首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prediabetic period in type I diabetes mellitus is characterized by the loss of first phase insulin release. This might be due to islet infiltration mediated by mononuclear cells and local release of cytokines, but the mechanisms involved are unknown. To determine the role of cytokines in insulin exocytosis, we have presently utilized total internal reflection fluorescence microscopy (TIRFM) to image and analyze the dynamic motion of single insulin secretory granules near the plasma membrane in live beta-cells exposed for 24 h to interleukin (IL)-1beta or interferon (IFN)-gamma. Immunohistochemistry observed via TIRFM showed that the number of docked insulin granules was decreased by 60% in beta-cells treated with IL-1beta, while it was not affected by exposure to IFN-gamma. This effect of IL-1beta was paralleled by a 50% reduction in the mRNA and the number of clusters of SNAP-25 in the plasma membrane. TIRF images of single insulin granule motion during a 15-min stimulation by 22 mm glucose in IL-1beta-treated beta-cells showed a marked reduction in the fusion events from previously docked granules during the first phase insulin release. Fusion from newcomers, however, was well preserved during the second phase of insulin release of IL-1beta-treated beta-cells. The present observations indicate that IL-1beta, but not IFN-gamma, has a preferential inhibitory effect on the first phase of glucose-induced insulin release, mostly via an action on previously docked granules. This suggests that beta-cell exposure to immune mediators during the course of insulitis might be responsible for the loss of first phase insulin release.  相似文献   

2.
Beta-Cell-rich pancreatic islets were microdissected from noninbred ob/obmice and exposed to the calcium ionophores X-537A and A-23187. X-537A differed from A-23187 in being a potent insulin secretagogue at non-stimulating glucose concentrations. Both ionophores inhibited the stimulation of insulin release obtained after adding 20 mM glucose to the incubation medium. The latter observation is consistent with the idea of a reduced beta-cell function when the Ca-2+ in the functionally important intracellular pool (s) exceeds a certain concentration. The ionophore inhibition of the glucose-stimulated insulin release may at least in part result from decreased formation of cyclic AMP, since X-537A proved to be as effective as L-epinephrine in reducing the islet content of this nucleotide in the presence of a phosphodiesterase inhibitor. The secretagogic action of X-537A at a low glucose concentration persisted when different ions were omitted from the incubation medium and was actually considerably enhanced in the absence of extracellular Ca-2+. The insulin-releasing action of X-537A was neither influenced by 3-O-methyglucose nor by drugs blocking the alpha or beta-adrenergic receptor sites. Exposure of the pancreatic beta-cells to metabolic inhibitors in concentrations which significantly reduced the secretory response to glucose, potentiated stimulation of insulin release by X-537A, suggesting that this effect may in part be accounted for by intracellular dissolution of secretory granules.  相似文献   

3.
Insulin secretory deficiency and glucose intolerance in Rab3A null mice   总被引:4,自引:0,他引:4  
Insulin secretory dysfunction of the pancreatic beta-cell in type-2 diabetes is thought to be due to defective nutrient sensing and/or deficiencies in the mechanism of insulin exocytosis. Previous studies have indicated that the GTP-binding protein, Rab3A, plays a mechanistic role in insulin exocytosis. Here, we report that Rab3A(-/-) mice develop fasting hyperglycemia and upon a glucose challenge show significant glucose intolerance coupled to ablated first-phase insulin release and consequential insufficient insulin secretion in vivo, without insulin resistance. The in vivo insulin secretory response to arginine was similar in Rab3A(-/-) mice as Rab3A(+/+) control animals, indicating a phenotype reminiscent of insulin secretory dysfunction found in type-2 diabetes. However, when a second arginine dose was given 10 min after, there was a negligible insulin secretory response in Rab3A(-/-) mice, compared with that in Rab3A(+/+) animals, that was markedly increased above that to the first arginine stimulus. There was no difference in beta-cell mass or insulin production between Rab3A(-/-) and Rab3A(+/+) mice. However, in isolated islets, secretagogue-induced insulin release (by glucose, GLP-1, glyburide, or fatty acid) was approximately 60-70% lower in Rab3A(-/-) islets compared with Rab3A(+/+) controls. Nonetheless, there was a similar rate of glucose oxidation and glucose-induced rise in cytosolic [Ca(2+)](i) flux between Rab3A(-/-) and Rab3A(+/+) islet beta-cells, indicating the mechanistic role of Rab3A lies downstream of generating secondary signals that trigger insulin release, at the level of secretory granule transport and/or exocytosis. Thus, Rab3A plays an important in vivo role facilitating the efficiency of insulin exocytosis, most likely at the level of replenishing the ready releasable pool of beta-granules. Also, this study indicates, for the first time, that the in vivo insulin secretory dysfunction found in type-2 diabetes can lie solely at the level of defective insulin exocytosis.  相似文献   

4.
Insulin is largely secreted as serial secretory bursts superimposed on basal release, insulin secretion is regulated through changes of pulse mass and frequency, and the insulin release pattern affects insulin action. Coordinate insulin release is preserved in the isolated perfused pancreas, suggesting intrapancreatic coordination. However, occurrence of glucose concentration oscillations may influence the process in vivo, as it does for ultradian oscillations. To determine if rapid pulsatile insulin release may be induced by minimal glucose infusions and to define the necessary glucose quantity, we studied six healthy individuals during brief repetitive glucose infusions of 6 and 2 mg x kg(-1) x min(-1) for 1 min every 10 min. The higher dose completely synchronized pulsatile insulin release at modest plasma glucose changes ( approximately 0.3 mM = approximately 5%), with large ( approximately 100%) amplitude insulin pulses at every single glucose induction (n = 54) at a lag time of 2 min (P < 0.05), compared with small (10%) and rare (n = 3) uninduced insulin excursions. The smaller glucose dose induced insulin pulses at lower significance levels and with considerable breakthrough insulin release. Periodicity shift from either 7- to 12-min or from 12- to 7-min intervals between consecutive glucose (6 mg x kg(-1) x min(-1)) infusions in six volunteers revealed rapid frequency changes. The orderliness of insulin release as estimated by approximate entropy (1.459 +/- 0.009 vs. 1.549 +/- 0.027, P = 0.016) was significantly improved by glucose pulse induction (n = 6; 6 mg x kg(-1) x min(-1)) compared with unstimulated insulin profiles (n = 7). We conclude that rapid in vivo oscillations in glucose may be an important regulator of pulsatile insulin secretion in humans and that the use of an intermittent pulsed glucose induction to evoke defined and recurrent insulin secretory signals may be a useful tool to unveil more subtle defects in beta-cell glucose sensitivity.  相似文献   

5.
The possible relevance of changes in extracellular and/or intracellular pH to the insulinotropic action of L-arginine and L-homoarginine was investigated in rat pancreatic islets. A rise in extracellular pH from 7.0 to 7.4 and 7.8 augmented the secretory response to these cationic amino acids whilst failing to affect the uptake of L-arginine by islet cells and whilst decreasing the release of insulin evoked by D-glucose. Under these conditions, a qualified dissociation was also observed between secretory data and 45Ca net uptake. Moreover, at high extracellular pH, the homoarginine-induced increase in 86Rb outflow from prelabelled islets rapidly faded out, despite sustained stimulation of insulin release. The cationic amino acids failed to affect the intracellular pH of islet cells, whether in the absence or presence of D-glucose and whether at normal or abnormal extracellular pH. These findings argue against the view that the secretory response to L-arginine would be related to either a change in cytosolic pH or the accumulation of this positively charged amino acid in the beta-cell. Nevertheless, they suggest that the yet unidentified target for L-arginine and its non-metabolized analogue in islet cells displays pH-dependency with optimal responsiveness at alkaline pH.  相似文献   

6.
1. Incubation of islets of Langerhans in vitro in the presence of colchicine produced a progressive inhibition of the insulin-secretory response to glucose, which was dependent on the time of incubation. 2. The uptake of [3-H]colchicine by islet cells was a rapid process, equilibrium being reached in less than 30 min. Part of the colchicine taken up was bound to protein material, which was recovered largely in a post-microsomal supernatant fraction prepared from the islets. In contrast with this rapid uptake, the binding of colchicine by islet-cell proteins in intact islets or in islet homogenates was a slow process, and equilibrium was not reached for 60-90 min. After an initial 30 min delay, the time-course of the binding of [3-H]colchicine to islet-cell proteins paralleled that for the inhibitory effect of colchicine on insulin release. 3. Some purification of the colchicine-binding material present in islet homogenates could be achieved by precipitation of the protein with 2mM-CaCl2 (2.8-fold). However, ion-exchange chromatography on DEAE-Sephadex produced a further 27-fold purification on elution with 0.6M-NaCl. 4. Colchicine-binding protein prepared from islets by ion-exchange chromatography showed an intrinsic association constant for colchicine of 1.4muM and an apparent molecular weight on gel filtration of 110000. 5. These results suggest that colchicine-binding protein in islet cells closely resembles tubulin extracted from the other tissues. The delayed effectiveness of colchicine in inhibiting insulin secretion is not due to poor penetration of colchicine into the cells but rather to slow binding of the alkaloid to islet-cell tubulin. It seems likely that, as in other tissues, this binding prevents polymerization of the tubulin into microtubules, and thus interferes with the release process.  相似文献   

7.
The FRK tyrosine kinase has previously been shown to transduce beta-cell cytotoxic signals in response to cytokines and streptozotocin and to promote beta-cell proliferation and an increased beta-cell mass. We therefore aimed to further evaluate the effects of overexpression of FRK tyrosine kinase in beta-cells. A transgenic mouse expressing kinase-active FRK under control of the insulin promoter (RIP-FRK) was studied with regard to islet endocrine function and vascular morphology. Mild glucose intolerance develops in RIP-FRK male mice of at least 4 mo of age. This effect is accompanied by reduced glucose-stimulated insulin secretion in vivo and reduced second-phase insulin secretion in response to glucose and arginine upon pancreas perfusion. Islets isolated from the FRK transgenic mice display a glucose-induced insulin secretory response in vitro similar to that of control islets. However, islet blood flow per islet volume is decreased in the FRK transgenic mice. These mice also exhibit a reduced islet capillary lumen diameter as shown by electron microscopy. Total body weight and pancreas weight are not significantly affected, but the beta-cell mass is increased. The data suggest that long-term expression of active FRK in beta-cells causes an in vivo insulin-secretory defect, which may be the consequence of islet vascular abnormalities that yield a decreased islet blood flow.  相似文献   

8.
A high level of nitric oxide (NO) produced by inducible NO synthase (iNOS) is involved in pancreatic beta-cell dysfunction and apoptosis. In the present study, we examined whether iNOS is also expressed in beta cells after induction of acute pancreatitis (AP) in the rat. Pancreatic islets taken from AP animals and incubated for 60 min in the presence of 20.0 mmol/l glucose showed a decreased insulin secretory response to glucose. The basal insulin release at 1.0 mmol/l glucose was also moderately reduced. Experiments on the dynamics of insulin secretion from perfused pancreas revealed an impairment of both first and second phase of glucose-stimulated insulin release after the induction of AP. Confocal microscopy demonstrated that most of the beta cells in pancreas of rat with AP expressed strong immunoreactivity for iNOS. This was further confirmed by biochemical and Western blot analysis that showed a marked increase in iNOS protein expression and enzyme activity concomitant with a modest reduction in the cNOS protein and activity. Although the mechanisms underlying the defective insulin secretory response of beta cells seen during the early stage of AP are complex, the present finding suggests that the expression of iNOS and a marked iNOS-derived NO production in the beta cells may play at least a contributory role in the impairment of beta-cell function.This study was supported by the Swedish Medical Research Council (14X-4286), the Swedish Diabetes Association, and the Crafoord, Albert Påhlsson and Magnus Bergvall Foundations  相似文献   

9.
Islet Neogenesis Associated Protein (INGAP) increases pancreatic beta-cell mass and potentiates glucose-induced insulin secretion. Here, we investigated the effects of the pentadecapeptide INGAP-PP in adult cultured rat islets upon the expression of proteins constitutive of the K(+)(ATP) channel, Ca(2+) handling, and insulin secretion. The islets were cultured in RPMI medium with or without INGAP-PP for four days. Thereafter, gene (RT-PCR) and protein expression (Western blotting) of Foxa2, SUR1 and Kir6.2, cytoplasmic Ca(2+) ([Ca(2+)](i)), static and dynamic insulin secretion, and (86)Rb efflux were measured. INGAP-PP increased the expression levels of Kir6.2, SUR1 and Foxa2 genes, and SUR1 and Foxa2 proteins. INGAP-PP cultured islets released significantly more insulin in response to 40 mM KCl and 100 muM tolbutamide. INGAP-PP shifted to the left the dose-response curve of insulin secretion to increasing concentrations of glucose (EC(50) of 10.0+/-0.4 vs. 13.7+/-1.5 mM glucose of the controls). It also increased the first phase of insulin secretion elicited by either 22.2 mM glucose or 100 microM tolbutamide and accelerated the velocity of glucose-induced reduction of (86)Rb efflux in perifused islets. These effects were accompanied by a significant increase in [Ca(2+)](i) and the maintenance of a considerable degree of [Ca(2+)](i) oscillations. These results confirm that the enhancing effect of INGAP-PP upon insulin release, elicited by different secretagogues, is due to an improvement of the secretory function in cultured islets. Such improvement is due, at least partly, to an increased K(+)(ATP) channel protein expression and/or changing in the kinetic properties of these channels and augmented [Ca(2+)](i) response. Accordingly, INGAP-PP could potentially be used to maintain the functional integrity of cultured islets and eventually, for the prevention and treatment of diabetes.  相似文献   

10.
Spontaneous high-frequency insulin oscillations are easily entrainable to exogenous glucose in vitro and in vivo, but this property is lost in type 2 diabetes (2-DM). We hypothesized that this lack of entrainment in 2-DM would be specific to glucose. This was tested in nine control and ten 2-DM subjects. Serial blood sampling at 1-min intervals was carried out for 60 min in the basal state and for 120 min while small (1-60 mg/kg) boluses of arginine were injected intravenously at exactly 29-min intervals. Samples were analyzed for insulin concentrations, and time series analysis was carried out using spectral analysis. In control subjects, the mean period of basal plasma insulin oscillations was 10.3 +/- 1.3 min and was entrained by arginine to a mean period of 14.9 +/- 0.6 min (P < 0.00001 vs. basal). Similarly, in 2-DM subjects, spontaneous insulin oscillations were entrained by arginine; mean basal insulin period was 10.0 +/- 1.0 min and 14.5 +/- 1.8 min with arginine boluses (P < 0.00001). All of the primary peaks observed in spectral analysis were statistically significant (P < 0.05). Percent total power of primary peaks ranged from 17 to 68%. Thus arginine boluses entrain spontaneous high-frequency insulin oscillations in 2-DM subjects. This represents a distinct and striking difference from the resistance of the beta-cell to glucose entrainment in 2-DM. We conclude that loss of entrainment of spontaneous high-frequency insulin oscillations in 2-DM is likely a glucose-specific manifestation of beta-cell secretory dysfunction.  相似文献   

11.
The intestinal peptides GLP-1 and GIP potentiate glucose-mediated insulin release. Agents that increase GLP-1 action are effective therapies in type 2 diabetes mellitus (T2DM). However, GIP action is blunted in T2DM, and GIP-based therapies have not been developed. Thus, it is important to increase our understanding of the mechanisms of GIP action. We developed mice lacking GIP-producing K cells. Like humans with T2DM, “GIP/DT” animals exhibited a normal insulin secretory response to exogenous GLP-1 but a blunted response to GIP. Pharmacologic doses of xenin-25, another peptide produced by K cells, restored the GIP-mediated insulin secretory response and reduced hyperglycemia in GIP/DT mice. Xenin-25 alone had no effect. Studies with islets, insulin-producing cell lines, and perfused pancreata indicated xenin-25 does not enhance GIP-mediated insulin release by acting directly on the β-cell. The in vivo effects of xenin-25 to potentiate insulin release were inhibited by atropine sulfate and atropine methyl bromide but not by hexamethonium. Consistent with this, carbachol potentiated GIP-mediated insulin release from in situ perfused pancreata of GIP/DT mice. In vivo, xenin-25 did not activate c-fos expression in the hind brain or paraventricular nucleus of the hypothalamus indicating that central nervous system activation is not required. These data suggest that xenin-25 potentiates GIP-mediated insulin release by activating non-ganglionic cholinergic neurons that innervate the islets, presumably part of an enteric-neuronal-pancreatic pathway. Xenin-25, or molecules that increase acetylcholine receptor signaling in β-cells, may represent a novel approach to overcome GIP resistance and therefore treat humans with T2DM.  相似文献   

12.
We investigated the effects of exogenous cyclic GMP and stimulants of endogenous cyclic GMP accumulation on L-form (hepatic) pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) activity in isolated rat hepatocytes. Exogenous cyclic GMP (200 muM) reduced pyruvate kinase activity, but was less potent than exogenous cyclic AMP (50 muM) (Ki congruent to 120 muM vs. 30 muM, respectively), had a slower onset of action (1.0 vs. 0.3 min, respectively) and a less rapid maximal effect (5.0 vs. 1.0 min, respectively). Similar results were noted with dibutyryl cyclic GMP or dibutyryl cyclic AMP. 1.0 muM acetylcholine increased cyclic GMP concentrations in isolated hepatocytes from 233 +/- 16 to 447 +/- 3 pmol/g cell protein (P less than 0.001), but did not alter pyruvate kinase activity. Similar results were noted with carbamylcholine, NaN3 or acetylcholine plus eserine sulfate. The results suggest a differential effect of exogenous vs. endogenous cyclic GMP on L-form pyruvate kinase activity, and question the physiological relevance of observations with exogenous cyclic GMP in this system.  相似文献   

13.
The effects of p-chloromercuribenzoic acid and chloromercuribenzene-p-sulphonic acid on pancreatic islets were studied in vitro. Obese-hyperglycaemic mice were used as the source of microdissected islets containing more than 90% beta-cells. p-Chloromercuribenzoic acid and chloromercuribenzene-p-sulphonic acid stimulated insulin release at concentrations of 0.01mm or above. This stimulation was significantly inhibited by the omission of Ca(2+) or the addition of adrenaline, diazoxide or 2,4-dinitrophenol. p-Chloromercuribenzoic acid or chloromercuribenzene-p-sulphonic acid did not interfere with the insulin-releasing ability of glucose. Micro-perifusion experiments revealed that the release of insulin in response to organic mercurial occurred almost instantaneously, was reversible, and was biphasic. The two mercurials inhibited glucose transport as well as glucose oxidation, and increased the mannitol and sucrose spaces of isolated islets. Compared with the effects on insulin release, those on glucose transport and membrane permeability were characterized by a longer latency and/or required higher concentrations of organic mercurial. Apart from a seemingly higher proportion of beta-cells exhibiting certain degenerative features, in islets exposed to 0.1mm-chloromercuribenzene-p-sulphonic acid for 60min, no significant differences with respect to beta-cell fine structure were noted between non-incubated islets and islets incubated with chloromercuribenzene-p-sulphonic acid or glucose or both. It is suggested that insulin release may be regulated by relatively superficial thiol groups in the beta-cell plasma membrane.  相似文献   

14.
The release of carboxypeptidase H activity from isolated rat islets was determined and compared to the secretion of immunoreactive insulin. Analysis of pancreatic islet cells sorted into beta and non-beta types indicated that approx. 80% of islet carboxypeptidase H activity is present in the beta cell. The release of both insulin and carboxypeptidase H was stimulated markedly by increasing the glucose concentration in the medium from 2.8 to 28 mM. The fractional release was in accordance with the observed cellular distribution of both proteins. The secretory response was biphasic with time, with an initial rapid transient phase of release within 5 min, followed by a more sustained response. The concentration-dependencies of glucose stimulation of release of insulin and carboxypeptidase H were similar, with a threshold for stimulation around 5.6 mM-glucose and maximal stimulatory response at 16.7-28 mM-glucose. The release of both proteins was inhibited by 20 mM-mannoheptulose, removal of Ca2+ from the medium and addition of 1 microM-noradrenaline. The combination of 10 mM-4-methyl-2-oxopentanoate and 10 mM-glutamine stimulated the release of carboxypeptidase H and insulin, as did 3-isobutyl-1-methylxanthine and 350 microM-tolbutamide in the presence of glucose. It is evident that carboxypeptidase H is released from the pancreatic beta-cell by an exocytotic process from the same intracellular compartment as insulin. The release of carboxypeptidase H by a constitutive process was at best equivalent to 0.4%/h, or less than 2% of the maximal rate of release via the regulated pathway. It is concluded that carboxypeptidase H can be used as a sensitive index of beta-cell secretion and an alternative marker to the insulin-related peptides.  相似文献   

15.
Using the isolated perfused rat pancreas PGE2 (1 MUM and 10 muM) had no effect on basal or glucose (10 and 20 mM)-induced insulin release (IR). PGF2 alpha stimulated basal IR at 1 muM and inhibited IR at 10 muM. The glucose-induced IR was unaffected by this PG. Furosemide (5 and 10 mM) led to a monophastic IR at low glucose (glu) and to a potentiation of IR at high glu. Only high indomethacin (Indo) (50 microgram/ml) inhibited glu-induced IR. The stimulatory effect of furosemide on IR could not be inhibited by indomethacin. However mepacrine (0.1 mM) abolished the furosemide effect. Also glu-induced IR was inhibited by mepacrine. Acetylsalicylic acid (30 mg/100 ml) had no significant influence on glu-induced IR. These findings provide evidence that phospholipase activation rather than increased PG synthesis might primarily be involved in the secretory process of insulin.  相似文献   

16.
The release of atrial natriuretic peptide (ANP) in response to the application of neurohumoral agonists (neuromimetics) is directly demonstrated and quantified at the cellular level, using an ultrastructural assay developed to quantify secretion. The assay uses an in situ tannic acid perfusion technique to arrest the exocytosis of atrial secretory granules in the anesthetized rat. The animal is perfused with the neuromimetic, and secretory granules, which retain the capacity to undergo exocytosis throughout the subsequent 30 min tannic acid perfusion, accumulate at the cell surface in a state of fusion with the plasma membrane. Quantification of arrested granules thus provides a measure of the rate of granule release and allows the responses to different agents to be assessed. The actions of three different agents were investigated: isoproterenol, phenylephrine, and acetylcholine. In previously published studies, investigations of the actions of these agents on ANP release has produced unclear and sometimes contradictory results. Using our ultrastructural assay, it was found that during the 30 min perfusion period neither isoprenaline nor phenylephrine caused a significant change in the rate of secretory granule release, whereas acetylcholine significantly decreased the rate of granule release. A new model of secretion is proposed to integrate these findings with previous results and help clarify the complex picture of atrial natriuretic peptide release. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Type 2 diabetes results from impaired insulin action and beta-cell dysfunction. There are at least two components to beta-cell dysfunction: impaired insulin secretion and decreased beta-cell mass. To analyze how these two variables contribute to the progressive deterioration of metabolic control seen in diabetes, we asked whether mice with impaired beta-cell growth due to Irs2 ablation would be able to mount a compensatory response in the background of insulin resistance caused by Insr haploinsufficiency. As previously reported, approximately 70% of mice with combined Insr and Irs2 mutations developed diabetes as a consequence of markedly decreased beta-cell mass. In the initial phases of the disease, we observed a robust increase in circulating insulin levels, even as beta-cell mass gradually declined, indicating that replication-defective beta-cells compensate for insulin resistance by increasing insulin secretion. These data provide further evidence for a heterogeneous beta-cell response to insulin resistance, in which compensation can be temporarily achieved by increasing function when mass is limited. The eventual failure of compensatory insulin secretion suggests that a comprehensive treatment of beta-cell dysfunction in type 2 diabetes should positively affect both aspects of beta-cell physiology.  相似文献   

18.
To determine if the failure of purified beta-cells to secrete insulin in response to a glucose stimulus results from the absence of a cytoskeletal response, the effects of cytochalasins D and B on glucose-induced insulin release were investigated. Glucose alone failed to stimulate insulin release whereas glucose in the presence of glucagon, theophylline, cytochalasin D or B markedly potentiated insulin release. Cytochalasin D potentiated insulin secretion in a dose-dependent manner, and the combination of theophylline and cytochalasin D resulted in an insulin secretory response no greater than that produced by either agent alone. Both glucagon and theophylline are believed to mediate their effects via cAMP, however, cytochalasin D did not affect beta-cell cAMP levels. These results suggest that the inability of purified beta-cells to release insulin may result from the absence of the necessary modulation of the state of the microfilaments.  相似文献   

19.
To investigate whether exertion changes beta-cell reactivity to glucose stimulation and to characterize the beta-cell response to glucose in humans, we performed four sequential 90-min hyperglycemic clamps (7, 11, 20, and 35 mM). Concentrations of hormones and metabolites involved in glucoregulation were measured. Metabolic rate and substrate utilization were studied by indirect calorimetry. Studies were performed without prior exercise, as well as 2 and 48 h after 60 min of bicycle exercise at 150 W. We found 1) a progressive increase in insulin concentrations reaching 1,092 +/- 135 microU/ml with increasing glucose levels, 2) linear relationships between glucose concentrations and concentrations of C-peptide (r = 0.931 +/- 0.008) and proinsulin (r = 0.952 +/- 0.009),3) increased glucose oxidation with increasing glucose uptake, 4) increased plasma norepinephrine, O2 uptake, and beta-hydroxybutyrate at greater than or equal to 20 mM glucose, and 5) no change in beta-cell response or glucose-induced thermogenesis after one bout of exercise despite no compensating changes in plasma concentrations of hormones or metabolites. We conclude that the beta-cell has a very large secretory potential. Secretion of the beta-cell increases linearly with prolonged, graded hyperglycemia. The processing of proinsulin is unchanged during prolonged beta-cell stimulation. In addition, hyperglycemia and sympathetic nervous activity induced by hyperinsulinemia enhance metabolic rate and ketone body production. Finally, a single bout of exercise does not influence either the beta-cell response to intravenous glucose or glucose-induced thermogenesis.  相似文献   

20.
delta-Haemolysin, a small surface-active polypeptide purified from the culture media of Staphylococcus aureus, was observed to stimulate the release of insulin from isolated rat islets of Langerhans. This effect was dose-dependent and saturable, with the half-maximal response elicited by a delta-haemolysin concentration of 10 micrograms/ml. Stimulation of insulin release by delta-haemolysin (10 micrograms/ml) was not dependent on the presence of glucose in the incubation medium, but was augmented by increasing concentrations of the sugar. The release of insulin in response to delta-haemolysin could be inhibited by depletion of extracellular Ca2+ or by adrenaline (epinephrine) (10 microM) and was readily reversible when delta-haemolysin was removed from the medium. In addition, the response was potentiated by incubation with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.2 mM). These observations suggest that delta-haemolysin induced a true activation of the beta-cell secretory mechanism. Stimulation of islets of Langerhans with delta-haemolysin was found to be associated with a modest increase in intracellular cyclic AMP levels, although the adenylate cyclase activity of islet homogenates was not increased by delta-haemolysin. delta-Haemolysin was observed to induce a dose-dependent net accumulation of 45Ca2+ by islet cells and to stimulate the efflux of 45Ca2+ from preloaded islets. The efflux of 45Ca2+ was modest in size and short-lived, but dramatically increased in medium depleted fo 40Ca2+. Incubation in the presence of verapamil augmented delta-haemolysin-induced 45Ca2+ efflux and insulin secretion. delta-Haemolysin was found to be a potent 45Ca2+-translocating ionophore in an artificial system. This response was dose-dependent and could be augmented by verapamil. In addition, phosphatidylcholine (25 micrograms/ml) was found to inhibit both delta-haemolysin induced 45Ca2+ translocation and insulin release in a precisely parallel manner. These studies suggest that the ability of delta-haemolysin to stimulate insulin release may be due, in part, to the facilitation of Ca2+ entry into the beta-cells of islets of Langerhans, mediated directly by an ionophoretic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号