrated that the mean survival time of C. elegans was significantly increased (p < 0.05) in the DhHP-6 treated group compared with the control group. The maximum lifespan was not affected by DhHP-6 treatment. DhHP-6 improved the survival rate of C. elegans in the acute heat stress (35°C) and rescued the C. elegans' sensitivity to paraquat in acute oxidative stress. Superoxide dismutase 3 (SOD-3) protein was up-regulated by DhHP-6 treatment. It was further demonstrated that stress resistance genes such as hsp-16.1, hsp-16.49 and sir-2.1 were regulated by DhHP-6. DAF-16 and SIR-2.1 genes are essential for the beneficial effect of DhHP-6. Therefore, the investigation into the beneficial effect of DhHP-6 on C. elegans' lifespan has the potential to develop novel drugs to prevent ageing.  相似文献   

8.
9.
Jessica T. Chang 《Autophagy》2018,14(7):1276-1277
Macroautophagy/autophagy is a cellular recycling process that is required for the extended life span observed in many longevity paradigms, including in the nematode C. elegans. However, little is known regarding the spatiotemporal changes in autophagic activity in such long-lived mutants as well as in wild-type animals during normal aging. In a recent study, we report that autophagic activity decreases with age in several major tissues of wild-type C. elegans, including the intestine, body-wall muscle, pharynx, and nerve-ring neurons. Moreover, long-lived daf-2/insulin-signaling mutants and glp-1/Notch receptor mutants display increased autophagic activity, yet with different time- and tissue-specific differences. Notably, the intestine appears to be a critical tissue in which autophagy contributes to longevity in glp-1, but not in daf-2 mutants. Our findings indicate that autophagic degradation is reduced with age, possibly with distinct kinetics in different tissues, and that long-lived mutants increase autophagy in a tissue-specific manner, resulting in increased life span.  相似文献   

10.
11.
12.
【背景】生物受到温度胁迫时,热激蛋白被诱导并在短时间内大量产生,可以使受损的蛋白质恢复正常构象,增强生物对逆境胁迫的耐受性。【目的】初步探究草菇热激蛋白60(Vvhsp60)与低温耐受性的关系,为深入开展草菇不耐低温特性的遗传改良奠定理论基础。【方法】对Vvhsp60进行生物信息学分析,以低温敏感型草菇菌株V23及耐低温菌株VH3为实验材料,利用实时荧光定量PCR技术分析低温胁迫及热激诱导后在低温下草菇菌丝体中Vvhsp60基因的表达水平。【结果】草菇Vvhsp60编码蛋白不存在信号肽,不属于分泌蛋白,在线粒体和细胞质内发挥生物学作用,属于双向跨膜蛋白。低温处理显著提高了V23与VH3菌丝体中Vvhsp60基因的表达量,而且VH3中的表达量显著高于V23,推测Vvhsp60基因的表达量高可能有助于增强草菇对低温胁迫的耐受性。经热激处理后两菌株Vvhsp60基因的表达量显著高于各自未热激处理的对照组,表明热激处理可诱导Vvhsp60基因的表达。【结论】Vvhsp60与草菇低温耐受性相关,并且热激可以诱导Vvhsp60基因的表达。  相似文献   

13.
14.
15.
《Autophagy》2013,9(12):1975-1982
The physiological relationship between autophagy and programmed cell death during C. elegans development is poorly understood. In C. elegans, 131 somatic cells and a large number of germline cells undergo programmed cell death. Autophagy genes function in the removal of somatic cell corpses during embryogenesis. Here we demonstrated that autophagy activity participates in germ-cell death induced by genotoxic stress. Upon γ ray treatment, fewer germline cells execute the death program in autophagy mutants. Autophagy also contributes to physiological germ-cell death and post-embryonic cell death in ventral cord neurons when ced-3 caspase activity is partially compromised. Our study reveals that autophagy activity contributes to programmed cell death during C. elegans development.  相似文献   

16.
《Autophagy》2013,9(2):93-95
The role of autophagy in ageing regulation has been suggested based on studies in C. elegans, in which knockdown of the expression of bec-1 (ortholog of the yeast and mammalian autophagy genes ATG6/VPS30 and beclin 1, respectively) shortens the lifespan of the daf-2(e1370) mutant C. elegans. However, Beclin1/ATG6 is also known to be involved in other cellular functions in addition to autophagy. In the current study, we knocked down two other autophagy genes, atg-7 and atg-12, in C. elegans using RNAi. We showed that RNAi shortened the lifespan of both wild type and daf-2 mutant C. elegans, providing strong support for a role of autophagy in ageing regulation.  相似文献   

17.
Environmental and physiological stresses such as heat shock, oxidative stress, heavy metals, and pathogenic conditions induce cellular stress response. This response is often mediated by heat shock proteins that function as molecular chaperones. A stress-inducible cochaperone, Sti1/Hop (Hsp organizer protein), functions as an adaptor protein that simultaneously binds with Hsp70 and Hsp90 to transfer client proteins from Hsp70 to Hsp90. However, the biological role of STI-1 in vivo is poorly understood in metazoans. Here, we report the characterization of the Caenorhabditis elegans homolog of Sti1/Hop, which is approximately 56% identical with human STI-1. C. elegans STI-1 (CeSTI-1) is expressed in the pharynx, intestine, nervous system, and muscle from larvae to adults. Analysis of proteins immunoprecipitated with anti-STI-1 antibody by mass spectrometry revealed that CeSTI-1 can bind with both Hsp70 and Hsp90 homologs like its mammalian counterpart. sti-1 expression is elevated by heat stress, and an sti-1(jh125) null mutant shows decreased fertility under heat stress conditions. These mutants also show abnormally high lethality in extreme heat and may be functioning with DAF-16 in thermotolerance. In addition, sti-1(jh125) mutants have a shortened life span. Our results confirm that CeSTI-1 is a cochaperone protein that may maintain homeostatic functions during episodes of stress and can regulate longevity in nematodes.  相似文献   

18.
19.
Coordination of neurite extension with surrounding glia development is critical for neuronal function, but the underlying molecular mechanisms remain poorly understood. Through a genome-wide mutagenesis screen in C. elegans, we identified dyf-4 and daf-6 as two mutants sharing similar defects in dendrite extension. DAF-6 encodes a glia-specific patched-related membrane protein that plays vital roles in glial morphogenesis. We cloned dyf-4 and found that DYF-4 encodes a glia-secreted protein. Further investigations revealed that DYF-4 interacts with DAF-6 and functions in a same pathway as DAF-6 to regulate sensory compartment formation. Furthermore, we demonstrated that reported glial suppressors of daf-6 could also restore dendrite elongation and ciliogenesis in both dyf-4 and daf-6 mutants. Collectively, our data reveal that DYF-4 is a regulator for DAF-6 which promotes the proper formation of the glial channel and indirectly affects neurite extension and ciliogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号