首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capillary electrophoresis has been applied to monitor model reactions in solution‐phase combinatorial chemistry. In particular, the simultaneous alkylation reactions of secondary amines with a series of benzyl halides has been investigated. Reactant and product concentrations were monitored using capillary electrophoresis in a non‐aqueous buffer system. The simplified sample preparation was a key feature making this an attractive method of analysis. The results demonstrate that capillary electrophoresis is a useful tool for monitoring reactions to determine initial rates, rate constants, and extinction correlation coefficients for quantitative analysis in combinatorial chemistry, and is a broadly applicable technique for the analysis of a variety of organic and bioorganic transformations. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:169–177, 1998/1999.  相似文献   

2.
Combinatorial processes have been widely applied to many disciplines in chemistry and biology. The vast numbers of unique entities generated by combinatorial synthesis have led to the development of high-throughput methods for characterizing samples, to avoid bottlenecks created by the application of conventional, serial-based analytical techniques. In recent years, high-throughput and novel methods utilizing mass spectrometry, multiplexed capillary electrophoresis, various forms of optical detection, and even sound waves have been investigated for a variety of applications.  相似文献   

3.
The diversity of compound collections required for finding lead structures in pharmaceutical research can be provided by means of combinatorial organic chemistry. The resultant enormous number of single compounds but also of compound mixtures represents a challenge for the analyst. With the introduction of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS or FT-MS), a new and, as yet, not widespread mass spectrometric technique (a means of analysis of such compound libraries with a very high mass resolution) high mass accuracy and high sensitivity has become available. Moreover, in combination with electrospray ionization (ESI), not only high-throughput measurements via flow-injection analysis (FIA) but also coupling with separation techniques such as high-performance liquid chromatography (HPLC) or capillary electrophoresis (CE) is possible. Structural verification by way of decomposing ions (MS(n); n > or = 2) using a variety of different dissociation techniques can be performed by FTICR-MS. This is the first review specifically covering applications of FTICR-MS in the field of combinatorial chemistry.  相似文献   

4.
Microreactors are finding increasing application in the field of combinatorial chemistry. In the past few years, microreactor chemistry has shown great promise as a novel method on which to build new chemical technology and processes. It has been conclusively demonstrated that reactions performed within microreactors invariably generate relatively pure products in high yield. One of the immediate and obvious applications is therefore in combinatorial chemistry and drug discovery.  相似文献   

5.
The adaptation of diverse organic reactions to solid supports requires significant reaction optimization efforts. A convenient on-support analytical method functionally similar to TLC in solution chemistry is very advantageous. As a TLC-equivalent method, the single bead FTIR is a simple, sensitive, fast, and convenient analytical method to monitor SPOS without stopping the reaction or cleaving the product. As with TLC, single bead FTIR provides a wide range of information such as qualitative assessment, quantitative determination, and reaction kinetics. Studies with the single bead FTIR have not only provided a tool for daily monitoring of the solid-phase reactions, but a way to understand the properties of polymer-bound substrate and the nature of polymer-supported organic reactions. It has assisted in the selection of a wide range of reaction conditions rapidly for SPOS in the rehearsal phase of combinatorial chemistry. Due to its convenience and efficiency, FTIR internal reflection spectroscopy has evolved as a useful analytical methodology for monitoring of combinatorial chemistry reactions directly on polymer surface.  相似文献   

6.
Molecular evolution has been widely applied in the laboratory to generate novel biological macromolecules. The principles underlying evolution have more recently been used to address problems in the chemical sciences, including the discovery of functional synthetic small molecules, catalysts, materials and new chemical reactions. The application of these principles in dynamic combinatorial chemistry and in efforts involving small molecule-nucleic acid conjugates has facilitated the evaluation of large numbers of candidate structures or reactions for desired characteristics. These early efforts suggest the promise of pairing evolutionary approaches with synthetic chemistry.  相似文献   

7.
Richard A. Mathies (Fig. 1) is a professor of chemistry at the University of California (UC) at Berkeley. His early work at UC was on the use of resonance Raman and time-resolved optical spectroscopy to elucidate the structure and reaction dynamics of energy and information-transducing photoactive proteins called rhodopsins. His work on the Human Genome Project led to the development of high-throughput platform technologies including capillary array electrophoresis and energy transfer fluorescent dye labels for DNA sequencing and analysis. He has also pioneered the development of microfabricated capillary electrophoresis devices, capillary array electrophoresis microplates and microfabriated integrated sample preparation and detection methods. He is the co-founder of the Center for Analytical Biotechnology at UC Berkeley. Mathies was interviewed at the BIOMEMS and Biomedical Nanotechnology conference in Columbus, Ohio, 21-25 September 2001, where he gave a talk about capillary array electrophoresis-based microprocessors. Such devices could be used as point-of-care clinical and genetic analyzers, in integrated microfluidic sequencing chips and in DNA-based computing.  相似文献   

8.
In recent years, combinatorial chemistry has had a significant impact on catalyst discovery in diverse fields. Proton-activated fluorescence (PAF) has been successfully demonstrated as a technique for effective screening of catalysts for electro-oxidation, enzymatic ester hydrolysis and nonenzymatic acyl transfer reactions. Among the working prototypes are screens for high-throughput assays of arrayed solid-state catalysts, dissolved enzymatic and small-molecule catalysts, as well as catalysts immobilized in solid-phase synthesis beads or polymeric gels. Given the range of reactions that may be set up to provide a change in local pH, the potential of PAF to facilitate catalyst discovery and process development is significant.  相似文献   

9.
The advent of combinatorial chemistry for the high-throughput synthesis of compounds has driven the advancement of new and emerging technologies for synthetic chemistry laboratories. Automated methods for reaction design, information management, chemical synthesis, compound analysis, and biological testing are necessary to realize the full potential of combinatorial chemistry efforts.  相似文献   

10.
This perspective article highlights the potential of capillary electrophoresis (CE) in in-line monitoring of biomolecular reactions related to in vivo transformations of metal species. In such scrutinizing, the capillary is regarded as a nanolitre-volume reactor in which electrical field-driven reactants are mixed to produce a response that enables in situ following-up and characterization of non-covalent molecular interactions. The concept of a CE reactor has been extended here to the investigation of processes that are responsible for the formation and decomposition of metal-bioligand species under simulated physiological conditions.  相似文献   

11.
Fluorophore-assisted carbohydrate electrophoresis (FACE) is an analytical method for characterizing carbohydrate chain length that has been applied to neutral, charged, and N-linked oligosaccharides and that has been implemented using diverse separation platforms, including polyacrylamide gel electrophoresis and capillary electrophoresis. In this article, we describe three substantial improvements to FACE: (i) reducing the amount of starch and APTS required in labeling reactions and systematically analyzing the effect of altering the starch and 8-amino-1,3,6-pyrenetrisulfonic acid (APTS) concentrations on the reproducibility of the FACE peak area distributions; (ii) implementing FACE on a multiple capillary DNA sequencer (an ABI 3130xl), enabling higher throughput than is possible on other separation platforms; and (iii) developing a protocol for producing quantitative output of peak heights and areas using genetic marker analysis software. The results of a designed experiment to determine the effect of decreasing both the starch and fluorophore concentrations on the sensitivity and reproducibility of FACE electrophoregrams are presented. Analysis of the peak area distributions of the FACE electrophoregrams identified the labeling reaction conditions that resulted in the smallest variances in the peak area distributions while retaining strong fluorescence signals from the capillary-based DNA sequencer.  相似文献   

12.
As a new methodology for library synthesis in combinatorial chemistry, the use of immobilized catalysts and multi-component reactions is focused. In the past two years, many advances have been made in this emerging field, leading to the efficient library synthesis of, for example, quinolines, amino ketones and amino esters.  相似文献   

13.
Several million oligonucleotides are synthesized each year for a broad variety of molecular biology applications. Steady improvements in the synthesis chemistry efficiency and the automated DNA synthesizers have made production of oligonucleotides routine and reliable. Many applications, such as PCR and sequencing, are often successful when the primers have not been rigorously purified. To ensure an adequate level of quality and purity, rapid and convenient analytical methods are necessary for the dozens of oligonucleotides produced each day by a DNA synthesis laboratory. Traditional methods of analysis have been HPLC and polyacrylamide slab tel electrophoresis (PAGE). Gel capillary electrophoresis is a new option, combining the advantages of the HPLC and PAGE, with unprecedented resolution and speed.  相似文献   

14.
Solid-phase synthesis of oligomers, both natural and nonnatural, has proved to be invaluable for the development of many areas of biotechnology. A critical step in the solid-phase synthesis of any oligomer is determining the number and concentration of different constituents present in the product mixture resulting from the synthesis, both before and after purification. Most typically, this analysis is performed by reversed-phase high performance liquid chromatography (RP-HPLC), with the separated components detected by UV absorbance. Recently, we described a novel technique, free-solution conjugate electrophoresis (FSCE), for the high-resolution separation and sensitive laser-induced fluorescence (LIF) detection of uncharged, synthetic polymers, PEG in particular. In this report, we apply this bioconjugate capillary electrophoresis technique to analyze products of the solid-phase synthesis of oligomeric polyamides, namely poly(N-substituted glycines), or polypeptoids. When compared to more traditional RP-HPLC analysis, FSCE analysis of oligomeric peptoids results in separation resolutions that are approximately five times higher and separation efficiencies that are increased by 150%. Moreover, when FSCE with LIF detection is applied to the analysis of oligomeric polyamides after HPLC purification, impurities that are not detectable in RP-HPLC analysis are readily separated and detected. With the advent of capillary array electrophoresis (CAE), which allows for automated, parallel analysis of many different samples, we believe that FSCE will be especially applicable to the analysis of combinatorial synthesis products, by allowing researchers to evaluate many different samples in a single, highly parallel, fully automated analysis. This is in contrast to RP-HPLC analysis, in which samples must be analyzed in series.  相似文献   

15.
We describe here a new method to screen for unknown mutations in the low density lipoprotein (LDL) receptor gene by the use of capillary electrophoresis in single-strand conformation polymorphism (SSCP) analysis. To analyze the promoter and all 18 exons, 20 different amplification reactions were necessary. For each polymerase chain reaction (PCR), the forward and reverse primers were 5′ fluorescent-labelled with FAM and HEX, respectively. To test the accuracy of the newly developed method, 61 genetic variants distributed in 16 exons were analyzed. Under identical electrophoresis conditions (13 kV, 30°C, 30 min), 59 mutations were detected by a distinct abnormal SSCP pattern. The two remaining mutations showed only slight abnormalities, which could be amplified by increasing the electrophoresis temperature. The high accuracy, the degree of automation and the speed of analysis make fluorescence-based SSCP analysis with capillary electrophoresis ideal for rapid mutation screening and the technique is well-suited for clinical applications.  相似文献   

16.
Glycosyltransferases are key enzymes in glycoconjugate biosynthesis, which make them important targets for biomedical research. Among the different methodologies developed to analyze glycosyltransferase activities, fluorophore-assisted capillary electrophoresis (FACE) emerges as a powerful technique in carbohydrate analysis. Its application to monitor glycosyltransferase activity has been limited to reactions with derivatized sugars as acceptor substrates in which a charged fluorophore/chromophore must be introduced, thus requiring tedious preparative synthesis and purification for each single acceptor substrate. Here we describe a novel and general glycosyltransferase assay based on FACE using underivatized acceptor substrates. Enzyme activity is monitored by a discontinuous assay with postreaction derivatization by reductive amination with 8-aminonaphthalene-1,3,6-trisulfonic acid. The reaction mixture is directly analyzed by HPCE (high-performance capillary electrophoresis) under inverted electroosmotic conditions at pH 2.5 and 30 degrees C. After method validation, it was applied to the kinetic characterization of an alpha-1,3-galactosyltransferase, the enzyme responsible for the biosynthesis of alphaGal epitope involved in the hyperacute rejection in xenotransplantation. The absence of a label on the acceptor during the GT reaction avoids any interference of the label with the enzyme, and the postreaction derivatization does not require any purification step.  相似文献   

17.
Melting gel techniques have proven to be amenable and powerful tools in point mutation and single nucleotide polymorphism (SNP) analysis. With the introduction of commercially available capillary electrophoresis instruments, a partly automated platform for denaturant capillary electrophoresis with potential for routine screening of selected target sequences has been established. The aim of this article is to demonstrate the use of automated constant denaturant capillary electrophoresis (ACDCE) in single nucleotide polymorphism analysis of various target sequences. Optimal analysis conditions for different single nucleotide polymorphisms on ACDCE are evaluated with the Poland algorithm. Laboratory procedures include only PCR and electrophoresis. For direct genotyping of individual SNPs, the samples are analyzed with an internal standard and the alleles are identified by co-migration of sample and standard peaks.In conclusion, SNPs suitable for melting gel analysis based on theoretical thermodynamics were separated by ACDCE under appropriate conditions. With this instrumentation (ABI 310 Genetic Analyzer), 48 samples could be analyzed without any intervention. Several institutions have capillary instrumentation in-house, thus making this SNP analysis method accessible to large groups of researchers without any need for instrument modification.  相似文献   

18.
Cells are the fundamental unit of life, and studies on cell contribute to reveal the mystery of life. However, since variability exists between individual cells even in the same kind of cells, increased emphasis has been put on the analysis of individual cells for getting better understanding on the organism functions. During the past two decades, various techniques have been developed for single-cell analysis. Capillary electrophoresis is an excellent technique for identifying and quantifying the contents of single cells. The microfluidic devices afford a versatile platform for single-cell analysis owing to their unique characteristics. This article provides a review on recent advances in single-cell analysis using capillary electrophoresis and microfluidic devices; focus areas to be covered include sampling techniques, detection methods and main applications in capillary electrophoresis, and cell culture, cell manipulation, chemical cytometry and cellular physiology on microfluidic devices.  相似文献   

19.
In a previous study, protein components purified from latex gloves that elicited allergenic reactions were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and yielded apparent molecular weights of 14, 22, 30, 34, 46, and 58 kD. These allergenic components were isolated for further characterization by capillary zone electrophoresis and N-terminal amino acid sequence analysis. These components all migrated at approximately 25 and 35 min on capillary zone electrophoresis. Diode array spectral analysis detected indistinguishable characteristics between these two protein peaks. In addition, complex formation of these components with patients' immunoglobulin was demonstrated by capillary zone electrophoresis. Analysis of components separated by SDS-PAGE on a polyvinylidene difluoride membrane showed that the first 13 residues were identical to the sequence of hevein. Based on the criteria of charge-to-mass ratio and N-terminall amino acid sequence, our results suggest that these components of latex proteins are similar in the primary structure.  相似文献   

20.
The use of capillary electrophoresis for DNA polymorphism analysis   总被引:2,自引:0,他引:2  
Capillary electrophoresis has advanced enormously over the last 10 yr as a tool for DNA sequencing, driven by the human and other major genome projects and by the need for rapid electrophoresis-based DNA diagnostic tests. The common need of these analyses is a platform providing very high throughput, high-quality data, and low process costs. These demands have led to capillary electrophoresis machines with multiple capillaries providing highly parallel analyses, to new electrophoresis matrices, to highly sensitive spectrofluorometers, and to brighter, spectrally distinct fluorescent dyes with which to label DNA. Capillary devices have also been engineered onto microchip formats, on which both the amount of sample required for analysis and the speed of analysis are increased by an order of magnitude. This review examines the advances made in capillary and chip-based microdevices and in the different DNA-based assays developed for mutation detection and genotype analysis using capillary electrophoresis. The automation of attendant processes such as for DNA sample preparation, PCR, and analyte purification are also reviewed. Together, these technological developments provide the throughput demanded by the large genome-sequencing projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号