首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
A novel class of small nucleolar RNAs (snoRNAs), encoded in introns of protein coding genes and originating from processing of their precursor molecules, has recently been described. The L1 ribosomal protein (r-protein) gene of Xenopus laevis and its human homologue contain two snoRNAs, U16 and U18. It has been shown that these snoRNAs are excised from their intron precursors by endonucleolytic cleavage and that their processing is alternative to splicing. Two sequences, internal to the snoRNA coding region, have been identified as indispensable for processing the conserved boxes C and D. Competition experiments have shown that these sequences interact with diffusible factors which can bind both the pre-mRNA and the mature U16 snoRNA. Fibrillarin, which is known to associate with complexes formed on C and D boxes of other snoRNAs, is found in association with mature U16 RNA, as well as with its precursor molecules. This fact suggests that the complex formed on the pre-mRNA remains bound to U16 throughout all the processing steps. We also show that the complex formed on the C and D boxes is necessary to stabilize mature snoRNA.  相似文献   

6.
By generating a specialised cDNA library from four different developmental stages of Drosophila melanogaster, we have identified 66 candidates for small non-messenger RNAs (snmRNAs) and have confirmed their expression by northern blot analysis. Thirteen of them were expressed at certain stages of D.melanogaster development, only. Thirty-five species belong to the class of small nucleolar RNAs (snoRNAs), divided into 15 members from the C/D subclass and 20 members from the H/ACA subclass, which mostly guide 2'-O-methylation and pseudouridylation, respectively, of rRNA and snRNAs. These also include two outstanding C/D snoRNAs, U3 and U14, both functioning as pre-rRNA chaperones. Surprisingly, the sequence of the Drosophila U14 snoRNA reflects a major change of function of this snoRNA in Diptera relative to yeast and vertebrates. Among the 22 snmRNAs lacking known sequence and structure motifs, five were located in intergenic regions, two in introns, five in untranslated regions of mRNAs, eight were derived from open reading frames, and two were transcribed opposite to an intron. Interestingly, detection of two RNA species from this group implies that certain snmRNA species are processed from alternatively spliced pre-mRNAs. Surprisingly, a few snmRNA sequences could not be found on the published D.melanogaster genome, which might suggest that more snmRNA genes (as well as mRNAs) are hidden in unsequenced regions of the genome.  相似文献   

7.
8.
Lim Y  Lee SM  Kim M  Lee JY  Moon EP  Lee BJ  Kim J 《Gene》2002,286(2):291-297
Analysis of the complete genomic structure of the human ribosomal protein S3 (rpS3) gene revealed the presence of a functional U15b snoRNA gene in its intron. Human ribosomal protein S3 (rpS3) gene of 6115 bp long has been identified to contain six introns and seven exons in this study. The first and fifth introns of human S3 gene contain functional U15 snoRNA genes. Although Xenopus and Fugu counterparts also have six introns and seven exons, S3 gene of Fugu contains two functional U15 snoRNAs in the fourth and sixth introns and two pseudo genes for U15 snoRNAs in the first and fifth introns. In Xenopus S1 gene encoding ribosomal protein S3, however, three of its six introns contain U15 snoRNA gene sequence. Sequence comparison of the U15 genes from Xenopus, Fugu and human revealed that the regions involved in binding to 28S rRNA and the consensus sequence (C, D and D' boxes) for snoRNAs are highly conserved among those genes from these three species. Human U15a and U15b RNAs which are derived from the first and the fifth introns, respectively, have been identified to be functional by microinjection of human U15a and U15b snoRNAs into Xenopus oocyte. Northern blot and primer extension analyses confirm that human U15b snoRNA is expressed in vivo.  相似文献   

9.
Recent cloning and sequencing of one of the two Xenopus gene copies (S1b) coding for the ribosomal protein S1 has revealed that its introns III, V and VI carry a region of about 150 nt that shares an identity of 60%. We show here the presence in Xenopus oocytes and cultured cells of a 143-147 nt long RNA species encoded by these three repeated sequences on the same strand as the S1 mRNA and by at least one repeat present in the S1 a copy of the r-protein gene. We identify these RNAs as forms of the small nucleolar RNA U15 (U15 snoRNA) because of their sequence homology with an already described human U15 RNA encoded in the first intron of the human r-protein S3 gene, which is homologous to Xenopus S1. Comparison of the various Xenopus and human U15 RNA forms shows a very high conservation in some regions, but considerable divergence in others. In particular the most conserved sequences include two box C and two box D motifs, typical of most snoRNAs interacting with the nucleolar protein fibrillarin. Adjacent to the two D boxes there are two sequences, 9 and 10 nt in length, which are perfectly complementary to an evolutionary conserved sequence of the 28S rRNA. Modeling the possible secondary structure of Xenopus and human U15 RNAs reveals that, in spite of the noticeable sequence diversity, a high structural conservation in some cases may be maintained by compensatory mutations. We show also that the different Xenopus U15 RNA forms are expressed at comparable levels, localized in the nucleoli and produced by processing of the intronic sequences, as recently described for other snoRNAs.  相似文献   

10.
It was recently shown that a new class of small nuclear RNAs is encoded in introns of protein-coding genes and that they originate by processing of the pre-mRNA in which they are contained. Little is known about the mechanism and the factors involved in this new type of processing. The L1 ribosomal protein gene of Xenopus laevis is a well-suited system for studying this phenomenon: several different introns encode for two small nucleolar RNAs (snoRNAs; U16 and U18). In this paper, we analyzed the in vitro processing of these snoRNAs and showed that both are released from the pre-mRNA by a common mechanism: endonucleolytic cleavages convert the pre-mRNA into a precursor snoRNA with 5' and 3' trailer sequences. Subsequently, trimming converts the pre-snoRNAs into mature molecules. Oocyte and HeLa nuclear extracts are able to process X. laevis and human substrates in a similar manner, indicating that the processing of this class of snoRNAs relies on a common and evolutionarily conserved mechanism. In addition, we found that the cleavage activity is strongly enhanced in the presence of Mn2+ ions.  相似文献   

11.
The complete sequence of a bovine gene encoding an epidermal cytokeratin of mol. wt. 54 500 (No VIb) of the acidic (type I) subfamily is presented, including an extended 5' upstream region. The gene (4377 bp, seven introns) which codes for a representative of the glycine-rich subtype of cytokeratins of this subfamily, is compared with genes coding for: another subtype of type I cytokeratin; a basic (type II) cytokeratin gene; and vimentin, a representative of another intermediate filament (IF) protein class. The positions of the five introns located within the highly homologous alpha-helix-rich rod domain are identical or equivalent, i.e., within the same triplet, in the two cytokeratin I genes. Four of these intron positions are also identical with intron sites in the vimentin gene, and three of these intron positions are identical or similar in the type I and type II cytokeratin subfamilies. On the other hand, the gene organization of both type I cytokeratins differs from that of the type II cytokeratin in the rod region in five intron positions and in the introns located in the carboxy-terminal tail region, with the exception of one position at the rod-tail junction. Remarkably, the two type I cytokeratins also differ from each other in the positions of two introns located at and in the region coding for the hypervariable, carboxy-terminal portion. The introns and the 5' upstream regions of the cytokeratin VIb gene do not display notable sequence homologies with the other IF protein genes, but sequences identical with--or very similar to--certain viral and immunoglobulin enhancers have been identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
U14 is a member of the rapidly growing family of intronic small nucleolar RNAs (snoRNAs) that are involved in pre-rRNA processing and ribosome biogenesis. These snoRNA species are encoded within introns of eukaryotic protein coding genes and are synthesized via an intron processing pathway. Characterization of Xenopus laevis U14 snoRNA genes has revealed that in addition to the anticipated location of U14 within introns of the amphibian hsc70 gene (introns 4, 5 and 7), additional intronic U14 snoRNAs are also found in the ribosomal protein S13 gene (introns 3 and 4). U14 is thus far a unique intronic snoRNA in that it is encoded within two different parent genes of a single organism. Northern blot analysis revealed that U14 snoRNAs accumulate during early oocyte development and are rapidly expressed after the mid-blastula transition of developing embryos. Microinjection of hsc70 pre-mRNAs into developing oocytes demonstrated that oocytes as early as stages II and III are capable of processing U14 snoRNA from the pre-mRNA precursor. The ability of immature oocytes to process intronic snoRNAs is consistent with the observed accumulation of U14 during oocyte maturation and the developmentally regulated synthesis of rRNA during oogenesis.  相似文献   

13.
K Tyc  J A Steitz 《The EMBO journal》1989,8(10):3113-3119
Using anti-(U3)RNP autoantibodies, we have isolated and characterized two additional small nucleolar RNAs from HeLa cells, which are less abundant than U3 RNA. Both RNAs possess a trimethylguanosine cap as judged by precipitation with anti-TMG antibody, but are not precipitated by either anti-Sm or anti-La antibodies. In addition, both RNAs are not precipitable by anti-Th serum, which recognizes another nucleolar RNP autoantigen. Sequence analysis revealed that one of these RNAs, 136 nucleotides long, is the human U8 homolog; while the other, 105 nucleotides long, represents a novel species which we designate U13. Both RNAs share with U3 two conserved sequences (boxes C and D). The role of one or both of these boxes in binding the common 34 kd antigenic protein, otherwise known as fibrillarin, is discussed. Fractionation of HeLa cells revealed that U8 and U13, like U3, reside in the nucleolus. In glycerol gradients both RNAs cosediment with larger structures possibly representing ribosomal precursors. We propose that U3, U8 and U13 comprise a new subset of mammalian snRNPs whose roles in ribosome biogenesis are discussed.  相似文献   

14.
Three human small nucleolar RNAs (snoRNAs), E1, E2 and E3, were reported earlier that have unique sequences, interact directly with unique segments of pre-rRNA in vivo and are encoded in introns of protein genes. In the present report, human and frog E1, E2 and E3 RNAs injected into the cytoplasm of frog oocytes migrated to the nucleus and specifically to the nucleolus. This indicates that the nucleolar and nuclear localization signals of these snoRNAs reside within their evolutionarily conserved segments. Homologs of these snoRNAs from several vertebrates were sequenced and this information was used to develop RNA secondary structure models. These snoRNAs have unique phylogenetically conserved sequences.  相似文献   

15.
16.
17.
The structure of the bovine parathyroid hormone (PTH) gene has been analyzed by Southern blot hybridization of genomic DNA and by nucleotide sequence analysis of a cloned PTH gene. In the Southern analysis, several restriction enzymes produced single fragments that hybridized to PTH cDNA suggesting that there is a single bovine PTH gene. The restriction map of the cloned gene is the same as that determined by Southern blot analysis of bovine DNA. The sequence of 3154 bp of the cloned gene has been determined including 510 bp and 139 bp in the 5' and 3' flanking regions, respectively. The gene contains two introns which separate three exons that code primarily for: (i) the 5' untranslated region, (ii) the pre-sequence of preProPTH, and (iii) PTH and the 3' untranslated region. The gene contains 68% A + T and unusually long stretches of 100- to 150-bp sequences containing alternating A and T nucleotides in the 5' flanking region and intron A. The 5' flanking region contains two TATA sequences, both of which appear to be functional as determined by S1 nuclease mapping. Compared to the rat and human genes, the locations of the introns are identical but the sizes differ. Comparable human and bovine sequences in the flanking regions and introns are about 80% homologous.  相似文献   

18.
G L McKnight  P J O'Hara  M L Parker 《Cell》1986,46(1):143-147
A functional cDNA from Aspergillus nidulans encoding triosephosphate isomerase (TPI) was isolated by its ability to complement a tpi1 mutation in Saccharomyces cerevisiae. This cDNA was used to obtain the corresponding gene, tpiA. Alignment of the cDNA and genomic DNA nucleotide sequences indicated that tpiA contains five introns. The intron positions in the tpiA gene were compared with those in the TPI genes of human, chicken, and maize. One intron is present at an identical position in all four organisms, two other introns are located in similar positions in A. nidulans and maize, and the remaining two introns are unique to A. nidulans. These Aspergillus-specific introns are located in regions of the protein that were predicted to be interrupted by introns based on analysis of a Go plot of chicken TPI. These comparisons are discussed in relation to the evolution of introns within TPI genes.  相似文献   

19.
Few genes in the divergent eukaryote Trichomonas vaginalis have introns, despite the unusually large gene repertoire of this human-infective parasite. These introns are characterized by extended conserved regulatory motifs at the 5' and 3' boundaries, a feature shared with another divergent eukaryote, Giardia lamblia, but not with metazoan introns. This unusual characteristic of T. vaginalis introns led us to examine spliceosomal small nuclear RNAs (snRNAs) predicted to mediate splicing reactions via interaction with intron motifs. Here we identify T. vaginalis U1, U2, U4, U5, and U6 snRNAs, present predictions of their secondary structures, and provide evidence for interaction between the U2/U6 snRNA complex and a T. vaginalis intron. Structural models predict that T. vaginalis snRNAs contain conserved sequences and motifs similar to those found in other examined eukaryotes. These data indicate that mechanisms of intron recognition as well as coordination of the two catalytic steps of splicing have been conserved throughout eukaryotic evolution. Unexpectedly, we found that T. vaginalis spliceosomal snRNAs lack the 5' trimethylguanosine cap typical of snRNAs and appear to possess unmodified 5' ends. Despite the lack of a cap structure, U1, U2, U4, and U5 genes are transcribed by RNA polymerase II, whereas the U6 gene is transcribed by RNA polymerase III.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号