首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The spermatozoon of Ascidia callosa has a head with a wedge-shaped tip. Between the nuclear envelope and the plasmalemma, at the tip of the head, there are one or two previously undescribed vesicles, 45 to 55 nm in diameter. These vesicles have the characteristics of an acrosome. Their role in the process of fertilization has not been determined. Ultrastructural studies of sperm activation are needed, but claims that the spermatozoa of ascidians do not have an acrosome should be reconsidered.Behind the tip of the sperm there are pores in the nuclear envelope. This part of the envelope also contains a dense band of amorphous material that may have a supportive function. A nearly identical structure, associated with pores has been found in the spermatozoon of Boltenia villosa. An analysis of the nuclear envelope of Ascidia callosa indicates that the same structure has previously been misinterpreted as an acrosome in the spermatozoon of Ascidia nigra.  相似文献   

2.
Scanning electron microscopy was used to describe the structure of the spermatozoon and spermatophore of Farfantepenaeus subtilis. The spermatophore showed characteristics similar to those of members of the subgenus Farfantepenaeus. This included an extensive glandular epithelium and a lack of a wing. The sperm mass, which was distributed at the periphery of the spermatophore, was surrounded by a large amount of acellular material. The spermatozoon has a spherical main body and a well-defined acrosomal region with a single spike, which was bent in some cells. The immotile sperm cells have an average length of 7.1?±?0.6?μm. Information on sperm location within the spermatophore will assist in the efficient extraction of the sperm mass during dissection.  相似文献   

3.
Abstract The testis of Mimagoniates barberiis bipartite. Spermatogenic tissue is restricted to the anterior part. The posterior part of the testis is devoid of spermatogenic tissue and contains numerous efferent ducts filled with mature sperm. Cells in germinal cysts develop synchronously, sperm nuclei and flagella become oriented parallel in the late stages of spermiogenesis. In the caudal portion of the aspermatogenic part all sperms are arranged into unencapsulated sperm bundles — spermatozeugmata. Two types of spermatozeugmata are found both in the caudal portion of the testis and in milt. In the larger, spindle–shaped type, sperm flagella form the spindle tips. In the smaller ones, which have approximately a length of spermatozoon, the sperm are parallel and approximately in register. In both types sperm heads are arranged parallel. A mature spermatozoon is flail–shaped. The sperm head is highly elongated and situated alongside the flagellum, the tip of the head is directed backwards. Large mitochondria are situated on one side of the elongated nucleus only and form the tip of the head. Live spermatozoa move with the centriolar part ahead. Both testis and spermatozoon structure as well as formation of spermatozeugmata in M. barberiare highly derived features which perhaps evolved as adaptations to internal fertilization.  相似文献   

4.
The aim of the present study was to determine the morphological changes that take place in the male and female gametes during in vivo fertilization in the Australian marsupial, the fat-tailed dunnart, Sminthopsis crassicaudata. Plastic sections were cut of sperm and eggs recovered from the oviducts of recently mated individuals, and light microscopy of thick, and transmission EM of thin, sections was carried out. It was found that, before penetration of the zona, the spermatozoon came to lie along the outer surface with its rostral tip forming a depression in the zona substance. During penetration, zona material was packed tightly around the spermatozoon, and no large hole was formed. A spermatozoon within the perivitelline space had made contact with the oolemma by way of its apical tip. In a spermatozoon partly incorporated into the ooplasm, fusion appeared to have taken place between its plasma membrane and that of the oolemma. Mucoid coat material became deposited outside the zona at this time; its existence and/or the release of cortical granule content probably prevented polyspermy. Once inside the egg cytoplasm, the sperm head sometimes travelled a considerable distance before chromatin decondensation occurred. In addition, it appeared to rotate somewhat on its axis at this time. Finally, some membranous structures were found around two condensed sperm heads in the ooplasm, which may have been part of the pronuclear envelope. Thus this study on in vivo fertilization in the dunnart documents, for the first time, some aspects of fertilization in an Australian marsupial as seen with the transmission electron microscope; it indicates a few differences from those previously found for the American opossum.  相似文献   

5.
Lundin  Kennet  Hendelberg  Jan 《Hydrobiologia》1998,383(1-3):197-205
Results from a transmission electron microscope study of the spermiogenesis and spermatozoon of Meara stichopi (Nemertodermatida, Platyhelminthes) indicate that the sperm type of the Nemertodermatida has evolved from the primitive metazoan sperm type rather than from an aberrant biflagellar sperm type as found in many other flatworms. The spirally coiled mitochondrial derivative in the mature spermatozoon develops from two large oval mitochondria in the early spermatid stages. A single flagellum grows out from a peripheral basal body adjacent to a perpendicularly placed accessory centriole. The basal body moves to a distal depression of the nucleus, and becomes equipped with an anchoring fibre apparatus. Most of the flagellum becomes axially incorporated into the developing spermatid. No trace of a second flagellum was found in any stage of the spermiogenesis. Rounded vesicles appear around the proximal, tapering end of the elongating nucleus. Most probably these vesicles form a thin acrosomal structure in the mature spermatozoon. No dense bodies, characteristic of many other ‘turbellarian’ flatworm sperm types, were found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The spermatozoon of Rhynchocinetes typus is atypical because it is nonmotile and lacks head and tail. The body has a rigid spike. Neither an acrosome-like structure nor changes during gamete interaction which could be interpreted as an acrosome reaction have been observed in this species. Nevertheless, the spermatozoon exerts a lytic effect on the extracellular envelope of the egg, and in this way it penetrates through egg-coats, forming a channel. In this research we found that crude spermatozoa extracts analyzed by gelatin SDS-PAGE developed one band of protease activity that was completely inhibited by SBTI (soybean trypsin inhibitor) and pAB (p-aminobenzamidine). In sperm extracts an enzymatic activity was determined, using BAEE (N-benzoil-L-arginine ethyl ester), but not ATEE, as substrate. This activity was inhibited by SBTI and pAB. We observed that in vitro fertilization was inhibited by spermatozoon incubation with the trypsin inhibitors SBTI, PMSF (phenyl-methanesulphonyl fluoride), and pAB. Additionally, we observed that when whole isolated egg-coats were incubated with sperm extract and then analyzed by SDS-PAGE, one band of the egg-coats disappeared. These results have been interpreted as sperm trypsin-like enzyme participation in R. typus sperm passage through the egg-coats. Mol. Reprod. Dev. 46:581–586, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
8.
Sperm ultrastructure has been studied in three species of the taxa Mecoptera and Siphonaptera. The spermatozoon of the scorpion fly Panorpa germanica shows an apical bilayered acrosome, a helicoidal nucleus, a centriolar region and a 9+2 flagellar axoneme helicoidally arranged around a long mitochondrial derivative. A second mitochondrial derivative is very short and present only in the centriolar region. A single accessory body is present and it is clearly formed as a prolongation of the centriole adjunct material. Two lateral lamellae run parallel to the nucleus. The snow fly Boreus hyemalis has a conventional sperm structure and shows a bilayered acrosome, a long nucleus, a centriolar region, two mitochondrial derivatives and two accessory bodies. The axoneme is of the 9+2 type and is flattened at the tail tip. Both P. germanica and B. hyemalis have two longitudinal extra-axonemal rods and have a glycocalyx consisting of longitudinal parallel ridges or filaments. The spermatozoon of the flea Ctenocephalides canis has a long apical bilayered acrosome, a nucleus, a centriolar region, a 9+2 axoneme wound around two unequally sized mitochondrial derivatives, and two triangular accessory bodies. In the posterior tail end the flagellar axoneme disorganises and a few microtubular doublets run helicoidally around the remnant mitochondrial derivative. The glycocalyx consists of fine transverse striations. In all three species, the posterior tail tip is characterised by a dense matrix embedding the disorganised axoneme. From this comparative analysis of the sperm structure it is concluded that Mecoptera, as traditionally defined, is monophyletic and that B. hyemalis is a member of Mecoptera rather than of Siphonaptera.  相似文献   

9.
The external and cytoplasmic surfaces of the sea urchin egg at fertilization have been examined with the scanning electron microscope (SEM). The outside events were documented by glueing eggs to polylysine coated glass plates, adding sperm and fixing rapidly. To reveal the inner aspects of the surface as the sperm travels through it to reach the egg cytoplasm, the fertilized egg surface was isolated in 0.3 M KC1, 0.35 M glycine, 2 mM MgCl2, 2 mM EGTA, pH 7.5, glued onto a polylysine-coated plate and processed for the SEM. The events of spermatozoon attachment, membrane fusion, sperm entry, rotation and detachment into the egg cytoplasm as well as the associated cortical changes are described. The egg cortex is revealed to be a uniform network of fibrous bundles.The spermatozoon initially attaches to the egg surface by the acrosomal filament. As membrane fusion occurs between the gametes, the plasma membrane of the egg engulfs the sperm, the cortical granules start to discharge and a spreading surface deformation, possibly caused by a cortical contraction, is initiated. The perpendicularly entering spermatozoon is surrounded by a cluster of elongate microvilli which appear to have 235 nm vesicles associated with their bases. The sperm is prevented by the cortex from directly entering the egg cytoplasm and lies upon the egg surface between the plasma membrane and the matrix of cortical fibers. It is subsequently rotated additionally to enter the egg cytoplasm with the posterior end first. A scar is left in the cortex where the spermatozoon penetrated. The egg cortex is shown to consist of 50–200 nm uniformly arranged fibers, and its thickness ranges from 0.2 to 0.5 μm. It is speculated that this structure may be contractile.  相似文献   

10.
The ultrastructure of the spermatozoon of Geogarypus nigrimanus (Arachnida, Pseudoscorpionida) is described. The spermatozoon is composed of a small elliptic nucleus, a short flagellum and a very long and complex acrosome. In the male genital ducts, as in other studied species of pseudoscorpions, the sperm components are rolled up to form a globular structure enclosed in a cyst wall. The Geogarypus spermatozoon with a reduced flagellum and a giant acrosome seems to be evolutionary more advanced than spermatozoa from other pseudoscorpions.  相似文献   

11.
The sperm head morphology and tail length of two species of Australian rock rats, Zyzomys argurus and Zyzomys pedunculatus, are presented. In Z. argurus the sperm head has an apical hook together with two ventral processes extending from the upper concave surface that are largely composed of cytoskeletal material, and the sperm tail is about 135 µm in length. By contrast, in Z. pedunculatus the sperm head is paddle‐shaped with the nucleus capped by an acrosome that has a large apical segment and is surrounded by a thin layer of cytoskeletal material, and the sperm tail is only around 85 µm in length. Since the structure of the spermatozoon of Z. argurus is similar to that of most of the old endemic Australian rodents it is presumed to be the ancestral condition within the Zyzomys genus with that of Z. pedunculatus being highly derived and showing convergence with the sperm structure in some other orders of mammals.  相似文献   

12.
Summary Sperm ultrastructure and spermiogenesis of the enteropneust hemichordate Saxipendium coronatum conforms to the general pattern of the prototype spermatozoon found in many phyla. The sperm is about 29 m long, including head, middle piece, and tail. The Saxipendium spermatozoon has some unique features. The head is pyramidal in shape and the nucleus has four frontal ridges radiating from the base of the acrosomal region. The acrosome is composed of a large acrosomal vesicle surrounded by periacrosomal material. The acrosomal region projects about 1 m in front of the nucleus and has a width at the base of 1.5 m. The middle piece is dish-shaped and contains a large mitochondrial mass surrounding the centriolar region. The centriolar region is partially located in a centriolar fossa at the basal part of the nucleus. In spermatids, an anchoring fiber apparatus is observed surrounding the centriolar region. The distal ends of the fibers are attached to the plasmalemma by electron-dense thickenings. The tail is a simple flagellum. The sperm of Saxipendium and the small eggs found in the female suggest non-specialized external fertilization and embryogeny leading to a planktotrophic larva. The main results of the fine structure of the spermatozoon in Saxipendium are summarized in Fig. 12.Abbreviations used in the figures an antrum - av acrosomal vesicle - ax axoneme - d distal centriole - ep epidermis - f flagellum - gp gonopore - m mitochondrion - mp middle piece - n nucleus - p proximal centriole - per periacrosomal material - sp sperm - te testis - vac vacuolated cells  相似文献   

13.
Echinaster (Echinaster) sepositus is one of the most abundant sea stars in western Mediterranean rocky bottoms, yet its reproductive biology remains virtually unknown. Here we report the ultrastructure of its gametogenesis over 2 consecutive years. It is a gonochoric species with an annual reproductive cycle spawning gametes in late summer and early autumn. Each arm of every individual contained two gonads (dark red in females and yellow in males). In both sexes, the gonad was a single, large sac composed of several smaller sacs. The gonad wall consisted of two multilayered sacs, outer and inner, separated by the genital haemal sinus. The histology of the gonad wall was consistent with that found in other asteroids. Oogenesis was continuous during the year, but eggs were spawned only in late summer. Oocytes were in close relationship with follicular cells that are suggested to transfer nutrients to the oocytes. Spermatogenesis was restricted to 5–6 months in spring-summer. It occurred in columns with an axial interstitial cell supporting each column, and producing processes towards the lumen that remained connected to spermatogenic cells by intercellular junctions. Developing sperm cells were found along the length of the column, while spermatozoa were found free in the testis lumen. Spermatogenesis followed the pattern described for echinoderms, to give rise to an acrosome-bearing, round-shaped spermatozoon. The histology and cytology of the reproductive process in E. sepositus followed the general pattern found for asteroids.  相似文献   

14.
Ultrastructural observations are presented for some of the stages occurring during fertilization in Dionchus remorae (a gill parasite of Echeneis naucrates) and are believed to be the first published concerning a monogenean. Fertilized female germ cells were found in the ovary. Several loops of the spermatozoon were present within the oocyte cytoplasm; the sperm nucleus became electron lucent and the parallel peripheral doublets of the axonemes became increasingly divergent. The cortical granules in the oocyte were not released immediately after penetration by the spermatozoon. The homogeneity apparently found in the oocyte ultrastructure and process of fertilization in the monogeneans and digeneans contrasts with the variety that exists in their sperm ultrastructure.  相似文献   

15.
The spermatozoon and some spermatid stages of Siboglinum (Pogonophora) have been examined by light and electron microscopy. In the spermatozoon a helical acrosome, a helical nucleus and a “body” with axonema follow each other in normal sequence. Head and tail are joined by a very short neck region containing two modified centrioles. The posterior portion of the nucleus is surrounded by a mitochondrial sheath consisting of three tightly wound mitochondrial helices. In the main portion of the tail the 9+2 unit is sorrounded by a granular sheath of dense material. In the neck region a centriole adjunct develops into a dense substance containing about nine rods. At an early stage, when the centriolar apparatus and flagellum become associated with the nucleus, three large mitochondria with fairly regular cristae are seen at the base of the nucleus. A well developed Golgi apparatus is present in early stages. Rows of microtubules are observed encircling the spermatid nucleus. Compared with the primitive type of spermatozoon the pogonophore sperm shows elongated and specialized nucleus, acrosome and mitochondria. It is concluded that the ancestral form must have had a fairly primitive spermatozoon and that evolution has proceeded towards a modified sperm with complicated spiral structure in connection with the evolution of a modified biology of fertilization, viz. specialized spermatophores. It is not known how the spermatophore discharges the spermatozoa nor how the spermatozoa find their way to the eggs. Two kinds of sperms are produced in the gonads of Siboglinum. The atypical sperm is smaller than the typical one.  相似文献   

16.
Spermatogenesis has been analyzed by electronmicroscopy in eleven species of nemertean worms.Nemertean testes are serially repeated sacs thatcontain germ cells as well as somatic cells ofenigmatic function. In members of the class Enopla,intragonadal muscle cells and distinct clones ofdeveloping sperm are typically present in the testes,whereas such muscles and clones tend to be absent or lessconspicuous in species belonging to the class Anopla.During spermiogenesis, either a compact (5 µm long)or an elongate (6–40 µm long) sperm head develops, andan acrosome forms at the anterior end of the head. Themature spermatozoon of all benthic species examinedalso possesses a mitochondrial component and a tailconsisting of a single flagellum with a 9+2arrangement of microtubules. In the pelagic enoplanNectonemertes, however, numerous flagella occurin the testes but are rarely observed attached tosperm heads, owing either to poor preservation or thepossible sloughing of tails during spermatogenesis.The morphologies of the sperm produced by variousspecies seem to be related to the modes offertilization, as compact-headed sperm are associatedwith external fertilization, and elongate-headed spermare often found in species that utilize internalfertilization or pseudocopulation. However, somenemerteans utilize an external mode of fertilizationand yet produce elongate-headed sperm. The possiblesignificance of such sperm is discussed.  相似文献   

17.
The structural organization of the spermatozoon from the Eurasian beaver, Castor fiber (Family: Castoridae), was determined and compared to that of other sciuromorph rodents. The beaver spermatozoon has a head, which is variable in form but usually paddle-shaped, with a small nucleus and very large acrosome, and a tail that is relatively short compared to that of most other rodents. Transmission electron microscopy indicates that in most testicular spermatozoa the acrosome projects apically, although in a few it becomes partly flexed. During the final stages of maturation, however, the acrosome becomes highly folded so that the apical segment comes to lie alongside part of the acrosome that occurs lateral to the nucleus, with, in some cases, fusion taking place between the outer acrosomal membranes. The sperm nucleus is wedge-shaped, being broader basally and narrowing apically with an occasional large nuclear vacuole occurring. This spermatozoon structure is markedly different from that found in the other species of Geomyoidea, which is the sister group of the Castoridae. The findings thus emphasize the highly divergent nature of the beaver spermatozoon and demonstrate that, within the proposed Infraorder Castorimorpha, very large differences in sperm structure have evolved.  相似文献   

18.
The structure of the spermatozoon of Acesta oophaga (Bivalvia) is described by transmission electron microscopy. This cold-seep species produces ect-aquasperm, confirming that it is a broadcast spawner. The head of the sperm consists of a small, rounded, electron-dense nucleus, capped by a short conical acrosome, the contents of which are differentiated. The mid-piece contains a pair of orthogonally arranged centrioles surrounded by five spherical mitochondria. The gonad of one individual contained eggs and sperm, which supports the hypothesis that A. oophaga is a sequential hermaphrodite.  相似文献   

19.
Breed, W.G. and Leigh, C.M. 2010. The spermatozoon of the Old Endemic Australo‐Papuan and Philippine rodents – its morphological diversity and evolution.—Acta Zoologica (Stockholm) 91 : 279–294 The spermatozoon of most murine rodents contains a head in which there is a characteristic apical hook, whereas most old endemic Australian murines, which are part of a broader group of species that also occur in New Guinea and the Philippines, have a far more complex sperm form with two additional ventral processes. Here we ask the question: what is the sperm morphology of the New Guinea and Philippines species and what are the trends in evolutionary changes of sperm form within this group? The results show that, within New Guinea, most species have a highly complex sperm morphology like the Australian rodents, but within the Pogonomys Division some species have a simpler sperm morphology with no ventral processes. Amongst the Philippines species, many have a sperm head with a single apical hook, but in three Apomys species the sperm head contains two additional small ventral processes, with two others having cockle‐shaped sperm heads. When these findings are plotted on a molecular phylogeny, the results suggest that independent and convergent evolution of highly complex sperm heads containing two ventral processes has evolved in several separate lineages. These accessory structures may support the sperm head apical hook during egg coat penetration.  相似文献   

20.
The spermatozoon of the polychaete Tomopteris helgolandica is of an aberrant type with two flagella, each measuring about 40μm. The nucleus is roughly conical and weakly bent. At the anterior end it is rounded and covered only by the nuclear and plasma membranes. Membraneous, electron-dense structures are applied laterally to the nucleus. These structures may have a helical arrangement. The middle piece contains about ten mitochondria, two centrioles, and two centriolar satellite complexes. The centriolar regions are connected with the posterior part of the nucleus. The axonemes of the two tail flagella lack the usual central complex with central tubules, radial spokes, or related structures. No arms seem to be present on the A tubules of the doublets. In the middle piece the tail flagella are surrounded by invaginations of the plasma membrane forming flagellar canals. The sperm has a bilateral symmetry whereas the primitive sperm has a radial symmetry. The occurrence of two tail flagella in this spermatozoon has no phylogenetical connection with biflagellate spermatozoa in other animal groups. A series of mutations has resulted in the development of two flagella emerging from the two centrioles, the lack of a central complex in the axoneme, and the lack of a typical acrosome. In the Polychaeta, sperm structure is generally more related to function that to phylogenetics. During swimming the spermatozoon of Tomopteris rotates around its longitudinal axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号