首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An AMP-activated kinase (AMPK) signaling pathway is activated during myocardial ischemia and promotes cardiac fatty acid (FA) uptake and oxidation. Similarly, the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is also triggered by myocardial ischemia, but its function in FA metabolism remains unclear. Here, we explored the role of CaMKII in FA metabolism during myocardial ischemia by investigating the effects of cardiac CaMKII on AMPK-acetyl-CoA carboxylase (ACC), malonyl CoA decarboxylase (MCD), and FA translocase cluster of differentiation 36 (FAT/CD36), as well as cardiac FA uptake and oxidation. Moreover, we tested whether CaMKII and AMPK are binding partners. We demonstrated that diseased hearts from patients with terminal ischemic heart disease displayed increased phosphorylation of CaMKII, AMPK, and ACC and increased expression of MCD and FAT/CD36. AC3-I mice, which have a genetic myocardial inhibition of CaMKII, had reduced gene expression of cardiac AMPK. In post-MI (myocardial infarction) AC3-I hearts, AMPK-ACC phosphorylation, MCD and FAT/CD36 levels, cardiac FA uptake, and FA oxidation were significantly decreased. Notably, we demonstrated that CaMKII interacted with AMPK α1 and α2 subunits in the heart. Additionally, AC3-I mice displayed significantly less cardiac hypertrophy and apoptosis 2 weeks post-MI. Overall, these findings reveal a unique role for CaMKII inhibition in repressing FA metabolism by interacting with AMPK signaling pathways, which may represent a novel mechanism in ischemic heart disease.  相似文献   

2.
3.
Derangements in skeletal muscle fatty acid (FA) metabolism associated with insulin resistance in obesity appear to involve decreased FA oxidation and increased accumulation of lipids such as ceramides and diacylglycerol (DAG). We investigated potential lipid-related mechanisms of metformin (Met) and/or exercise for blunting the progression of hyperglycemia/hyperinsulinemia and skeletal muscle insulin resistance in female Zucker diabetic fatty rats (ZDF), a high-fat (HF) diet-induced model of diabetes. Lean and ZDF rats consumed control or HF diet (48 kcal %fat) alone or with Met (500 mg/kg), with treadmill exercise, or with both exercise and Met interventions for 8 wk. HF-fed ZDF rats developed hyperglycemia (mean: 24.4 +/- 2.1 mM), impairments in muscle insulin-stimulated glucose transport, increases in the FA transporter FAT/CD36, and increases in total ceramide and DAG content. The development of hyperglycemia was significantly attenuated with all interventions, as was skeletal muscle FAT/CD36 abundance and ceramide and DAG content. Interestingly, improvements in insulin-stimulated glucose transport and increased GLUT4 transporter expression in isolated muscle were seen only in conditions that included exercise training. Reduced FA oxidation and increased triacylglycerol synthesis in isolated muscle were observed with all ZDF rats compared with lean rats (P < 0.01) and were unaltered by therapeutic intervention. However, exercise did induce modest increases in peroxisome proliferator-activated receptor-gamma coactivator-1alpha, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activity. Thus reduction of skeletal muscle FAT/CD36 and content of ceramide and DAG may be important mechanisms by which exercise training blunts the progression of diet-induced insulin resistance in skeletal muscle.  相似文献   

4.
Chronic activation of β3-adrenergic receptors (β3-ARs) expands the catabolic activity of both brown and white adipose tissue by engaging uncoupling protein 1 (UCP1)-dependent and UCP1-independent processes. The present work examined de novo lipogenesis (DNL) and TG/glycerol dynamics in classic brown, subcutaneous “beige,” and classic white adipose tissues during sustained β3-AR activation by CL 316,243 (CL) and also addressed the contribution of TG hydrolysis to these dynamics. CL treatment for 7 days dramatically increased DNL and TG turnover similarly in all adipose depots, despite great differences in UCP1 abundance. Increased lipid turnover was accompanied by the simultaneous upregulation of genes involved in FAS, glycerol metabolism, and FA oxidation. Inducible, adipocyte-specific deletion of adipose TG lipase (ATGL), the rate-limiting enzyme for lipolysis, demonstrates that TG hydrolysis is required for CL-induced increases in DNL, TG turnover, and mitochondrial electron transport in all depots. Interestingly, the effect of ATGL deletion on induction of specific genes involved in FA oxidation and synthesis varied among fat depots. Overall, these studies indicate that FAS and FA oxidation are tightly coupled in adipose tissues during chronic adrenergic activation, and this effect critically depends on the activity of adipocyte ATGL.  相似文献   

5.
Fulminant hepatic failure (FHF) is a potentially fatal liver disease that is associated with intrahepatic infiltration of inflammatory cells. As the receptor of polyunsaturated long chain fatty acids, GPR120 can regulate cell differentiation, proliferation, metabolism, and immune response. However, whether GPR120 is involved in FHF remains unknown. Using Propionibacterium acnes (P. acnes)-primed, LPS-induced FHF in mice, we found that interference with GPR120 activity using pharmacological agonist attenuated the severity of the liver injury and mortality of FHF in mice, while a lack of GPR120 exacerbated the disease. GPR120 activation potently alleviated FHF and led to decreased T helper (Th) 1 cell response and expansion of regulatory T cells (Tregs). Interestingly, GPR120 agonist didn’t directly target T cells, but dramatically induced a distinct population of CD11c+MHC IIlowCD80lowCD86low regulatory DCs in the livers of FHF mice. GPR120 was found to restrict HIF-1α-dependent glycolysis. The augmented HIF-1α stabilization caused by GPR120 antagonism or deletion could be attenuated by the inhibition of ERK or by the activation of AMPK. Through the analysis of the clinical FHF, we further confirmed the activation of GPR120 was negatively associated with the severity in patients. Our findings indicated that GPR120 activation has therapeutic potential in FHF. Strategies to target GPR120 using agonists or free fatty acids (FFAs) may represent a novel approach to FHF treatment.Subject terms: Inflammation, Hepatitis  相似文献   

6.
7.
Fatty acid transport proteins are present on the plasma membrane and are involved in the uptake of long-chain fatty acids into skeletal muscle. The present study determined whether acute endurance exercise increased the plasma membrane content of fatty acid transport proteins in rat and human skeletal muscle and whether the increase was accompanied by an increase in long-chain fatty acid transport in rat skeletal muscle. Sixteen subjects cycled for 120 min at ~60 ± 2% Vo(2) peak. Two skeletal muscle biopsies were taken at rest and again following cycling. In a parallel study, eight Sprague-Dawley rats ran for 120 min at 20 m/min, whereas eight rats acted as nonrunning controls. Giant sarcolemmal vesicles were prepared, and protein content of FAT/CD36 and FABPpm was measured in human and rat vesicles and whole muscle homogenate. Palmitate uptake was measured in the rat vesicles. In human muscle, plasma membrane FAT/CD36 and FABPpm protein contents increased 75 and 20%, respectively, following 120 min of exercise. In rat muscle, plasma membrane FAT/CD36 and FABPpm increased 20 and 30%, respectively, and correlated with a 30% increase in palmitate transport following 120 min of running. These data suggest that the translocation of FAT/CD36 and FABPpm to the plasma membrane in rat skeletal muscle is related to the increase in fatty acid transport and oxidation that occurs with endurance running. This study is also the first to demonstrate that endurance cycling induces an increase in plasma membrane FAT/CD36 and FABPpm content in human skeletal muscle, which is predicted to increase fatty acid transport.  相似文献   

8.
Genetic linkage studies implicated deficiency of CD36, a membrane fatty acid (FA) transporter, in the hypertriglyceridemia and hyperinsulinemia of the spontaneously hypertensive rat (SHR). In this study we determined whether loss of CD36 function in FA uptake is a primary determinant of the SHR phenotype. In vivo, tissue distribution of iodinated, poorly oxidized beta-methyliodophenyl pentadecanoic acid (BMIPP) was examined 2 h after its intravenous injection. Fatty acid transport was also measured in vitro over 20 to 120 s in isolated adipocytes and cardiomyocytes obtained from SHR and from a congenic line (SHRchr4) that incorporates a piece of chromosome 4 containing wild-type CD36. SHR heart and adipose tissue exhibited defects in FA uptake and in conversion of diglycerides to triglycerides that are similar to those observed in the CD36 null mouse. However, a key difference in SHR tissues is that fatty acid oxidation is much more severely impaired than fatty acid esterification, which may underlie the 4-5-fold accumulation of free BMIPP measured in SHR muscle. Studies with isolated adipocytes and cardiomyocytes directly confirmed both the defect in FA transport and the fact that it is underestimated by BMIPP. Heart, oxidative muscle, and adipose tissue in the SHR exhibited a large increase in glucose uptake measured in vivo using [(18)F]fluorodeoxyglucose. Supplementation of the diet with short-chain fatty acids, which do not require CD36-facilitated transport, eliminated the increase in glucose uptake, the hyperinsulinemia, and the heart hypertrophy in the SHR. This indicated that lack of metabolic energy consequent to deficient FA uptake is the primary defect responsible for these abnormalities. Hypertension was not alleviated by the supplemented diet suggesting it is unrelated to fuel supply and any contribution of CD36 deficiency to this trait may be more complex to determine. It may be worth exploring whether short-chain FA supplementation can reverse some of the deleterious effects of CD36 deficiency in humans, which may include hypertrophic cardiomyopathy.  相似文献   

9.
Decreasing muscle phosphagen content through dietary administration of the creatine analog beta-guanidinopropionic acid (beta-GPA) improves skeletal muscle oxidative capacity and resistance to fatigue during aerobic exercise in rodents, similar to that observed with endurance training. Surprisingly, the effect of beta-GPA on muscle substrate metabolism has been relatively unexamined, with only a few reports of increased muscle GLUT4 content and insulin-stimulated glucose uptake/clearance in rodent muscle. The effect of chronically decreasing muscle phophagen content on muscle fatty acid (FA) metabolism (transport, oxidation, esterification) is virtually unknown. The purpose of the present study was to examine changes in muscle substrate metabolism in response to 8 wk feeding of beta-GPA. Consistent with other reports, beta-GPA feeding decreased muscle ATP and total creatine content by approximately 50 and 90%, respectively. This decline in energy charge was associated with simultaneous increases in both glucose (GLUT4; +33 to 45%, P < 0.01) and FA (FAT/CD36; +28 to 33%, P < 0.05) transporters in the sarcolemma of red and white muscle. Accordingly, we also observed significant increases in insulin-stimulated glucose transport (+47%, P < 0.05) and AICAR-stimulated palmitate oxidation (+77%, P < 0.01) in the soleus muscle of beta-GPA-fed animals. Phosphorylation of AMPK (+20%, P < 0.05), but not total protein, was significantly increased in both fiber types in response to muscle phosphagen reduction. Thus the content of sarcolemmal transporters for both of the major energy substrates for muscle increased in response to a reduced energy charge. Increased phosphorylation of AMPK may be one of the triggers for this response.  相似文献   

10.
The low-molecular-mass, cytosolic heart-type fatty acid-binding protein (H-FABP) is thought to be required for shuttling FA through the cytosol. Therefore, we examined the effects of an H-FABP-null mutation on FA and carbohydrate metabolism in isolated soleus muscle at rest and during a period of increased metabolic demand (30-min contraction). There were lower concentrations of creatine phosphate (-41%), ATP (-22%), glycogen (-34%), and lactate (-31%) (P < 0.05) in H-FABP-null soleus muscles, but no differences in citrate synthase and beta-3-hydroxyacyl-CoA dehydrogenase activities or in the intramuscular triacylglycerol (TAG) depots. There was a 43% increase in subsarcolemmal mitochondria in H-FABP-null solei. FA transport was reduced by 30% despite normal content of sarcolemmal long-chain fatty acid transporters fatty acid translocase/CD36 and plasma membrane-associated FABP transport proteins. Compared with wild-type soleus muscles, the H-FABP-null muscles at rest hydrolyzed less TAG (-22%), esterified less TAG (-49%), and oxidized less palmitate (-71%). The H-FABP-null soleus muscles retained a substantial capacity to increase FA metabolism during contraction (TAG esterification by +72%, CO2 production by +120%), although these rates remained lower (TAG esterification -26% and CO2 production -64%) than in contracting wild-type soleus muscles. Glycogen utilization during 30 min of contraction did not differ, whereas glucose oxidation was lower at rest (-24%) and during contraction (-32%) in H-FABP-null solei. Although these studies demonstrate that the absence of H-FABP alters rates of FA metabolism, it is also apparent that glucose oxidation is downregulated. The substantial increase in FA metabolism in contracting H-FABP-null muscle may indicate that other FABPs are also present, a possibility that we were not able to completely eliminate.  相似文献   

11.
Sarcolemmal CD36 facilitates myocardial fatty acid (FA) uptake, which is markedly reduced in CD36-deficient rodents and humans. CD36 also mediates signal transduction events involving a number of cellular pathways. In taste cells and macrophages, CD36 signaling was recently shown to regulate store-responsive Ca2+ flux and activation of Ca2+-dependent phospholipases A2 that cycle polyunsaturated FA into phospholipids. It is unknown whether CD36 deficiency influences myocardial Ca2+ handling and phospholipid metabolism, which could compromise the heart, typically during stresses. Myocardial function was examined in fed or fasted (18–22 h) CD36−/− and WT mice. Echocardiography and telemetry identified conduction anomalies that were associated with the incidence of sudden death in fasted CD36−/− mice. No anomalies or death occurred in WT mice during fasting. Optical imaging of perfused hearts from fasted CD36−/− mice documented prolongation of Ca2+ transients. Consistent with this, knockdown of CD36 in cardiomyocytes delayed clearance of cytosolic Ca2+. Hearts of CD36−/− mice (fed or fasted) had 3-fold higher SERCA2a and 40% lower phospholamban levels. Phospholamban phosphorylation by protein kinase A (PKA) was enhanced after fasting reflecting increased PKA activity and cAMP levels in CD36−/− hearts. Abnormal Ca2+ homeostasis in the CD36−/− myocardium associated with increased lysophospholipid content and a higher proportion of 22:6 FA in phospholipids suggests altered phospholipase A2 activity and changes in membrane dynamics. The data support the role of CD36 in coordinating Ca2+ homeostasis and lipid metabolism and the importance of this role during myocardial adaptation to fasting. Potential relevance of the findings to CD36-deficient humans would need to be determined.  相似文献   

12.
For ~40 years it has been widely accepted that (i) the exercise-induced increase in muscle fatty acid oxidation (FAO) is dependent on the increased delivery of circulating fatty acids, and (ii) exercise training-induced FAO up-regulation is largely attributable to muscle mitochondrial biogenesis. These long standing concepts were developed prior to the recent recognition that fatty acid entry into muscle occurs via a regulatable sarcolemmal CD36-mediated mechanism. We examined the role of CD36 in muscle fuel selection under basal conditions, during a metabolic challenge (exercise), and after exercise training. We also investigated whether CD36 overexpression, independent of mitochondrial changes, mimicked exercise training-induced FAO up-regulation. Under basal conditions CD36-KO versus WT mice displayed reduced fatty acid transport (-21%) and oxidation (-25%), intramuscular lipids (less than or equal to -31%), and hepatic glycogen (-20%); but muscle glycogen, VO(2max), and mitochondrial content and enzymes did not differ. In acutely exercised (78% VO(2max)) CD36-KO mice, fatty acid transport (-41%), oxidation (-37%), and exercise duration (-44%) were reduced, whereas muscle and hepatic glycogen depletions were accelerated by 27-55%, revealing 2-fold greater carbohydrate use. Exercise training increased mtDNA and β-hydroxyacyl-CoA dehydrogenase similarly in WT and CD36-KO muscles, but FAO was increased only in WT muscle (+90%). Comparable CD36 increases, induced by exercise training (+44%) or by CD36 overexpression (+41%), increased FAO similarly (84-90%), either when mitochondrial biogenesis and FAO enzymes were up-regulated (exercise training) or when these were unaltered (CD36 overexpression). Thus, sarcolemmal CD36 has a key role in muscle fuel selection, exercise performance, and training-induced muscle FAO adaptation, challenging long held views of mechanisms involved in acute and adaptive regulation of muscle FAO.  相似文献   

13.
CD36 is a multifunctional immuno-metabolic receptor with many ligands. One of its physiological functions in the heart is the high-affinity uptake of long-chain fatty acids (FAs) from albumin and triglyceride rich lipoproteins. CD36 deletion markedly reduces myocardial FA uptake in rodents and humans. The protein is expressed on endothelial cells and cardiomyocytes and at both sites is likely to contribute to FA uptake by the myocardium. CD36 also transduces intracellular signaling events that influence how the FA is utilized and mediate metabolic effects of FA in the heart. CD36 transduced signaling regulates AMPK activation in a way that adjusts oxidation to FA uptake. It also impacts remodeling of myocardial phospholipids and eicosanoid production, effects exerted via influencing intracellular calcium (iCa2 +) and the activation of phospholipases. Under excessive FA supply CD36 contributes to lipid accumulation, inflammation and dysfunction. However, it is also important for myocardial repair after injury via its contribution to immune cell clearance of apoptotic cells. This review describes recent progress regarding the multiple actions of CD36 in the heart and highlights those areas requiring future investigation. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

14.
Fatty acid translocase (FAT/CD36) is a transport protein with a high affinity for long-chain fatty acids (LCFA). It was recently identified on rat skeletal muscle mitochondrial membranes and found to be required for palmitate uptake and oxidation. Our aim was to identify the presence and elucidate the role of FAT/CD36 on human skeletal muscle mitochondrial membranes. We demonstrate that FAT/CD36 is present in highly purified human skeletal mitochondria. Blocking of human muscle mitochondrial FAT/CD36 with the specific inhibitor sulfo-N-succimidyl-oleate (SSO) decreased palmitate oxidation in a dose-dependent manner. At maximal SSO concentrations (200 muM) palmitate oxidation was decreased by 95% (P<0.01), suggesting an important role for FAT/CD36 in LCFA transport across the mitochondrial membranes. SSO treatment of mitochondria did not affect mitochondrial octanoate oxidation and had no effect on maximal and submaximal carnitine palmitoyltransferase I (CPT I) activity. However, SSO treatment did inhibit palmitoylcarnitine oxidation by 92% (P<0.001), suggesting that FAT/CD36 may be playing a role downstream of CPT I activity, possibly in the transfer of palmitoylcarnitine from CPT I to carnitine-acylcarnitine translocase. These data provide new insight regarding human skeletal muscle mitochondrial fatty acid (FA) transport, and suggest that FAT/CD36 could be involved in the cellular and mitochondrial adaptations resulting in improved and/or impaired states of FA oxidation.  相似文献   

15.
Docosahexaenoic acid (DHA) is an endogenous ligand of G protein-coupled receptor 120 (GPR120). However, the mechanisms underlying DHA action are poorly understood. In this study, DHA stimulated glucose uptake in the skeletal muscles in an AMP-activated protein kinase (AMPK)-dependent manner. GPR120-mediated increase in intracellular Ca2+ was critical for DHA-mediated AMPK phosphorylation and glucose uptake. In addition, DHA stimulated GLUT4 translocation AMPK-dependently. Inhibition of AMPK and Ca2+/calmodulin-dependent protein kinase kinase blocked DHA-induced glucose uptake. DHA and GW9508, a GPR120 agonist, increased GPR120 expression. DHA-mediated glucose uptake was not observed in GPR120 knockdown conditions. DHA increased AMPK phosphorylation, glucose uptake, and intracellular Ca2+ concentration in primary cultured myoblasts. Taken together, these results indicated that the beneficial metabolic role of DHA was attributed to its ability to regulate glucose via the GPR120-mediated AMPK pathway in the skeletal muscles.  相似文献   

16.
17.
18.
Increasing evidence has implicated the membrane protein CD36 (FAT) in binding and transport of long chain fatty acids (FA). To determine the physiological role of CD36, we examined effects of its overexpression in muscle, a tissue that depends on FA for its energy needs and is responsible for clearing a major fraction of circulating FA. Mice with CD36 overexpression in muscle were generated using the promoter of the muscle creatine kinase gene (MCK). Transgenic (MCK-CD36) mice had a slightly lower body weight than control litter mates. This reflected a leaner body mass with less overall adipose tissue, as evidenced by magnetic resonance spectroscopy. Soleus muscles from transgenic animals exhibited a greatly enhanced ability to oxidize fatty acids in response to stimulation/contraction. This increased oxidative ability was not associated with significant alterations in histological appearance of muscle fibers. Transgenic mice had lower blood levels of triglycerides and fatty acids and a reduced triglyceride content of very low density lipoproteins. Blood cholesterol levels were slightly lower, but no significant decrease in the cholesterol content of major lipoprotein fractions was measured. Blood glucose was significantly increased, while insulin levels were similar in the fed state and higher in the fasted state. However, glucose tolerance curves, determined at 20 weeks of age, were similar in control and transgenic mice. In summary, the study documented, in vivo, the role of CD36 to facilitate cellular FA uptake. It also illustrated importance of the uptake process in muscle to overall FA metabolism and glucose utilization.  相似文献   

19.
Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 +/- 0.6 yr; body mass index: 23.8 +/- 1.0 kg/m(2); maximal O(2) consumption: 3.85 +/- 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-alpha(2); P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.  相似文献   

20.
Oxidized phospholipids have been shown to exhibit pleiotropic effects in numerous biological contexts. For example, 1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (azPC), an oxidized phospholipid formed from alkyl phosphatidylcholines, is a peroxisome proliferator–activated receptor gamma (PPARγ) nuclear receptor agonist. Although it has been reported that PPARγ agonists including thiazolidinediones can induce plasma volume expansion by enhancing renal sodium and water retention, the role of azPC in renal transport functions is unknown. In the present study, we investigated the effect of azPC on renal proximal tubule (PT) transport using isolated PTs and kidney cortex tissues and also investigated the effect of azPC on renal sodium handling in vivo. We showed using a microperfusion technique that azPC rapidly stimulated Na+/HCO3 cotransporter 1 (NBCe1) and luminal Na+/H+ exchanger (NHE) activities in a dose-dependent manner at submicromolar concentrations in isolated PTs from rats and humans. The rapid effects (within a few minutes) suggest that azPC activates NBCe1 and NHE via nongenomic signaling. The stimulatory effects were completely blocked by specific PPARγ antagonist GW9662, ERK kinase inhibitor PD98059, and CD36 inhibitor sulfosuccinimidyl oleate. Treatment with an siRNA against PPAR gamma completely blocked the stimulation of both NBCe1 and NHE by azPC. Moreover, azPC induced ERK phosphorylation in rat and human kidney cortex tissues, which were completely suppressed by GW9662 and PD98059 treatments. These results suggest that azPC stimulates renal PT sodium-coupled bicarbonate transport via a CD36/PPARγ/mitogen-activated protein/ERK kinase/ERK pathway. We conclude that the stimulatory effects of azPC on PT transport may be partially involved in volume expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号