首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The outer membrane and surface exposed proteins of four strains of the gastric Campylobacter-like organism Campylobacter pyloridis were identified by SDS-PAGE of Sarkosyl-insoluble membranous material and 125I-surface-labelled whole bacteria. Although constant outer membrane proteins (molecular mass 61, 54 and 31 kDa) were observed in these strains, several variable 125I-labelled surface proteins were detected. C. pyloridis does not appear to express a single surface-exposed major outer membrane protein like that of C. jejuni and C. coli. Putative flagella proteins were identified from isolated flagella and acid-extractable surface material and by immunoblotting with anti-flagella antibodies. Several major protein antigens were observed by immunoblotting with anti-C. pyloridis antisera. At least two of these antigens cross-reacted with anti-C. jejuni antiserum. This cross-reaction appears to be caused primarily by flagellar antigens. However, one major protein antigen (61 kDa) was not cross-reactive with C. jejuni and may, therefore, be useful in serological tests for the specific diagnosis of C. pyloridis infections.  相似文献   

2.
Campylobacter jejuni , a Gram-negative bacterium, is a common cause of gastrointestinal disease. By analogy with other enteric pathogens such as Salmonella and Shigella , the ability of C. jejuni to bind to host cells is thought to be essential in the pathogenesis of enteritis. Scanning electron microscopy of infected INT407 cells suggested that C. jejuni bound to a component of the extracellular matrix. Binding assays using immobilized extracellular matrix proteins and soluble fibronectin showed specific and saturable binding of fibronectin to C. jejuni . Ligand immunoblot assays using 125I-labelled fibronectin revealed specific binding to an outer membrane protein with an apparent molecular mass of 37 kDa. A rabbit antiserum, raised against the gel-purified protein, reacted with a 37 kDa protein in all C. jejuni isolates ( n  = 15) as tested by immunoblot analysis. Antibodies present in convalescent serum from C. jejuni -infected individuals also recognized a 37 kDa protein. The gene encoding the immunoreactive 37 kDa protein was cloned and sequenced. Sequencing of overlapping DNA fragments revealed an open reading frame (ORF) that encodes a protein of 326 amino acids with a calculated molecular mass of 36 872 Da. The deduced amino acid sequence of the ORF exhibited 52% similarity and 28% identity to the root adhesin protein from Pseudomonas fluorescens . Isogenic C. jejuni mutants which lack the 37 kDa outer membrane protein, which we have termed CadF, displayed significantly reduced binding to fibronectin. Biotinylated fibronectin bound to a protein with an apparent molecular mass of 37 kDa in the outer membrane protein extracts from wild-type C. jejuni as judged by ligand-binding blots. These results indicate that the binding of C. jejuni to fibronectin is mediated by the 37 kDa outer membrane protein which is conserved among C. jejuni isolates.  相似文献   

3.
Poultry are considered the major reservoir for Campylobacter jejuni, a leading bacterial cause of human food-borne diarrhea. To understand the ecology of C. jejuni and develop strategies to control C. jejuni infection in the animal reservoir, we initiated studies to examine the potential role of anti-Campylobacter maternal antibodies in protecting young broiler chickens from infection by C. jejuni. Using an enzyme-linked immunosorbent assay (ELISA), the prevalence of anti-C. jejuni antibodies in breeder chickens, egg yolks, and broilers from multiple flocks of different farms were examined. High levels of antibodies to the organism were detected in serum samples of breeder chickens and in egg yolk contents. To determine the dynamics of anti-Campylobacter maternal antibody transferred from yolks to hatchlings, serum samples collected from five broiler flocks at weekly intervals from 1 to 28 or 42 days of age were also examined by ELISA. Sera from the 1-day and 7-day-old chicks showed high titers of antibodies to C. jejuni. Thereafter, antibody titers decreased substantially and were not detected during the third and fourth weeks of age. The disappearance of anti-Campylobacter maternal antibodies during 3 to 4 weeks of age coincides with the appearance of C. jejuni infections observed in many broiler chicken flocks. As shown by immunoblotting, the maternally derived antibodies recognized multiple membrane proteins of C. jejuni ranging from 19 to 107 kDa. Moreover, in vitro serum bactericidal assays showed that anti-Campylobacter maternal antibodies were active in antibody-dependent complement-mediated killing of C. jejuni. Together, these results highlight the widespread presence of functional anti-Campylobacter antibodies in the poultry production system and provide a strong rationale for further investigation of the potential role of anti-C. jejuni maternal antibodies in protecting young chickens from infection by C. jejuni.  相似文献   

4.
In this study we investigated the commonality and biosynthesis of the O-methyl phosphoramidate (MeOPN) group found on the capsular polysaccharide (CPS) of Campylobacter jejuni. High resolution magic angle spinning NMR spectroscopy was used as a rapid, high throughput means to examine multiple isolates, analyze the cecal contents of colonized chickens, and screen a library of CPS mutants for the presence of MeOPN. Sixty eight percent of C. jejuni strains were found to express the MeOPN with a high prevalence among isolates from enteritis, Guillain Barré, and Miller-Fisher syndrome patients. In contrast, MeOPN was not observed for any of the Campylobacter coli strains examined. The MeOPN was detected on C. jejuni retrieved from cecal contents of colonized chickens demonstrating that the modification is expressed by bacteria inhabiting the avian gastrointestinal tract. In C. jejuni 11168H, the cj1415-cj1418 cluster was shown to be involved in the biosynthesis of MeOPN. Genetic complementation studies and NMR/mass spectrometric analyses of CPS from this strain also revealed that cj1421 and cj1422 encode MeOPN transferases. Cj1421 adds the MeOPN to C-3 of the beta-d-GalfNAc residue, whereas Cj1422 transfers the MeOPN to C-4 of D-glycero-alpha-L-gluco-heptopyranose. CPS produced by the 11168H strain was found to be extensively modified with variable MeOPN, methyl, ethanolamine, and N-glycerol groups. These findings establish the importance of the MeOPN as a diagnostic marker and therapeutic target for C. jejuni and set the groundwork for future studies aimed at the detailed elucidation of the MeOPN biosynthetic pathway.  相似文献   

5.
The major outer membrane protein (MOMP) of Campylobacter jejuni is an abundant surface protein with a pore-forming function and may be a potential candidate for vaccine development. Despite the fact that MOMP is immunogenic and the recombinant MOMP (rMOMP) can be readily produced in Escherichia coli, the nature of the antibody response to MOMP during in vivo infection is not well understood. In this study, various methods involving detergent replacement and liposome reconstitution were used to refold rMOMP, and antibody responses to MOMP elicited in Campylobacter-colonized chickens were evaluated using sera from chickens either naturally or experimentally infected by C. jejuni. The results demonstrated that proteoliposomes restored the reactivity of rMOMP to rabbit antibodies elicited by native MOMP, indicating the recovery of native MOMP conformation by this refolding method. Importantly, sera from naturally or experimentally infected chickens reacted weakly with denatured rMOMP, but strongly with rMOMP reconstituted in proteoliposome, suggesting that the chicken antibody response to MOMP is predominantly directed against conformational epitopes. These observations provide direct evidence for conformation-dependent humoral responses to MOMP induced by Campylobacter infection, demonstrate that C. jejuni MOMP is immunogenic in its natural host and suggest that proteoliposomes may be potentially used for the evaluation of rMOMP-based vaccines.  相似文献   

6.
Campylobacter jejuni (C. jejuni) is a leading cause of human bacterial enteritis worldwide with poultry products being a major source of C. jejuni contamination. The chicken is the natural reservoir of C. jejuni where bacteria colonize the digestive tract of poultry, but rarely cause symptoms of disease. To understand the systemic molecular response mechanisms to C. jejuni infection in chickens, total splenic RNA was isolated and applied to a whole genome chicken microarray for comparison between infected (I) and non-infected (N) chickens within and between genetic lines A and B. There were more total splenic host genes responding to the infection in resistant line A than in susceptible line B. Specifically, genes for lymphocyte activation, differentiation and humoral response, and Ig light and heavy chain were upregulated in the resistant line. In the susceptible line, genes for regulation of erythrocyte differentiation, hemopoiesis, and RNA biosynthetic process were all downregulated. An interaction analysis between genetic lines and treatment demonstrated distinct defense mechanisms between lines: the resistant line promoted apoptosis and cytochrome c release from mitochondria, whereas the susceptible line responded with a downregulation of both functions. This was the first time that such systemic defensive mechanisms against C. jejuni infection have been reported. The results of this study revealed novel molecular mechanisms of the systemic host responses to C. jejuni infection in chickens that warrant further investigation.  相似文献   

7.
Campylobacter jejuni isolates possess multiple adhesive proteins termed adhesins, which promote the organism's attachment to epithelial cells. Based on the proposal that one or more adhesins are shared among C. jejuni isolates, we hypothesized that C. jejuni strains would compete for intestinal and cecal colonization in broiler chicks. To test this hypothesis, we selected two C. jejuni strains with unique SmaI pulsed-field gel electrophoresis macrorestriction profiles and generated one nalidixic acid-resistant strain (the F38011 Nal(r) strain) and one streptomycin-resistant strain (the 02-833L Str(r) strain). In vitro binding assays revealed that the C. jejuni F38011 Nal(r) and 02-833L Str(r) strains adhered to LMH chicken hepatocellular carcinoma epithelial cells and that neither strain influenced the binding potential of the other strain at low inoculation doses. However, an increase in the dose of the C. jejuni 02-833L Str(r) strain relative to that of the C. jejuni F38011 Nal(r) strain competitively inhibited the binding of the C. jejuni F38011 Nal(r) strain to LMH cells in a dose-dependent fashion. Similarly, the C. jejuni 02-833L Str(r) strain was found to significantly reduce the efficiency of intestinal and cecal colonization by the C. jejuni F38011 Nal(r) strain in broiler chickens. Based on the number of bacteria recovered from the ceca, the maximum number of bacteria that can colonize the digestive tracts of chickens may be limited by host constraints. Collectively, these data support the hypothesis that C. jejuni strains compete for colonization in chicks and suggest that it may be possible to design novel intervention strategies for reducing the level at which C. jejuni colonizes the cecum.  相似文献   

8.
In this study, we compared two types of chicken infection models for Campylobacter jejuni in terms of infectious dose required to colonize the chickens and the susceptibility of chickens of different ages to persistent colonization by C. jejuni. In one model, chickens at day 2 posthatching were used, and in the other, 14-day-old chickens were used. The minimum C. jejuni cell number required to colonize 14-day-old chickens was 5 x 10(4) cells, and that for 2-day-old chickens was 5 x 10(3). The ability of various C. jejuni strains to colonize the chicken gastrointestinal tract was the same in both models.  相似文献   

9.
A major bottleneck in understanding zoonotic pathogens has been the analysis of pathogen co-infection dynamics. We have addressed this challenge using a novel direct sequencing approach for pathogen quantification in mixed infections. The major zoonotic food-borne pathogen Campylobacter jejuni, with an important reservoir in the gastrointestinal (GI) tract of chickens, was used as a model. We investigated the co-colonisation dynamics of seven C. jejuni strains in a chicken GI infection trial. The seven strains were isolated from an epidemiological study showing multiple strain infections at the farm level. We analysed time-series data, following the Campylobacter colonisation, as well as the dominant background flora of chickens. Data were collected from the infection at day 16 until the last sampling point at day 36. Chickens with two different background floras were studied, mature (treated with Broilact, which is a product consisting of bacteria from the intestinal flora of healthy hens) and spontaneous. The two treatments resulted in completely different background floras, yet similar Campylobacter colonisation patterns were detected in both groups. This suggests that it is the chicken host and not the background flora that is important in determining the Campylobacter colonisation pattern. Our results showed that mainly two of the seven C. jejuni strains dominated the Campylobacter flora in the chickens, with a shift of the dominating strain during the infection period. We propose a model in which multiple C. jejuni strains can colonise a single host, with the dominant strains being replaced as a consequence of strain-specific immune responses. This model represents a new understanding of C. jejuni epidemiology, with future implications for the development of novel intervention strategies.  相似文献   

10.
Campylobacter jejuni is the most common cause of human bacterial gastroenteritis and is associated with several post-infectious manifestations, including onset of the autoimmune neuropathy Guillain-Barré syndrome, causing significant morbidity and mortality. Poorly-cooked chicken meat is the most frequent source of infection as C. jejuni colonizes the avian intestine in a commensal relationship. However, not all chickens are equally colonized and resistance seems to be genetically determined. We hypothesize that differences in immune response may contribute to variation in colonization levels between susceptible and resistant birds. Using high-throughput sequencing in an avian infection model, we investigate gene expression associated with resistance or susceptibility to colonization of the gastrointestinal tract with C. jejuni and find that gut related immune mechanisms are critical for regulating colonization. Amongst a single population of 300 4-week old chickens, there was clear segregation in levels of C. jejuni colonization 48 hours post-exposure. RNAseq analysis of caecal tissue from 14 C. jejuni-susceptible and 14 C. jejuni-resistant birds generated over 363 million short mRNA sequences which were investigated to identify 219 differentially expressed genes. Significantly higher expression of genes involved in the innate immune response, cytokine signaling, B cell and T cell activation and immunoglobulin production, as well as the renin-angiotensin system was observed in resistant birds, suggesting an early active immune response to C. jejuni. Lower expression of these genes in colonized birds suggests suppression or inhibition of a clearing immune response thus facilitating commensal colonization and generating vectors for zoonotic transmission. This study describes biological processes regulating C. jejuni colonization of the avian intestine and gives insight into the differential immune mechanisms incited in response to commensal bacteria in general within vertebrate populations. The results reported here illustrate how an exaggerated immune response may be elicited in a subset of the population, which alters host-microbe interactions and inhibits the commensal state, therefore having wider relevance with regard to inflammatory and autoimmune disease.  相似文献   

11.
Campylobacter jejuni and Campylobacter coli are the bacterial cause of human gastroenteritis commonly reported worldwide. The serodiagnosis of Campylobacter infections is not routinely done in Poland so the aim of this study was to evaluation of ELISA in the diagnosis ofcampylobacteriosis. Serum samples obtained from 145 patients with gastroenteritis were tested by ELISA with 7 different heat-stable antigens of C. jejuni and one of C. coli and by the commercial Virion/Serion ELISA with purified 45 kDa outer membrane protein of C. jejuni. Antibodies for heat-stable antigens of C. jejuni were detected statistically more often than antibodies for heat-stable antigens of C. coli and for purifled protein of C. jejuni. We found significant differences in the frequency of detection of antibodies to different heat-stable antigens, ranged from 18.6% to 68.9% of positive results, what indicate for serological heterogenicity of C. jejuni strains isolated in Poland. The results of our study showed usefulness of ELISA in serological diagnosis of campylobacteriosis. However it is necessary to serotype the C. jejuni strains isolated in Poland to find the appropriate C. jejuni serotype for using in ELISA.  相似文献   

12.
AIMS: To evaluate the ability of Salmonella enterica ser. Enteritidis outer membrane proteins (OMPs) of 75.6 and 82.3 kDa to inhibit or reduce in vivo colonization of S. Enteritidis on intestinal mucosa in chickens. METHODS AND RESULTS: Nine-week-old specific-pathogen-free chickens were subcutaneously immunized with 75.6 or 82.3 kDa protein, and challenged with a virulent strain of S. Enteritidis. Chickens were killed, and portions of small intestine and caecum were removed at necropsy. The population of S. Enteritidis attached to chicken intestinal mucosa was determined. The population of S. Enteritidis recovered from the small intestine and caecum of chickens immunized with 75.6 or 82.3 kDa protein was significantly (P < 0.05) lower than that recovered from the control birds. CONCLUSIONS: Salmonella Enteritidis OMPs 75.6 kDa and 82.3 kDa were effective in reducing colonization of S. Enteritidis on intestinal mucosa in chickens. SIGNIFICANCE AND IMPACT OF THE STUDY: Salmonella Enteritidis OMPs 75.6 or 82.3 kDa could be used as potential vaccines to reduce S. Enteritidis colonization in chickens.  相似文献   

13.
AIMS: To apply and evaluate LG (LPS genes) genotyping, which is a genotyping method based on a cluster of genes involved in the synthesis of surface lipopolysaccharides (LPS) in Campylobacter species, for typing of Campylobacter jejuni isolates obtained from Danish broiler chickens. Furthermore, the LG genotyping method was used to study the genetic stability of four C. jejuni strains after gastrointestinal passage through experimentally infected chickens. METHODS AND RESULTS: In the present study, the LG genotyping method was modified with respect to the restriction enzymes used. To validate the method, 63 Penner serotype reference strains and 107 C. jejuni chicken isolates, representing the most common Penner serotypes of C. jejuni in Danish poultry, were selected for typing. The method was successfully used for typing all isolates and the LG genotype profiles were reproducible. There were no changes in the LG genotype of the C. jejuni strains obtained after experimental passage through chickens. CONCLUSIONS: All C. jejuni strains obtained from broiler chickens were typeable by the LG genotyping method. Application of the RsaI restriction enzyme improved the method in terms of ease and consistency of analyses and increase of discriminatory power. SIGNIFICANCE AND IMPACT OF THE STUDY: The LG genotyping method is a valuable tool for typing C. jejuni isolates obtained from poultry. However, the association between Penner serotyping based on passive haemagglutination of heat-stable antigens and LG genotyping was low when applied to poultry isolates. This is in contrast to previous studies on isolates of human origin that reported a high correlation between results obtained by the two typing methods (Shi et al. 2002).  相似文献   

14.
AIMS: The transfer of tetO gene conferring resistance to tetracycline was studied between Campylobacter jejuni strains, in the digestive tract of chickens. METHODS AND RESULTS: In vitro conjugation experiments were first performed in order to select donor/recipient couples for further in vivo assay. Then, chickens were inoculated with a donor/recipient couple of C. jejuni strains displaying spontaneous in vitro tetracycline resistance gene transfer. The donor was a tetracycline-resistant ampicillin-susceptible strain, and the recipient was a tetracycline-susceptible ampicillin-resistant strain. Chicken droppings were streaked on antimicrobial selective media and bi-resistant Campylobacter isolates were further characterized according to their donor or recipient flaA gene RFLP profile. The acquisition of tetracycline-resistance gene by the recipient C. jejuni strain from the donor C. jejuni strain was confirmed by tetO PCR. CONCLUSIONS: The study showed that transfer of tetO gene occurs rapidly and without antimicrobial selection pressure between C. jejuni strains in the digestive tract of chickens. SIGNIFICANCE AND IMPACT OF THE STUDY: The rapid and spontaneous transfer of tetO gene may explain the high prevalence of tetracycline resistance in chicken Campylobacter strains.  相似文献   

15.
Spraying poultry carcasses with 1 % lactic acid 10 min after inoculation with Campylobacter jejuni, resulted in a significant reduction in the number of the bacteria after 4 h at 4°C. Some of the inoculated cells, however, survived for at least 144 h. Spraying 10 min after inoculation with 2% lactic acid, totally eliminated all inoculated C. jejuni within 24 h. On the other hand, spraying 24 h after inoculation, with either 1 % or 2 % lactic acid did not eliminate all the bacteria. Inoculated C. jejuni on poultry carcasses not sprayed with lactic acid, survived at 4°C throughout the sampling period (up to 144 h) and showed little tendency to decrease in number even when the carcasses started to deteriorate. Resident Campylobacters on poultry carcasses were significantly reduced by the lactic acid treatment. Frozen and thawed chickens appeared to show a graying of the skins immediately after spraying with lactic acid, slightly stronger with 2 % lactic acid, but the colour reverted to normal after 24 h. We were not able to observe any colour change on the fresh broiler chickens after lactic acid treatment. Our results indicated that lactic acid had a significant bactericidal effect on C. jejuni on both naturally and artificially contaminated poultry carcasses. This effect, however, became manifest only several hours after acid treatment.  相似文献   

16.
Using laboratory challenge experiments, we examined whether Campylobacter-specific maternal antibody (MAB) plays a protective role in young chickens, which are usually free of Campylobacter under natural production conditions. Kinetics of C. jejuni colonization were compared by infecting 3-day-old broiler chicks, which were naturally positive for Campylobacter-specific MAB, and 21-day-old broilers, which were negative for Campylobacter-specific MAB. The onset of colonization occurred much sooner in birds challenged at the age of 21 days than it did in the birds inoculated at 3 days of age, which suggested a possible involvement of specific MAB in the delay of colonization. To further examine this possibility, specific-pathogen-free layer chickens were raised under laboratory conditions with or without Campylobacter infection, and their 3-day-old progenies with (MAB(+)) or without (MAB(-)) Campylobacter-specific MAB were orally challenged with C. jejuni. Significant decreases in the percentage of colonized chickens were observed in the MAB(+) group during the first week compared with the MAB(-) group. These results indicate that Campylobacter-specific MAB plays a partial role in protecting young chickens against colonization by C. jejuni. Presence of MAB in young chickens did not seem to affect the development of systemic immune response following infection with C. jejuni. However, active immune responses to Campylobacter occurred earlier and more strongly in birds infected at 21 days of age than those infected at 3 days of age. Clearance of Campylobacter infection was also observed in chickens infected at 21 days of age. Taken together, these findings (i) indicate that anti-Campylobacter MAB contributes to the lack of Campylobacter infection in young broiler chickens in natural environments and (ii) provide further evidence supporting the feasibility of development of immunization-based approaches for control of Campylobacter infection in poultry.  相似文献   

17.
Probiotic Lactobacillus can be used to reduce the colonization of pathogenic bacteria in food animals, and therefore reduce the risk of foodborne illness to consumers. As a model system, we examined the mechanism of protection conferred by Lactobacillus species to inhibit C. jejuni growth in vitro and reduce colonization in broiler chickens. Possible mechanisms for the reduction of pathogens by lactobacilli include: 1) stimulation of adaptive immunity; 2) alteration of the cecal microbiome; and, 3) production of inhibitory metabolites, such as organic acids. The Lactobacillus species produced lactic acid at concentrations sufficient to kill C. jejuni in vitro. We determined that lactic acid produced by Lactobacillus disrupted the membrane of C. jejuni, as judged by biophotonics. The spectral features obtained using Fourier-transform infrared (FT-IR) and Raman spectroscopy techniques were used to accurately predict bacterial viability and differentiate C. jejuni samples according to lactic acid treatment. FT-IR spectral features of C. jejuni and Lactobacillus grown in co-culture revealed that the metabolism was dominated by Lactobacillus prior to the killing of C. jejuni. Based on our results, the development of future competitive exclusion strategies should include the evaluation of organic acid production.  相似文献   

18.
Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phage-sensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens.  相似文献   

19.
20.
Campylobacter jejuni is a leading cause of food-borne illness. Although a natural reservoir of the pathogen is domestic poultry, the degree of genomic diversity exhibited by the species limits the application of epidemiological methods to trace specific infection sources. Bacteriophage predation is a common burden placed upon C. jejuni populations in the avian gut, and we show that amongst C. jejuni that survive bacteriophage predation in broiler chickens are bacteriophage-resistant types that display clear evidence of genomic rearrangements. These rearrangements were identified as intra-genomic inversions between Mu-like prophage DNA sequences to invert genomic segments up to 590 kb in size, the equivalent of one-third of the genome. The resulting strains exhibit three clear phenotypes: resistance to infection by virulent bacteriophage, inefficient colonisation of the broiler chicken intestine, and the production of infectious bacteriophage CampMu. These genotypes were recovered from chickens in the presence of virulent bacteriophage but not in vitro. Reintroduction of these strains into chickens in the absence of bacteriophage results in further genomic rearrangements at the same locations, leading to reversion to bacteriophage sensitivity and colonisation proficiency. These findings indicate a previously unsuspected method by which C. jejuni can generate genomic diversity associated with selective phenotypes. Genomic instability of C. jejuni in the avian gut has been adopted as a mechanism to temporarily survive bacteriophage predation and subsequent competition for resources, and would suggest that C. jejuni exists in vivo as families of related meta-genomes generated to survive local environmental pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号