首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Licochalcone E (lico E) is a retrochalcone isolated from the root of Glycyrrhiza inflata. Retrochalcone compounds evidence a variety of pharmacological profiles, including anticancer, antiparasitic, antibacterial, antioxidative and superoxide-scavenging properties. In this study, we evaluated the biological effects of lico E on adipocyte differentiation in vitro and obesity-related diabetes in vivo. We employed 3T3-L1 preadipocyte and C3H10T1/2 stem cells for in vitro adipocyte differentiation study and diet-induced diabetic mice for in vivo study. The presence of lico E during adipogenesis induced adipocyte differentiation to a significant degree, particularly at the early induction stage. Licochalcone E evidenced weak, but significant, peroxisome proliferator-activated receptor gamma (PPARγ) ligand-binding activity. Two weeks of lico E treatment lowered blood glucose levels and serum triglyceride levels in the diabetic mice. Additionally, treatment with lico E resulted in marked reductions in adipocyte size and increases in the mRNA expression levels of PPARγ in white adipose tissue (WAT). Licochalcone E was also shown to significantly stimulate Akt signaling in epididymal WAT. In conclusion, lico E increases the levels of PPARγ expression, at least in part, via the stimulation of Akt signals and functions as a PPARγ partial agonist, and this increased PPARγ expression enhances adipocyte differentiation and increases the population of small adipocytes, resulting in improvements in hyperglycemia and hyperlipidemia under diabetic conditions.  相似文献   

3.
The anti-diabetic potential of Petalonia binghamiae extract (PBE) was evaluated in vivo. Dietary administration of PBE to streptozotocin (STZ)-induced diabetic mice significantly lowered blood glucose levels and improved glucose tolerance. The mode of action by which PBE attenuated diabetes was investigated in vitro using 3T3-L1 cells. PBE treatment stimulated 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation. At the molecular level, peroxisome proliferator-activated receptor γ (PPARγ) and terminal marker protein aP2, as well as the mRNA of GLUT4 were up-regulated by PBE. In mature adipocytes, PBE significantly stimulated the uptake of glucose and the expression of insulin receptor substrate-1 (IRS-1). Furthermore, PBE increased PPARγ luciferase reporter gene activity in COS-1 cells. Taken together, these results suggest that the in vivo anti-diabetic effect of PBE is mediated by both insulin-like and insulin-sensitizing actions in adipocytes.  相似文献   

4.
Lin S  Han Y  Shi Y  Rong H  Zheng S  Jin S  Lin SY  Lin SC  Li Y 《Cell research》2012,22(4):746-756
Peroxisome proliferator-activated receptor gamma (PPARγ) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPARγ agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPARγ target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPARγ ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPARγ ligands in the treatment of insulin resistance.  相似文献   

5.
6.
7.
Peroxisome proliferator-activated receptor-α (PPARα) is a dietary lipid sensor, whose activation results in hypolipidemic effects. In this study, we investigated whether PPARα activation affects energy metabolism in white adipose tissue (WAT). Activation of PPARα by its agonist (bezafibrate) markedly reduced adiposity in KK mice fed a high-fat diet. In 3T3-L1 adipocytes, addition of GW7647, a highly specific PPARα agonist, during adipocyte differentiation enhanced glycerol-3-phosphate dehydrogenase activity, insulin-stimulated glucose uptake, and adipogenic gene expression. However, triglyceride accumulation was not increased by PPARα activation. PPARα activation induced expression of target genes involved in FA oxidation and stimulated FA oxidation. In WAT of KK mice treated with bezafibrate, both adipogenic and FA oxidation-related genes were significantly upregulated. These changes in mRNA expression were not observed in PPARα-deficient mice. Bezafibrate treatment enhanced FA oxidation in isolated adipocytes, suppressing adipocyte hypertrophy. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα was recruited to promoter regions of both adipogenic and FA oxidation-related genes in the presence of GW7647 in 3T3-L1 adipocytes. These findings indicate that the activation of PPARα affects energy metabolism in adipocytes, and PPARα activation in WAT may contribute to the clinical effects of fibrate drugs.  相似文献   

8.
Obesity is directly associated with cancer, cardiovascular injury, hypertension, and type 2 diabetes. To date, Yamamoto identified that hot water extracts of edible Chrysanthemum (EC) induced cell size reduction, up‐regulation of adiponectin expression, and glucose absorption inhibition in 3T3‐L1 cells during adipocyte differentiation. Furthermore, EC showed antidiabetic effects such as improvement in insulin resistance and the down‐regulation of the blood glucose level and liver lipid content in type 2 diabetes model mice. In this study, we attempted to identify the antidiabetic components in EC. The methanol fraction from EC that showed relatively strong biological activity was purified by chromatography to obtain acacetin‐7‐O‐glucoside, apigenin‐7‐O‐glucoside, kaempferol‐7‐O‐glucoside, and naringenin‐7‐O‐glucoside. Among the isolated compounds and their aglycones, naringenin (NA) and naringenin‐7‐O‐glucoside (NAG) up‐regulated the intracellular accumulation of lipid and adiponectin‐secretion and down‐regulated the diameter of 3T3‐L1 cells during adipocyte differentiation. Because the PPARγ antagonist BADGE and PI3K/Akt inhibitors wortmannin and LY29004 inhibited the intracellular lipid accumulation by NA and NAG associated with adipogenesis, it was considered that NA and NAG showed the above‐mentioned activities via the activation of PPARγ as well as phosphorylation of the PI3K/Akt pathway.  相似文献   

9.
10.
The present study explored the involvement of miR-302a in adipocyte differentiation via interaction with 3′-untranslated region of peroxisome proliferator-activated receptor gamma (PPARγ) mRNA. In differentiating 3T3-L1 adipocytes, expression of miR-302a was negatively correlated with that of the adipogenic gene aP2 and PPARγ. Overexpression of miR-302a inhibited adipogenic differentiation with lipid accumulation, and inversely anti-miR-302a increased the differentiation. In silico analysis revealed a complementary region of miR-302a seed sequence in 3′-UTR of PPARγ mRNA. Luciferase assay showed the direct interaction of miR-302a with PPARγ at the cellular level. The miR-302a inhibition of adipocyte differentiation was reversed by PPARγ overexpression. These findings suggest that miR-302a might be a negative regulator of adipocyte differentiation and that the dysregulation of miR-302a should lead to metabolic disorders.  相似文献   

11.
12.
The peroxisome proliferator-activated receptor γ (PPARγ) plays an important role in adipocyte differentiation and insulin sensitivity. Its ligand rosiglitazone has anti-diabetic effect but is frequently accompanied with some severe unwanted effects. The aim of the current study was to compare the anti-diabetic effect of CMHX008, a novel thiazolidinedione-derivative, with rosiglitazone. A luciferase assay was used to evaluate in vitro PPARγ activation. 3T3-L1 cells were used to examine adipocyte differentiation. High fat diet (HFD) mice were used to examine in vivo insulin sensitivity. The mRNA levels were evaluated by real-time RT-PCR. Serum biochemical and hormonal variables were assessed using a clinical chemistry analyser. CMHX008 displayed a moderate PPARγ agonist activity, and promoted 3T3-L1 preadipocyte differentiation with lower activity than rosiglitazone. CMHX008 regulated the expression of PPARγ target genes in a different manner from rosiglitazone. CMHX008 increased the expression and secretion of adiponectin with the similar efficacy as rosiglitazone, but only 25% as potent as rosiglitazone for the induction of adipocyte fatty acid binding protein. Treatment of CMHX008 and rosiglitazone protected mice from high fat diet (HFD)-induced glucose intolerance, hyperinsulinemia and inflammation. CMHX008 reduced the mRNA expression of M1 macrophage markers, and significantly increased the expressions of M2 markers. In conclusion, CMHX008 shared the comparable insulin-sensitizing effects as rosiglitazone with lower adipogenic capacity and might potentially be developed into an effective agent for the treatment of diabetes and metabolic disorders.  相似文献   

13.
14.
AimsPrevious studies have shown that isorhamnetin has anti-adipogenic effects in mouse 3T3-L1 cells. This study was conducted to elucidate the inhibitory mechanisms of isorhamnetin during adipogenic differentiation of human adipose tissue-derived stem cells (hAMSCs).Main methodsThe effect of isorhamnetin on adipogenic differentiation of hAMSCs was quantified by Oil Red O staining and a triglyceride assay. In addition, real-time PCR and Western blot were used to determine the expression of adipogenesis-related genes.Key findingsIsorhamnetin inhibited the adipocyte differentiation of hAMSCs. Additionally, when the effects of Wnt antagonists that promote adipogenesis were evaluated, isorhamnetin was found to down-regulate the mRNA levels of sFRP1 and Dkk1, but had no effect on the mRNA levels of sFRP2, sFRP3, sFRP4 and Dkk3. Isorhamnetin also inhibited the expression of Wnt receptor and co-receptor genes. Furthermore, isorhamnetin increased the protein levels of β-catenin, an effector molecule of Wnt signaling, but had no effect on the mRNA levels of β-catenin. The phosphorylation level of GSK 3β was also increased by isorhamnetin. These results were confirmed by the fact that the expression of c-myc, cyclin D1 and PPARδ, which are target genes of β-catenin, was upregulated by isorhamnetin. Moreover, isorhamnetin reduced the mRNA expression levels of C/EBPα and PPARγ, which are known to be inhibited by c-myc or by cyclin D1 and PPARδ, respectively.SignificanceOur results indicate that isorhamnetin inhibits the adipogenic differentiation of hAMSCs and that its mechanisms are mediated by the stabilization of β-catenin.  相似文献   

15.
Fibroblastic preadipocyte cells are recruited to differentiate into new adipocytes during the formation and hyperplastic growth of white adipose tissue. Peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, is expressed at low levels in preadipocytes, and its levels increase dramatically and rapidly during the differentiation process. However, the mechanisms controlling the dynamic and selective expression of PPARγ in the adipocyte lineage remain largely unknown. We show here that the zinc finger protein Evi1 increases in preadipocytes at the onset of differentiation prior to increases in PPARγ levels. Evi1 expression converts nonadipogenic cells into adipocytes via an increase in the predifferentiation levels of PPARγ2, the adipose-selective isoform of PPARγ. Conversely, loss of Evi1 in preadipocytes blocks the induction of PPARγ2 and suppresses adipocyte differentiation. Evi1 binds with C/EBPβ to regulatory sites in the Pparγ locus at early stages of adipocyte differentiation, coincident with the induction of Pparγ2 expression. These results indicate that Evi1 is a key regulator of adipogenic competency.  相似文献   

16.
17.
The peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipogenesis and is medically important for its connections to obesity and the treatment of type II diabetes. Activation of this receptor by certain natural or xenobiotic compounds has been shown to stimulate adipogenesis in vitro and in vivo. Obesogens are chemicals that ultimately increase obesity through a variety of potential mechanisms, including activation of PPARγ. The first obesogen for which a definitive mechanism of action has been elucidated is the PPARγ and RXR activator tributyltin; however, not all chemicals that activate PPARγ are adipogenic or correlated with obesity in humans. There are multiple mechanisms through which obesogens can target PPARγ that may not involve direct activation of the receptor. Ligand-independent mechanisms could act through obesogen-mediated post-translational modification of PPARγ which cause receptor de-repression or activation. PPARγ is active in multipotent stem cells committing to the adipocyte fate during fat cell development. By modifying chromatin structure early in development, obesogens have the opportunity to influence the promoter activity of PPARγ, or the ability of PPARγ to bind to its target genes, ultimately biasing the progenitor pool towards the fat lineage. Obesogens that act by directly or indirectly activating PPARγ, by increasing the levels of PPARγ protein, or enhancing its recruitment to promoters of key genes in the adipogenic pathway may ultimately play an important role in adipogenesis and obesity.  相似文献   

18.
This study evaluates the effects of bone morphogenetic protein 2 (BMP-2) and all trans retinoic acid (ATRA) on adipogenesis in primary mouse embryo fibroblasts (MEFs). In BMP-2-treated MEFs, lipid accumulation and substantial induction of the adipocyte specific marker 442-aP2 suggested the conversion of MEFs into adipocytes. Such adipogenesis was found to be mediated through sequential induction of C/EBPα, C/EBPβ, and PPARγ. Both the BMP/Smad and BMP/p38 pathways contributed to the adipocyte differentiation. Contrary to the effects of BMP-2, ATRA was demonstrated to inhibit adipocyte differentiation in MEFs. Semi-quantitative RT-PCR analysis revealed that ATRA caused a selective inhibition of both the basal and induction levels of C/EBPα and PPARγ, without altering the expression pattern of C/EBPβ. Taken together, these data suggest the roles of BMP-2 and ATRA in adipogenic differentiation of primary MEFs, and the possible molecular mechanism that involves the regulation of C/EBPα, C/EBPβ, and PPARγ.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号