首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Telomeres are specialized chromatin structures that are situated at the end of linear chromosomes and play an important role in cell senescence and immortalization. Here, we investigated whether changes in histone signature influence the nuclear arrangement and positioning of telomeres. Analysis of mouse embryonic fibroblasts revealed that telomeres were organized into specific clusters that partially associated with centromeric clusters. This nuclear arrangement was influenced by deficiency of the histone methyltransferase SUV39h, LMNA deficiency, and the histone deacetylase inhibitor Trichostatin A (TSA). Similarly, nuclear radial distributions of telomeric clusters were preferentially influenced by TSA, which caused relocation of telomeres closer to the nuclear center. Telomeres also co‐localized with promyelocytic leukemia bodies (PML). This association was increased by SUV39h deficiency and decreased by LMNA deficiency. These differences could be explained by differing levels of the telomerase subunit, TERT, in SUV39h‐ and LMNA‐deficient fibroblasts. Taken together, our data show that SUV39h and A‐type lamins likely play a key role in telomere maintenance and telomere nuclear architecture. J. Cell. Biochem. 109: 915–926, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Mandibuloacral dysplasia (MAD) is a rare autosomal recessive disorder, characterized by postnatal growth retardation, craniofacial anomalies, skeletal malformations, and mottled cutaneous pigmentation. The LMNA gene encoding two nuclear envelope proteins (lamins A and C [lamin A/C]) maps to chromosome 1q21 and has been associated with five distinct pathologies, including Dunnigan-type familial partial lipodystrophy, a condition that is characterized by subcutaneous fat loss and is invariably associated with insulin resistance and diabetes. Since patients with MAD frequently have partial lipodystrophy and insulin resistance, we hypothesized that the disease may be caused by mutations in the LMNA gene. We analyzed five consanguineous Italian families and demonstrated linkage of MAD to chromosome 1q21, by use of homozygosity mapping. We then sequenced the LMNA gene and identified a homozygous missense mutation (R527H) that was shared by all affected patients. Patient skin fibroblasts showed nuclei that presented abnormal lamin A/C distribution and a dysmorphic envelope, thus demonstrating the pathogenic effect of the R527H LMNA mutation.  相似文献   

3.
In this work, we have studied the structural and functional linkage between lamin A/C, nuclear actin, and organization of chromosome territories (CTs) in mammary carcinoma MCF-7 cells. Selective down-regulation of lamin A/C expression led to disruption of the lamin A/C perinuclear layer and disorganization of lamin-bound emerin complexes at the inner nuclear membrane. The silencing of lamin A/C expression resulted in a decrease in the volume and surface area of chromosome territories, especially in chromosomes with high heterochromatin content. Inhibition of actin polymerization led to relaxation of the structure of chromosome territories, and an increase in the volumes and surface areas of the chromosome territories of human chromosomes 1, 2 and 13. The results show an important role of polymeric actin in the organization of the nuclei and the chromosome territories.  相似文献   

4.
5.
Mutations in the LMNA gene encoding nuclear lamins A and C are responsible for seven inherited disorders affecting specific tissues. We have analyzed skin fibroblasts from a patient with type 1B limb-girdle muscular dystrophy and from her deceased newborn grandchild carrying, respectively, a heterozygous (+/mut) and a homozygous (mut/mut) nonsense Y259X mutation. In fibroblasts(+/mut), the presence of only 50% lamins A and C promotes no detectable abnormality, whereas in fibroblasts(mut/mut) the complete absence of lamins A and C leads to abnormally shaped nuclei with lobules in which none of the analyzed nuclear proteins were detected, i.e., B-type lamins, emerin, nesprin-1alpha, LAP2beta, and Nup153. These lobules perturb cell division as fibroblast(mut/mut) cultures with large proportions of cells with dysmorphic nuclei grow more slowly than controls and the cell proliferation normalizes when the number of these abnormally shaped nuclei declines. In all fibroblasts(mut/mut), nesprin-1alpha-like emerin exhibited aberrant localization in the endoplasmic reticulum. Transfection of wild-type lamin A or C cDNAs restored the correct localization of both emerin and nesprin-1alpha. These data demonstrate that lamin C, like lamin A, interacts in vivo directly with nesprin-1alpha and with emerin and that lamin A or C is sufficient for the correct anchorage of emerin and nesprin-1alpha at the nuclear envelope in human cells.  相似文献   

6.
The A-type and B-type lamins form a filamentous meshwork underneath the inner nuclear membrane called the nuclear lamina, which is an important component of nuclear architecture in metazoan cells. The lamina interacts with large, mostly repressive chromatin domains at the nuclear periphery. In addition, genome–lamina interactions also involve dynamic association of lamin A/C with gene promoters in adipocytes. Mutations in the human lamin A gene cause a spectrum of hereditary diseases called the laminopathies which affect muscle, cardiac and adipose tissues. Since most mutations in lamin A/C affect skeletal muscle, we investigated lamin–chromatin interactions at promoters of muscle specific genes in both muscle and non-muscle cell lines by ChIP-qPCR. We observed that lamin A/C was specifically associated with promoter regions of muscle genes in myoblasts but not in fibroblasts. Lamin A/C dissociated from the promoter regions of the differentiation specific MyoD, myogenin and muscle creatine kinase genes when myoblasts were induced to differentiate. In the promoter regions of the myogenin and MyoD genes, the binding of lamin A/C in myoblasts inversely correlated with the active histone mark, H3K4me3. Lamin A/C binding on muscle genes was reduced and differentiation potential was enhanced on treatment of myoblasts with a histone deacetylase inhibitor. These findings suggest a role for lamina–chromatin interactions in muscle differentiation and have important implications for the pathological mechanisms of striated muscle associated laminopathies.  相似文献   

7.
Mutations in the LMNA gene, which encodes nuclear lamins A and C by alternative splicing, can give rise to Emery-Dreifuss muscular dystrophy. The mechanism by which lamins A and C separately contribute to this molecular phenotype is unknown. To address this question we examined ten LMNA mutations exogenously expressed as lamins A and C in COS-7 cells. Eight of the mutations when expressed in lamin A, exhibited a range of nuclear mislocalisation patterns. However, two mutations (T150P and delQ355) almost completely relocated exogenous lamin A from the nuclear envelope to the cytoplasm, disrupted nuclear envelope reassembly following cell division and altered the protein composition of the mid-body. In contrast, exogenously expressed DsRed2-tagged mutant lamin C constructs were only inserted into the nuclear lamina if co-expressed with any EGFP-tagged lamin A construct, except with one carrying the T150P mutation. The T150P, R527P and L530P mutations reduced the ability of lamin A, but not lamin C from binding to emerin. These data identify specific functional roles for the emerin-lamin C- and emerin-lamin A- containing protein complexes and is the first report to suggest that the A-type lamin mutations may be differentially dysfunctional for the same LMNA mutation.  相似文献   

8.
9.
10.

Background

The nuclear lamina provides structural support to the nucleus and has a central role in defining nuclear organization. Defects in its filamentous constituents, the lamins, lead to a class of diseases collectively referred to as laminopathies. On the cellular level, lamin mutations affect the physical integrity of nuclei and nucleo-cytoskeletal interactions, resulting in increased susceptibility to mechanical stress and altered gene expression.

Methods

In this study we quantitatively compared nuclear deformation and chromatin mobility in fibroblasts from a homozygous nonsense LMNA mutation patient and a Hutchinson–Gilford progeria syndrome patient with wild type dermal fibroblasts, based on the visualization of mCitrine labeled telomere-binding protein TRF2 with light-economical imaging techniques and cytometric analyses.

Results

Without application of external forces, we found that the absence of functional lamin A/C leads to increased nuclear plasticity on the hour and minute time scale but also to increased intranuclear mobility down to the second time scale. In contrast, progeria cells show overall reduced nuclear dynamics. Experimental manipulation (farnesyltransferase inhibition or lamin A/C silencing) confirmed that these changes in mobility are caused by abnormal or reduced lamin A/C expression.

Conclusions

These observations demonstrate that A-type lamins affect both nuclear membrane and telomere dynamics.

General significance

Because of the pivotal role of dynamics in nuclear function, these differences likely contribute to or represent novel mechanisms in laminopathy development.  相似文献   

11.
Tethering by lamin A stabilizes and targets the ING1 tumour suppressor   总被引:1,自引:0,他引:1  
ING proteins interact with core histones through their plant homeodomains (PHDs) and with histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes to alter chromatin structure. Here we identify a lamin interaction domain (LID) found only in ING proteins, through which they bind to and colocalize with lamin A. Lamin knockout (LMNA(-/-)) cells show reduced levels of ING1 that mislocalize. Ectopic lamin A expression increases ING1 levels and re-targets it to the nucleus to act as an epigenetic regulator. ING1 lacking the LID does not interact with lamin A or affect apoptosis. In LMNA(-/-) cells, apoptosis is not affected by ING1. Mutation of lamin A results in several laminopathies, including Hutchinson-Gilford progeria syndrome (HGPS), a severe premature ageing disorder. HGPS cells have reduced ING1 levels that mislocalize. Expression of LID peptides to block lamin A-ING1 interaction induces phenotypes reminiscent of laminopathies including HGPS. These data show that targeting of ING1 to the nucleus by lamin A maintains ING1 levels and biological function. Known roles for ING proteins in regulating apoptosis and chromatin structure indicate that loss of lamin A-ING interaction may be an effector of lamin A loss, contributing to the HGPS phenotype.  相似文献   

12.
The human leukemic cell line (HL-60) can be induced to differentiate in vitro to granulocytic form with retinoic acid (RA), or to monocytic/macrophage form with phorbol ester (TPA). The granulocytic form acquires nuclear lobulation, nuclear envelope-limited chromatin sheets (ELCS), and cytoskeletal polarization, none of which are acquired following treatment with TPA. Immunoblotting analyses and capillary zone electrophoresis demonstrated that following RA treatment: lamins A/C and B1, and vimentin decreased to negligible amounts; LAP2 beta, lamin B2 and emerin remained essentially unchanged; lamin B receptor (LBR) increased markedly; histone subtypes H1.4 and 1.5 exhibited dephosphorylation. Following TPA treatment: lamins A/C and B1, B2 and vimentin increased in amount; LAP2 beta and emerin remained essentially unchanged; LBR increased markedly; histone subtypes H1.4 and 1.5 exhibited dephosphorylation. Emerin, which was cytoplasmic in undifferentiated or granulocytic cells, localized into the nuclear envelope following TPA. Normal human granulocytes revealed compositional differences compared to granulocytic forms of HL-60, namely increased vimentin and appearance of histone subtype H1.3. A working hypothesis for nuclear lobulation postulates a combination of: increased nuclear envelope deformability due to lamins A/C and B1 deficiency; an increase in nuclear surface area/volume; an increase in chromatin-nuclear envelope interactions.  相似文献   

13.
A number of diseases associated with specific tissue degeneration and premature aging have mutations in the nuclear envelope proteins A-type lamins or emerin. Those diseases with A-type lamin mutation are inclusively termed laminopathies. Due to various hypothetical roles of nuclear envelope proteins in genome function we investigated whether alterations to normal genomic behaviour are apparent in cells with mutations in A-type lamins and emerin. Even though the distributions of these proteins in proliferating laminopathy fibroblasts appear normal, there is abnormal nuclear positioning of both chromosome 18 and 13 territories, from the nuclear periphery to the interior. This genomic organization mimics that found in normal nonproliferating quiescent or senescent cells. This finding is supported by distributions of modified pRb in the laminopathy cells. All laminopathy cell lines tested and an X-linked Emery-Dreifuss muscular dystrophy cell line also demonstrate increased incidences of apoptosis. The most extreme cases of apoptosis occur in cells derived from diseases with mutations in the tail region of the LMNA gene, such as Dunningan-type familial partial lipodystrophy and mandibuloacral dysplasia, and this correlates with a significant level of micronucleation in these cells.  相似文献   

14.
The A-type lamins that localize in nuclear domains termed lamin speckles are reorganized and antigenically masked specifically during myoblast differentiation. This rearrangement was observed to be linked to the myogenic program as lamin speckles, stained with monoclonal antibody (mAb) LA-2H10, were reorganized in MyoD-transfected fibroblasts induced to transdifferentiate to muscle cells. In C2C12 myoblasts, speckles were reorganized early during differentiation in cyclin D3-expressing cells. Ectopic cyclin D3 induced lamin reorganization in C2C12 myoblasts but not in other cell types. Experiments with adenovirus E1A protein that can bind to and segregate the retinoblastoma protein (pRb) indicated that pRb was essential for the cyclin D3-mediated reorganization of lamin speckles. Cyclin D3-expressing myoblasts displayed site-specific reduction of pRb phosphorylation. Furthermore, disruption of lamin structures by overexpression of lamins inhibited expression of the muscle regulatory factor myogenin. Our results suggest that the reorganization of internal lamins in muscle cells is mediated by key regulators of the muscle differentiation program.  相似文献   

15.
The nuclear positioning of mammalian genes often correlates with their functional state. For instance, the human cystic fibrosis transmembrane conductance regulator (CFTR) gene associates with the nuclear periphery in its inactive state, but occupies interior positions when active. It is not understood how nuclear gene positioning is determined. Here, we investigated trichostatin A (TSA)-induced repositioning of CFTR in order to address molecular mechanisms controlling gene positioning. Treatment with the histone deacetylase (HDAC) inhibitor TSA induced increased histone acetylation and CFTR repositioning towards the interior within 20 min. When CFTR localized in the nuclear interior (either after TSA treatment or when the gene was active) consistent histone H3 hyperacetylation was observed at a CTCF site close to the CFTR promoter. Knockdown experiments revealed that CTCF was essential for perinuclear CFTR positioning and both, CTCF knockdown as well as TSA treatment had similar and CFTR-specific effects on radial positioning. Furthermore, knockdown experiments revealed that also A-type lamins were required for the perinuclear positioning of CFTR. Together, the results showed that CTCF, A-type lamins and an active HDAC were essential for perinuclear positioning of CFTR and these components acted on a CTCF site adjacent to the CFTR promoter. The results are consistent with the idea that CTCF bound close to the CFTR promoter, A-type lamins and an active HDAC form a complex at the nuclear periphery, which becomes disrupted upon inhibition of the HDAC, leading to the observed release of CFTR.  相似文献   

16.
Autosomal dominantly inherited missense mutations in lamins A and C cause familial partial lipodystrophy of the Dunnigan-type (FPLD), and myopathies including Emery-Dreifuss muscular dystrophy (EDMD). While mutations responsible for FPLD are restricted to the carboxyl-terminal tails, those responsible for EDMD are spread throughout the molecules. We observed here the same structural abnormalities in the nuclear envelope and chromatin of fibroblasts from patients with FPLD and EDMD, harboring missense mutations at codons 482 and 453, respectively. Similar nuclear alterations were generated in fibroblasts, myoblasts, and preadipocytes mouse cell lines overexpressing lamin A harboring either of these two mutations. A large variation in sensitivity to lamin A overexpression was observed among the three cell lines, which was correlated with their variable endogenous content in A-type lamins and emerin. The occurrence of nuclear abnormalities was reduced when lamin B1 was coexpressed with mutant lamin A, emphasizing the functional interaction of the two types of lamins. Transfected cells therefore develop similar phenotypes when expressing lamins mutated in the carboxyl-terminal tail at sites responsible for FPLD or EDMD.  相似文献   

17.
Interaction of chromatin with the nuclear envelope and lamina is thought to help determine higher order chromosome organization in the interphase nucleus. Previous studies have shown that nuclear lamins bind chromatin directly. Here we have localized a chromatin binding site to the carboxyl-terminal tail domains of both A- and B-type mammalian lamins, and have characterized the biochemical properties of this binding in detail. Recombinant glutathione-S-transferase fusion proteins containing the tail domains of mammalian lamins C, B1, and B2 were analyzed for their ability to associate with rat liver chromatin fragments immobilized on microtiter plate wells. We found that all three lamin tails specifically bind to chromatin with apparent KdS of 120-300 nM. By examining a series of deletion mutants, we have mapped the chromatin binding region of the lamin C tail to amino acids 396- 430, a segment immediately adjacent to the rod domain. Furthermore, by analysis of chromatin subfractions, we found that core histones constitute the principal chromatin binding component for the lamin C tail. Through cooperativity, this lamin-histone interaction could be involved in specifying the high avidity attachment of chromatin to the nuclear envelope in vivo.  相似文献   

18.
Lamins A and C bind and assemble at the surface of mitotic chromosomes   总被引:31,自引:15,他引:16       下载免费PDF全文
To study a possible interaction of nuclear lamins with chromatin, we examined assembly of lamins A and C at mitotic chromosome surfaces in vitro. When a postmicrosomal supernatant of metaphase CHO cells containing disassembled lamins A and C is incubated with chromosomes isolated from mitotic Chinese hamster ovary cells, lamins A and C undergo dephosphorylation and uniformly coat the chromosome surfaces. Furthermore, when purified rat liver lamins A and C are dialyzed with mitotic chromosomes into a buffer of physiological ionic strength and pH, lamins A and C coat chromosomes in a similar fashion. In both cases a lamin-containing supramolecular structure is formed that remains intact when the chromatin is removed by digestion with micrococcal nuclease and extraction with 0.5 M KCl. Lamins associate with chromosomes at concentrations approximately eightfold lower than the critical concentration at which they self-assemble into insoluble structures in the absence of chromosomes, indicating that chromosome surfaces contain binding sites that promote lamin assembly. These binding sites are destroyed by brief treatment of chromosomes with trypsin or micrococcal nuclease. Together, these data suggest the existence of a specific lamin-chromatin interaction in cells that may be important for nuclear envelope reassembly and interphase chromosome structure.  相似文献   

19.
Lamins are thought to direct heterochromatin to the nuclear lamina (NL); however, this function of lamin has not been clearly demonstrated in vivo. To address this, we analyzed polytene chromosome morphology when artificial lamin variants were expressed in Drosophila endoreplicating cells. We found that the CaaX-motif-deleted B-type lamin Dm0, but not A-type lamin C, was able to form a nuclear envelope-independent layer that was closely associated with chromatin. Other nuclear envelope proteins were not detected in this “ectopic lamina,” and the associated chromatin showed a repressive histone modification maker but not a permissive histone modification marker nor RNA polymerase II proteins. Furthermore, deletion of the C-terminal lamin-Ig-fold domain prevents chromatin association with this ectopic lamina. Thus, non-farnesylated B-type lamin Dm0 can form an ectopic lamina and induce changes to chromatin structure and status inside the interphase nucleus.  相似文献   

20.
Defects in stress response are main determinants of cellular senescence and organism aging. In fibroblasts from patients affected by Hutchinson–Gilford progeria, a severe LMNA‐linked syndrome associated with bone resorption, cardiovascular disorders, and premature aging, we found altered modulation of CDKN1A, encoding p21, upon oxidative stress induction, and accumulation of senescence markers during stress recovery. In this context, we unraveled a dynamic interaction of lamin A/C with HDAC2, an histone deacetylase that regulates CDKN1A expression. In control skin fibroblasts, lamin A/C is part of a protein complex including HDAC2 and its histone substrates; protein interaction is reduced at the onset of DNA damage response and recovered after completion of DNA repair. This interplay parallels modulation of p21 expression and global histone acetylation, and it is disrupted by LMNAmutations leading to progeroid phenotypes. In fact, HGPS cells show impaired lamin A/C‐HDAC2 interplay and accumulation of p21 upon stress recovery. Collectively, these results link altered physical interaction between lamin A/C and HDAC2 to cellular and organism aging. The lamin A/C‐HDAC2 complex may be a novel therapeutic target to slow down progression of progeria symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号