首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of the pyruvate dehydrogenase multienzyme complex was investigated during alpha-adrenergic stimulation with phenylephrine in the isolated perfused rat liver. The metabolic flux through the pyruvate dehydrogenase reaction was monitored by measuring the production of 14CO2 from infused [1-14C] pyruvate. In livers from fed animals perfused with a low concentration of pyruvate (0.05 mM), phenylephrine infusion significantly inhibited the rate of pyruvate decarboxylation without affecting the amount of pyruvate dehydrogenase in its active form. Also, phenylephrine caused no significant effect on tissue NADH/NAD+ and acetyl-CoA/CoASH ratios or on the kinetics of pyruvate decarboxylation in 14CO2 washout experiments. Phenylephrine inhibition of [1-14C]pyruvate decarboxylation was, however, closely associated with a decrease in the specific radioactivity of perfusate lactate, suggesting that the pyruvate decarboxylation response simply reflected dilution of the labeled pyruvate pool due to phenylephrine-stimulated glycogenolysis. This suggestion was confirmed in additional experiments which showed that the alpha-adrenergic-mediated inhibitory effect on pyruvate decarboxylation was reduced in livers perfused with a high concentration of pyruvate (1 mM) and was absent in livers from starved rats. Thus, alpha-adrenergic agonists do not exert short term regulatory effects on pyruvate dehydrogenase in the liver. Furthermore, the results suggest either that the rat liver pyruvate dehydrogenase complex is insensitive to changes in mitochondrial calcium or that changes in intramitochondrial calcium levels as a result of alpha-adrenergic stimulation are considerably less than suggested by others.  相似文献   

2.
The effects of insulin and glucose on the oxidative decarboxylation of pyruvate in isolated rat hindlimbs was studied in non-recirculating perfusion with [1-14C]pyruvate. Insulin increased the calculated pyruvate decarboxylation rate in a concentration-dependent manner. At supramaximal insulin concentrations, the calculated pyruvate decarboxylation rate was increased by about 40% in perfusions with 0.15-1.5 mM-pyruvate. Glucose up to 20 mM had no effect. In the presence of insulin and low physiological pyruvate concentrations (0.15 mM), glucose increased the calculated pyruvate oxidation. This effect was abolished by high concentrations of pyruvate (1 mM). The data provide evidence that in resting perfused rat skeletal muscle insulin primarily increased the activity of the pyruvate dehydrogenase complex. The effect of glucose was due to increased intracellular pyruvate supply.  相似文献   

3.
The proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart was decreased by alloxan-diabetes or by perfusion with media containing acetate, n-octanoate or palmitate. The total activity of the dehydrogenase was unchanged. 2. Pyruvate (5 or 25mM) or dichloroacetate (1mM) increased the proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart, presumably by inhibiting the pyruvate dehydrogenase kinase reaction. Alloxan-diabetes markedly decreased the proportion of active dehydrogenase in hearts perfused with pyruvate or dichloroacetate. 3. The total activity of pyruvate dehydrogenase in mitochondria prepared from rat heart was unchanged by diabetes. Incubation of mitochondria with 2-oxo-glutarate plus malate increased ATP and NADH concentrations and decreased the proportion of active pyruvate dehydrogenase. The decrease in active dehydrogenase was somewhat greater in mitochondria prepared from hearts of diabetic rats than in those from hearts of non-diabetic rats. Pyruvate (0.1-10 mM) or dichloroacetate (4-50 muM) increased the proportion of active dehydrogenase in isolated mitochondria presumably by inhibition of the pyruvate dehydrogenase kinase reaction. They were much less effective in mitochondria from the hearts of diabetic rats than in those of non-diabetic rats. 4. The matrix water space was increased in preparations of mitochondria from hearts of diabetic rats. Dichloroacetate was concentrated in the matrix water of mitochondria of non-diabetic rats (approx. 16-fold at 10 muM); mitochondria from hearts of diabetic rats concentrated dichloroacetate less effectively. 5. The pyruvate dehydrogenase phosphate phosphatase activity of rat hearts and of rat heart mitochondria (approx. 1-2 munit/unit of pyruvate dehydrogenase) was not affected by diabetes. 6. The rate of oxidation of [1-14C]pyruvate by rat heart mitochondria (6.85 nmol/min per mg of protein with 50 muM-pyruvate) was approx. 46% of the Vmax. value of extracted pyruvate dehydrogenase (active form). Palmitoyl-L-carnitine, which increased the ratio of [acetyl-CoA]/[CoA] 16-fold, inhibited oxidation of pyruvate by about 90% without changing the proportion of active pyruvate dehydrogenase.  相似文献   

4.
The effect of the mitochondrial pyruvate transport inhibitors, α-cyanocinnamate and α-cyano-4-hydroxycinnamate, on the regulation of the pyruvate dehydrogenase multienzyme complex was investigated in the isolated perfused rat heart. Metabolic flux through pyruvate dehydrogenase was monitored by measuring 14CO2 production from [1-14C]pyruvate infused into the heart. A stepwise increase in the concentration of the inhibitor in the influent perfusate effected a stepwise reduction of the flux through the enzyme complex at all pyruvate concentrations tested. However, the magnitude of the α-cyanocinnamate-insensitive flux through pyruvate dehydrogenase increased markedly as the infused pyruvate concentration was elevated. The inhibition of pyruvate decarboxylation in the heart was nearly completely reversed following cessation of the inhibitor infusion. α-Cyanocinnamate was nearly 10 times more potent than α-cyano-4-hydroxycinnamate as an inhibitor of the flux through pyruvate dehydrogenase. Maximally inhibiting levels of α-cyano-4-hydroxycinnamate caused an increase in the ratio of the active form of pyruvate dehydrogenase to the total extractable enzyme complex from a value of 0.5 at 1 mm infused pyruvate (in the absence of the inhibitor) to a value of near unity. This result indicated that the intramitochondrial pyruvate concentration was severely depleted by the infusion of the inhibitor and that the enzyme complex was interconverted to its active form under these conditions. Removal of the inhibitor from the perfusion medium again lowered the ratio of the active/total pyruvate dehydrogenase to near its original level of 0.5 and restored the original flux through the enzyme complex indicating that mitochondrial pyruvate transport has been restored. The results of this study indicate that α-cyanocinnamate and its derivatives are effective inhibitors of pyruvate transport in the perfused heart and that carrier-mediated pyruvate transport can be an important parameter in the regulation of the activation state and the metabolic flux through the pyruvate dehydrogenase multienzyme complex in the heart.  相似文献   

5.
Abstract: The effect of 3-hydroxybutyrate on pyruvate decarboxylation by neonatal rat brain mitochondria and synaptosomes was investigated. The rate of [1 -14C]pyruvate decarboxylation (1 mm final concentration) by brain synaptosomes derived from 8-day-old rats was inhibited by 10% in the presence of 2 mm -d ,l -3-hydroxybutyrate and by more than 20% in the presence of 20 mm -d ,l -3-hydroxybutyrate. The presence of 2 mm -l ,d -3-hydroxybutyrate did not affect the rate of [1-14T]pyruvate decarboxylation (1 mm final concentration) by brain mitochondria; however, at a concentration of 20 mm -d ,l -3-hydroxybutyrate, a marked inhibition was seen in preparations from both 8-day-old (35% inhibition) and 21-day-old (24% inhibition) but not in those from adult rats. Although the presence of 100 mm -K+ in the incubation medium stimulated the rate of pyruvate decarboxylation by approximately 50% compared with the rate in the presence of 1 mm -K+, the presence of 20 mm -d ,l -3-hydroxybutyrate still caused a marked inhibition in both media (1 and 100 mm -K+). The presence of 20 mm -d ,l -3-hydroxybutyrate during the incubation caused an approximately 20% decrease in the level of the active form of the pyruvate dehydrogenase complex in brain mitochondria from 8-day-old rats. The concentrations of ATP, ADP, NAD+, NADH, acetyl CoA, and CoA were measured in brain mitochondria from 8-day-old rats incubated in the presence of 1 mm -pyruvate alone or 1 mm -pyruvate plus 20 mm -d ,l -3-hydroxybutyrate. Neither the ATP/ADP nor the NADH/NAD+ ratio showed significant changes. The acetyl CoA/CoA ratio was significantly increased by more than twofold in the presence of 3-hydroxybutyrate. The possible mechanisms and physiological significance of 3-hydroxybutyrate inhibition of pyruvate decarboxylation in neonatal rat brain mitochondria are discussed.  相似文献   

6.
The regulatory consequences of acetate infusion on the pyruvate and the branched chain α-keto acid dehydrogenase reactions in the isolated, perfused rat liver were investigated. Metabolic flux through these two decarboxylation reactions was monitored by measuring the rate of 14CO2 production from infused 1-14C-labeled substrates. When acetate was presented to the liver as the sole substrate the rate of ketogenesis which resulted was maximal at concentrations of acetate in excess of 10 mm. The increase in hepatic ketogenesis during acetate infusion was not accompanied by an alteration of the mitochondrial oxidation-reduction state as measured by the ratio of β-hydroxybutyrate/ acetoacetate in the effluent perfusate. While acetate infusion did not affect the rate of α-keto[1-14C]isocaproate decarboxylation, the rate of α-keto[1-14C]isovalerate decarboxylation was stimulated appreciably upon acetate addition. No change was observed in the amount of extractable branched chain α-keto acid dehydrogenase during acetate infusion. The rate of [1-14C]pyruvate decarboxylation was stimulated in the presence of acetate at low (<1 mm) but not at high (>1 mm) perfusate pyruvate concentrations. The stimulation of the metabolic flux through the pyruvate dehydrogenase reaction upon acetate infusion was accompanied by an increase in the activation state of the pyruvate dehydrogenase complex from 25.7 to 35.6% in the active form. In a liver perfused in the presence of the pyruvate dehydrogenase kinase inhibitor, dichloroacetate, at a low concentration of pyruvate (0.05 mm) the infusion of acetate did not affect the rate of pyruvate decarboxylation. As the rate of mitochondrial acetoacetate efflux is increased during acetate infusion the stimulation of pyruvate and α-ketoisovalerate decarboxylation is attributed to an accelerated rate of exchange of mitochondrial acetoacetate for cytosolic pyruvate or α-ketoisovalerate on the monocarboxylate transporter.  相似文献   

7.
In isolated diaphragms from rats fed on a high-fat diet, oxfenicine (S-4-hydroxyphenylglycine) stimulated the depressed rates of pyruvate decarboxylation (2-fold) and glucose oxidation (5-fold). In diaphragms from normal-fed rats, oxfenicine had no effect on pyruvate decarboxylation but doubled the rate of glucose oxidation and inhibited the oxidation of palmitate. Treatment of fat-fed rats with oxfenicine restored the proportion of myocardial pyruvate dehydrogenase in the active form to that observed in normal-fed rats. In rat hearts perfused in the presence of glucose, insulin and palmitate, oxfenicine increased carbohydrate oxidation and stimulated cardiac performance with no increase in oxygen consumption - i.e. improved myocardial efficiency. Working rat hearts perfused with glucose, insulin and palmitate and subjected to 10 min global ischaemia recovered to 81% of their pre-ischaemic cardiac output after 30 min reperfusion, and released large amounts of lactate dehydrogenase into the perfusate. Hearts perfused with oxfenicine had slightly higher pre-ischaemic cardiac outputs and, on reperfusion, recovered more completely (to 96% of the pre-ischaemic value). Oxfenicine reduced the amount of lactate dehydrogenase released by 73%. We conclude that, in rat hearts with high rates of fatty acid oxidation, a relative increase in carbohydrate oxidation will improve myocardial efficiency, and preserve mechanical function and cellular integrity during acute ischaemia.  相似文献   

8.
Glucose metabolism and its hormonal regulation have been investigated in isolated enterocytes from rat small intestine. About 70% of the glucose consumed by the cells was transformed into lactate, 5% into pyruvate, and 4% into alanine. The remaining 20% was oxidized. Among several tested gastrointestinal peptides and hormones, only vasoactive intestinal peptide (VIP) was found to affect the metabolic fate of glucose. VIP (10(-7) M) induced a 40% inhibition of glucose oxidation without significant modification of either glucose uptake or production of lactate, pyruvate, and alanine. This acute inhibition was dose-dependent (Ki = 3.10(-11) M) and appeared to be dependent on the stimulation of cAMP production (K0.5 = 3.10(-9) M) since dibutyryl-cAMP and forskolin reproduced all the effects of VIP. Similar inhibition of cell respiration by VIP was observed when pyruvate, fructose, and dihydroxyacetone were used as substrates, while the oxidation of glutamine, ketone bodies, and octanoate was unaffected, suggesting that the peptide acts on pyruvate metabolism. The suppression of VIP effects by dichloroacetate (5 mM) and pyruvate (10 mM) and the significant decrease (18%) of the activity of the pyruvate dehydrogenase complex after incubation of the cells with the neuropeptide, support the hypothesis that the effects of VIP on glucose oxidation may occur through an inhibition of the pyruvate dehydrogenase complex. The total suppression of the inhibitory effects of VIP by sodium 2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate, a potent inhibitor of long-chain fatty acid oxidation, suggests that VIP did not affect the pyruvate dehydrogenase directly, but more probably acted through modifications of fatty acid oxidation.  相似文献   

9.
The relationships between pyruvate and derived citrate metabolism and acetylcholine (ACh) synthesis in synaptosomes were examined. In the presence of 30 mM KCl, 0.1 mM Ca2+ caused 31 and 63% inhibition of pyruvate utilization and citrate accumulation, respectively. Verapamil and EGTA (0.5 mM) brought about no change in pyruvate consumption but increased rate of citrate accumulation, and overcame inhibitory effect of Ca2+. The rates of citrate accumulation in the presence of verapamil or EGTA were three to six times, respectively, higher than those in the presence of Ca2+. (−) Hydroxycitrate increased rate of citrate accumulation under all experimental conditions. The value of this activation appeared to be stable (0.20–0.28 nmol/min/mg of protein) and independent of changes in the basic rate of citrate accumulation. Ca2+ caused no significant changes in [14C]ACh synthesis, but it inhibited 14CO2 production by synaptosomes. These activities were inhibited by verapamil by 33 and 60%, respectively. Ca2+ did not modify these effects of the drug. On the other hand, (−)hydroxycitrate resulted in 22 and 29% inhibition of [14C]ACh synthesis in Ca2+ free and Ca2+ supplemented medium, respectively. These data indicated that rates of acetyl-CoA synthesis in synaptoplasm, via ATP-citrate lyase and probably by another pathways are independent of Ca-evoked changes in pyruvate oxidation and citrate supply from intraterminal mitochondria. This property might play a significant role in maintenance of stable level of ACh in active cholinergic nerve endings.  相似文献   

10.
The effects of the second generation sulfonylurea, glyburide, on the pyruvate dehydrogenase multienzyme complex (PDC) of rat myocardial tissue were examined using rat ventricular slices and isolated mitochondria. Therapeutic concentrations (10(-7) to 10(-6)M) of glyburide produced a 30% increase in the decarboxylation of [1(-14)C] pyruvate by the PDC of ventricular tissue. Addition of glyburide to intact rat heart mitochondria stimulated activity of the PDC in a time- and concentration-dependent manner. Half-maximal stimulation of the enzyme occurred with 6 X 10(-5)M glyburide and maximal activation of the enzyme was achieved with 1 X 10(-4)M glyburide. At the height of stimulation, PDC activities were 6-fold greater than those observed under control conditions with succinate alone. When mitochondria were disrupted by sonication or freeze-thawing, glyburide produced no stimulation of pyruvate decarboxylation. We conclude that glyburide directly stimulates the decarboxylation of pyruvate by the PDC of the myocardium. Furthermore, the presence of intact mitochondria is necessary for the stimulatory action of glyburide on the PDC.  相似文献   

11.
Hepatocytes isolated from rats fed on a chow diet or a low-protein (8%) diet were used to study the effects of various factors on flux through the branched-chain 2-oxo acid dehydrogenase complex. The activity of this complex was also determined in cell-free extracts of the hepatocytes. Hepatocytes isolated from chow-fed rats had greater flux rates (decarboxylation rates of 3-methyl-2-oxobutanoate and 4-methyl-2-oxopentanoate) than did hepatocytes isolated from rats fed on the low-protein diet. Oxidizable substrates tended to inhibit flux through the branched-chain 2-oxo acid dehydrogenase, but inhibition was greater with hepatocytes isolated from rats fed on the low-protein diet. 2-Chloro-4-methylpentanoate (inhibitor of branched-chain 2-oxo acid dehydrogenase kinase), dichloroacetate (inhibitor of both pyruvate dehydrogenase kinase and branched-chain 2-oxo acid dehydrogenase kinase) and dibutyryl cyclic AMP (inhibitor of glycolysis) were effective stimulators of branched-chain oxo acid decarboxylation with hepatocytes from rats fed on a low-protein diet, but had little effect with hepatocytes from rats fed on chow diet. Activity measurements indicated that the branched-chain 2-oxo acid dehydrogenase complex was mainly (96%) in the active (dephosphorylated) state in hepatocytes from chow-fed rats, but only partially (50%) in the active state in hepatocytes from rats fed on a low-protein diet. Oxidizable substrates markedly decreased the activity state of the enzyme in hepatocytes from rats fed on a low-protein diet, but had much less effect in hepatocytes from chow-fed rats. 2-Chloro-4-methylpentanoate and dichloroacetate increased the activity state of the enzyme in hepatocytes from rats fed on a low-protein diet, but had no effect on the activity state of the enzyme in hepatocytes from chow-fed rats. The results indicate that protein starvation greatly increases the sensitivity of the hepatic branched-chain 2-oxo acid dehydrogenase complex to regulation by covalent modification.  相似文献   

12.
Thiamine thiazolone diphosphate (TTPP) was capable of penetrating through the mitochondrial membrane and of inhibiting the pyruvate dehydrogenase complex (PDC) in intact mitochondria. TTPP depressed the activity of mammalian PDC in a mixed manner (Ki = 5.10(-8) M) and yeast pyruvate decarboxylase (Ki = 5.10(-6) M) via a competitive mechanism with respect to thiamine diphosphate. It was shown that decarboxylation of pyruvate in intact and disrupted mitochondria of rat liver and brain is less inhibited by TTPP than the overall activity of PDC determined by the formation of acetyl-CoA. It was assumed that TTPP as a transition state analog participates only in oxidative reactions (but not in simple decarboxylation of pyruvate).  相似文献   

13.
In this paper, physicochemical evidence is given for the association between the pyruvate dehydrogenase complex (EC 1.2.4.1) and citrate synthase (EC 4.1.3.7) with two gel chromatographic techniques with poly(ethylene glycol) co-precipitation and with ultracentrifugation. Experiments with active enzyme gel chromatography indicate that citrate synthase also associates with pyruvate dehydrogenase complex in its functioning state. Citrate synthase binds to the isolated transacetylase core of pyruvate dehydrogenase complex, but in the binding to the whole pyruvate dehydrogenase complex the two other components of the complex are also involved. One pyruvate dehydrogenase complex can bind 10-11 citrate synthase dimers, and the dissociation constant is about 5.7-6.0 microM as determined by two independent methods. The association between the pyruvate dehydrogenase complex and citrate synthase raises the possibility of the dynamic compartmentation of acetyl-CoA in the mitochondria which results in the direction of acetyl-CoA from pyruvate towards citrate.  相似文献   

14.
1. The interconversion of pyruvate dehydrogenase between its inactive phosphorylated and active dephosphorylated forms was studied in skeletal muscle. 2. Exercise, induced by electrical stimulation of the sciatic nerve (5/s), increased the measured activity of (active) pyruvate dehydrogenase threefold in intact anaesthetized rated within 2 min. No further increase was seen after 15 min of stimulation. 3. In the perfused rat hindquarter, (active) pyruvate dehydrogenase activity was decreased by 50% in muscle of starved and diabetic rats. Exercise produced a twofold increase in its activity in all groups; however, the relative differences between fed, starved and diabetic groups persisted. 4. Perfusion of muslce with acetoacetate (2 mM) decreased (active) pyruvate dehydrogenase activity by 50% at rest but not during exercise. 5. Whole-tissue concentrations of pyruvate and citrate, inhibitors of (active) pyruvate dehydrogenase kinase and (inactive) pyruvate dehydrogenase phosphate phosphatase respectively, were not altered by excerise. A decrease in the ATP/ADP ratio was observed, but did not appear to be sufficient to account for the increase in (active) pyruvate dehydrogenase activity. 6. The results suggest that interconversion of the phosphorylated and dephosphorylated forms of pyruvate dehydrogenase plays a major role in the regulation of pyruvate oxidation by eomparison of enzyme activity with measurements of lactate oxidation in the perfused hindquarter [see the preceding paper, Berger et al. (1976)] suggest that pyruvate oxidation is also modulated by the concentrations of substrates, cofactors and inhibitors of (active) pyruvate dehydrogenase activity.  相似文献   

15.
J.K. Hiltunen  I.E. Hassinen 《BBA》1976,440(2):377-390
1. The regulation of glycolysis and pyruvate oxidation under varying conditions of ATP and oxygen consumption was studied in isolated perfused rat hearts. Potassium-induced arrest was employed to inhibit the ATP consumption of the heart.2. Under the experimental conditions, the beating heart used solely glucose as the oxidisable substrate. The glycolytic flux through the aldolase step decreased in pace with the decreasing oxygen consumption during the potassium-induced arrest of the heart. The decrease in glucose oxidation was larger than the inhibition of the oxygen consumption, suggesting that the arrested heart switches to fatty acid oxidation.The time course and percentage changes of the inhibition of pyruvate oxidation and the decrease in the amount of the active form of pyruvate dehydrogenase suggest that the amount of active pyruvate dehydrogenase is the main regulator of pyruvate oxidation in the perfused heart.3. To test the relative significance of the possible mechanisms regulating covalent interconversions of pyruvate dehydrogenase, the following parameters were measured in response to the potassium-induced cardiac arrest: concentrations of pyruvate, acetyl-CoA, CoA-SH, citrate, α-oxoglutarate, ATP, ADP, AMP, creatine, creatine phosphate and inorganic phosphate and the mitochondrial NADH/NAD+ ratio.In cardiac tissue the adenylate system is not a good indicator of the energy state of the mitochondrion, even when the concentrations of AMP and free cytosolic ADP are calculated from the adenylate kinase and creatine kinase equilibria. Only creatine phosphate and inorganic phosphate undergo significant changes, but evidence of the participation of the latter compounds in the regulation of the pyruvate dehydrogenase interconversions is lacking.The potassium-induced arrest of the heart resulted in a decrease in pyruvate, a slight increase in acetyl-CoA, a large increase in the concentration of citrate and an increase in the mitochondrial NADH/NAD+.The results can be interpreted as showing that in the heart, the pyruvate dehydrogenase interconversions are mainly regulated by the pyruvate concentration and the mitochondrial redox state. Concentrations of all the regulators tested shifted to directions which one would expect to result in a decrease in the amount of active pyruvate dehydrogenase, but the changes were quite small. Therefore, the energy-linked regulation of pyruvate dehydrogenase in intact tissue is possibly mediated by the equilibrium relations between the cellular redox state and the phosphorylation potential recently confirmed in cardiac tissue.  相似文献   

16.
The relative importance of the mitochondrial and cytosolic alanine aminotransferase isozymes for providing pyruvate from alanine for further metabolism in the mitochondrial compartment was examined in the isolated perfused rat liver. The experimental rationale employed depends upon the supposition that gluconeogenesis from alanine and the decarboxylation of infused [1-14C]alanine should be diminished by pyruvate transport inhibitors (e.g., alpha-cyanocinnamate) in proportion to the contribution of the cytosolic alanine aminotransferase for generating pyruvate. alpha-Cyanocinnamate inhibited the endogenous rate of glucose production in perfused livers derived from 24-h-fasted rats. The rate of [1-14C]alanine decarboxylation at low (1 mM) and high (10 mM) perfusate alanine concentrations was inhibited by 9.5 and 42%, respectively, in the presence of alpha-cyanocinnamate. In livers from fasted animals perfused with either 1 or 10 mM alanine, alpha-cyanocinnamate caused a substantial increase in the rates of both lactate and pyruvate production. Elevating the hepatic ketogenic rate during infusion of acetate in livers, perfused with alanine, stimulated both the rates of alanine decarboxylation and glucose production; the extent of stimulation of these two metabolic parameters was determined to be a function of the alanine concentration in the perfusate. The stimulation of the rate of alanine decarboxylation during acetate-induced ketogenesis was reversed by co-infusion of alpha-cyanocinnamate with simultaneous increases in the rates of lactate and pyruvate production. The results indicate that during rapid ketogenesis, cytosolic transamination of alanine contributes at least 19% (at 1 mM alanine) and 55% (at 10 mM alanine) of the pyruvate for gluconeogenesis.  相似文献   

17.
1. The regulation of glycolysis and pyruvate oxidation under varying conditions of ATP and oxygen consumption was studied in isolated perfused rat hearts. Potassium-induced arrest was employed to inhibit the ATP consumption of the heart. 2. Under the experimental conditions, the beating heart used solely glucose as the oxidisable substrate. The glycolytic flux through the aldolase step decreased in pace with the decreasing oxygen consumption during the potassium-induced arrest of the heart. The decrease in glucose oxidation was larger than the inhibition of the oxygen consumption, suggesting that the arrested heart switches to fatty acid oxidation. The time course and percentage changes of the inhibition of pyruvate oxidation and the decrease in the amount of the active form of pyruvate dehydrogenase suggest that the amount of active pyruvate dehydrogenase is the main regulator of pyruvate oxidation in the perfused heart. 3. To test the relative significance of the possible mechanisms regulating covalent interconversions of pyruvate dehydrogenase, the following parameters were measured in response to the potassium-induced cardiac arrest: concentrations of pyruvate, acetyl-CoA, CoA-SH, citrate, alpha-oxoglutarate, ATP, ADP, AMP, creatine, creatine phosphate and inorganic phosphate and the mitochondrial NADH/NAD+ ratio. In cardiac tissue the adenylate system is not a good indicator of the energy state of the mitochondrion, even when the concentrations of AMP and free cytosolic ADP are calculated from the adenylate kinase and creatine kinase equilibria. Only creatine phosphate and inorganic phosphate undergo significant changes, but evidence of the participation of the latter compounds in the regulation of the pyruvate dehydrogenase interconversions is lacking. The potassium-induced arrest of the heart resulted in a decrease in pyruvate, a slight increase in acetyl-CoA, a large increase in the concentration of citrate and an increase in the mitochondrial NADH/NAD+. The results can be interpreted as showing that in the heart, the pyruvate dehydrogenase interconversions are mainly regulated by the pyruvate concentration and the mitochondrial redox state. Concentrations of all the regulators tested shifted to directions which one would expect to result in a decrease in the amount of active pyruvate dehydrogenase, but the changes were quite small. Therefore, the energy-linked regulation of pyruvate dehydrogenase in intact tissue is possibly mediated by the equilibrium relations between the cellular redox state and the phosphorylation potential recently confirmed in cardiac tissue.  相似文献   

18.
The regulation of the gluconeogenic pathway from the 3-carbon precursors pyruvate, lactate, and alanine was investigated in the isolated perfused rat liver. Using pyruvate (less than 1 mM), lactate, or alanine as the gluconeogenic precursor, infusion of the acetoacetate precursors oleate, acetate, or beta-hydroxybutyrate stimulated the rate of glucose production and, in the case of pyruvate (less than 1 mM), the rate of pyruvate decarboxylation. alpha-Cyanocinnamate, an inhibitor of the monocarboxylate transporter, prevented the stimulation of pyruvate decarboxylation and glucose production due to acetate infusion. With lactate as the gluconeogenic precursor, acetate infusion in the presence of L-carnitine stimulated the rate of gluconeogenesis (100%) and ketogenesis (60%) without altering the tissue acetyl-CoA level usually considered a requisite for the stimulation of gluconeogenesis by fatty acids. Hence, our studies suggest that gluconeogenesis from pyruvate or other substrates which are converted to pyruvate prior to glucose synthesis may be limited or controlled by the rate of entry of pyruvate into the mitochondrial compartment on the monocarboxylate translocator.  相似文献   

19.
D S Flournoy  P A Frey 《Biochemistry》1986,25(20):6036-6043
The pyruvate dehydrogenase component (E1) of the pyruvate dehydrogenase complex catalyzes the decomposition of 3-fluoropyruvate to CO2, fluoride anion, and acetate. Acetylthiamin pyrophosphate (acetyl-TPP) is an intermediate in this reaction. Incubation of the pyruvate dehydrogenase complex with 3-fluoro[1,2-14C]pyruvate, TPP, coenzyme A (CoASH), and either NADH or pyruvate as reducing systems leads to the formation of [14C]acetyl-CoA. In this reaction the acetyl group of acetyl-TPP is partitioned by transfer to both CoASH (87 +/- 2%) and water (13 +/- 2%). When the E1 component is incubated with 3-fluoro[1,2-14C]pyruvate, TPP, and dihydrolipoamide, [14C]acetyldihydrolipoamide is produced. The formation of [14C]acetyldihydrolipoamide was examined as a function of dihydrolipoamide concentration (0.25-16 mM). A plot of the extent of acetyl group partitioning to dihydrolipoamide as a function of 1/[dihydrolipoamide] showed 95 +/- 2% acetyl group transfer to dihydrolipoamide when dihydrolipoamide concentration was extrapolated to infinity. It is concluded that acetyl-TPP is chemically competent as an intermediate for the pyruvate dehydrogenase complex catalyzed oxidative decarboxylation of pyruvate.  相似文献   

20.
It was shown that in the presence of ATP and Mg2+ the phosphorylation of the partially purified pyruvate dehydrogenase complex and the enzyme in isolated brain mitochondria inhibited the oxidative activity of the pyruvate dehydrogenase complex. The phosphorylation did no affect essentially the nonoxidative decarboxylation of pyruvate to form CO2 and acetaldehyde. In native mitochondria from the bovine brain the nonoxidative activity of the pyruvate dehydrogenase complex reached about 10% as compared to the oxidative activity of enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号