首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The course of the Nervus connectivus (N.c.), its branches, and synaptic connections within the frontal ganglion (FG) were investigated electron microscopically after cobalt iontophoresis of the N.c. The subsequent treatment of ultrathin sections with Timm's method was found to be very suitable for identifying the smallest branches. In the neuropil, fibers of the N.c. form Gray-I-type synapses, but also dyads are abundant, whereby the N.c. fibers occur exclusively in postsynaptic position with neurosecretory fibers. The possible role of these relationships is discussed.Dedicated to the 70th birthday of Prof. Dr. Manfred GerschThe authors wish to thank Mrs. B. Cosack for excellent technical assistance  相似文献   

2.
The anatomy of neurons of the stomatogastric nervous system of Ascheta domesticus was studied using heavy metal iontophoresis through cut nerve ends followed by silver intensification. Nineteen categories of neuron are described and compared with neurons known from the stomatogastric nervous system of other insects. Possible functions for the neurons are suggested. Motor neuron candidates are suggested for all parts of the gut served by the stomatogastric nervous system, and axons of sensory neurons of the anterior pharynx are located. There are four neuron types that cannot readily be assigned motor, sensory, or interneuron functions: large dorsal cells of the frontal ganglion; the two neurons of the nervus connectivus, and two categories of neurons in the median neurosecretory cell group of the pars intercerebralis, the axons of which are contained in the stomatogastric nerves.  相似文献   

3.
Summary After application of various neuronal tracers (horseradish peroxidase, cobalt-chloride lysine, true blue) to the ganglion of the nervus terminalis a small number of neurons was retrogradely labeled in the mesencephalon. As revealed by combined horseradish peroxidase and catecholamine-fluorescence techniques these neurons are located in the isthmic area immediately rostral to, but not within the locus coeruleus. Cobalt-labeled axons of the mesencephalic neurons were traced individually in serial sections. Neurons projecting contralaterally cross in the horizontal commissure. Tracing of single fibers provided no evidence for axon collaterals within this pathway. Retrograde labeling reveals two different types of isthmic neurons afferent to the ganglion of the nervus terminalis: One smaller-sized type is located bilaterally and consists of four to six neurons; another type possessing many dendritic processes was consistently found as only one single cell located contralateral to the side of injection. The existence of two types of neurons was confirmed by their cytological differences: The small-sized type receives only sparse perisomatic input, while the large-sized type shows heavy somatic and dendritic, probably monoaminergic innervation.  相似文献   

4.
The neuronal connections of the tritocerebral commissures of Periplaneta americana were studied in the brain-suboesophageal ganglion complex and the stomatogastric nervous system by means of heavy metal iontophoresis through cut nerve ends followed by silver intensification. The tritocerebral commissure 1 (Tc1) contains mainly the processes of the subpharyngeal nerve (Spn) whose neurons are located in both tritocerebral lobes and in the frontal ganglion. Some neurons of the frontal ganglion project through the Tc1 to the contralateral tritocerebrum. A few fibers in this commissure were observed projecting to the protocerebrum and the suboesophageal ganglion. There are tritocerebral neurons which pass through the Tc1 or the tritocerebral commissure 2 (Tc2) and extend on into the stomatogastric nervous system. One axon of a descending gaint neuron appears in the Tc2. This neuron lies in the tritocerebrum and connects the brain to the contralateral side of the ventral nerve cord. In addition, sensory fibers of the labral nerve (Ln) traverse both commissures to the opposite tritocerebrum. The anatomical and physiological relevance of the identified neuronal pathways is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Primary olfactory and central projections of the nervus terminalis were investigated by injections of horseradish peroxidase into the olfactory epithelium in the African lungfish. In addition, gonadotropin-releasing hormone (GnRH) immunoreactivity of the nervus terminalis system was investigated. The primary olfactory projections are restricted to the olfactory bulb located at the rostral pole of the telencephalon; they do not extend into caudal parts of the telencephalon. A vomeronasal nerve and an accessory olfactory bulb could not be identified. The nervus terminalis courses through the dorsomedial telencephalon. Major targets include the nucleus of the anterior commissure and the nucleus praeopticus pars superior. some fibers cross to the contralateral side. A few fibers reach the diencephalon and mesencephalon. No label is present in the "posterior root of the nervus terminalis" (= "Pinkus's nerve" or "nervus praeopticus"). GnRH immunoreactivity is lacking in the "anterior root of the nervus terminalis," whereas it is abundant in nervus praeopticus (Pinkus's nerve). These findings may suggest that the nervus terminalis system originally consisted of two distinct cranial nerves, which have fused-in evolution-in most vertebrates. Theories of cranial nerve phylogeny are discussed in the light of the assumed "binerval origin" of the nervus terminalis system.  相似文献   

6.
Summary Central projections of the nervus terminalis (n.t.) in the goldfish were investigated using cobalt- and horseradish peroxidase-tracing techniques. Single n.t. fibers were identified after unilateral application of cobalt chloride-lysine to the rostral olfactory bulb. The central course and branching patterns of individual n.t. fibers were studied in serial sections. Eight types of n.t. fibers are differentiated according to pathways and projection patterns. Projection areas of the n.t. include the contralateral olfactory bulb, the ipsilateral periventricular preoptic nucleus, both retinae, the caudal zone of the periventricular hypothalamus bilaterally, and the rostral optic tectum bilaterally. N.t. fibers cross to contralateral targets in the anterior commissure, the optic chiasma, the horizontal commissure, the posterior commissure, and possibly the habenular commissure. We propose criteria that differentiate central n.t. fibers from those of the classical secondary olfactory projections. Branching patterns of eight n.t. fiber types are described. Mesencephalic projections of the n.t. and of secondary olfactory fibers are compared and discussed with regard to prior reports on the olfactory system of teleosts. Further fiber types for which the association with the n.t. could not be established with certainty were traced to the torus longitudinalis, the torus semicircularis, and to the superior reticular nucleus on the ipsilateral side.  相似文献   

7.
Summary Central pathways of the nervus terminalis (n.t.) in the bichir, Polypterus palmas, were studied with the use of tracing techniques. After application of horseradish peroxidase to the unilateral olfactory mucosa labeled n.t. fibers were traced in seven distinct bundles through the subpallium. Projection areas are found in the precommissural ventral nucleus of the area ventralis telencephali ipsilaterally, the anterior commissure and commissural parts of the periventricular preoptic nucleus bilaterally; few n.t.-fibers cross via the anterior commissure to the contralateral side; no fibers were observed to turn rostrally to the contralateral olfactory bulb. Major targets of the n.t. include a restricted ventral part of the periventricular preoptic nucleus at the level of the optic chiasma bilaterally, and the periventricular nuclei located between the thalamic nuclei and the hypothalamus bilaterally. N.t. fibers continue their course through the ipsilateral hypothalamus and are traced as far as the mesencephalic tegmentum ipsilaterally. N.t. terminations are found consistently within the boundaries of periventricular cell nuclei, suggesting axosomatic synaptic contacts. We propose a differentiation of the n.t. ganglion cells into a distal (mucosal) and proximal (bulbar) type regarding the peripheral cell processes. Our findings are compared with those of other reports on the n.t. system.  相似文献   

8.
In the circadian timing systems, input pathways transmit information on the diurnal environmental changes to a core oscillator that generates signals relayed to the body periphery by output pathways. Cryptochrome (CRY) protein participates in the light perception; period (PER), Cycle (CYC), and Doubletime (DBT) proteins drive the core oscillator; and arylalkylamines are crucial for the clock output in vertebrates. Using antibodies to CRY, PER, CYC, DBT, and arylalkylamine N-acetyltransferase (aaNAT), the authors examined neuronal architecture of the circadian system in the cephalic ganglia of adult silkworms. The antibodies reacted in the cytoplasm, never in the nuclei, of specific neurons. A cluster of 4 large Ia(1) neurons in each dorsolateral protocerebrum, a pair of cells in the frontal ganglion, and nerve fibers in the corpora cardiaca and corpora allata were stained with all antibodies. The intensity of PER staining in the Ia(1) cells and in 2 to 4 adjacent small cells oscillated, being maximal late in subjective day and minimal in early night. No other oscillations were detected in any cell and with any antibody. Six small cells in close vicinity to the Ia(1) neurons coexpressed CYC-like and DBT-like, and 4 to 5 of them also coexpressed aaNATlike immunoreactivity; the PER- and CRY-like antigens were each present in separate groups of 4 cells. The CYC- and aaNAT-like antigens were further colocalized in small groups of neurons in the pars intercerebralis, at the venter of the optic tract, and in the subesophageal ganglion. Remaining antibodies reacted with similarly positioned cells in the pars intercerebralis, and the DBT antibody also reacted with the cells in the subesophageal ganglion, but antigen colocalizations were not proven. The results imply that key components of the silkworm circadian system reside in the Ia(1) neurons and that additional, hierarchically arranged oscillators contribute to overt pacemaking. The retrocerebral neurohemal organs seem to serve as outlets transmitting central neural oscillations to the hemolymph. The frontal ganglion may play an autonomous function in circadian regulations. The colocalization of aaNAT- and CYC-like antigens suggests that the enzyme is functionally linked to CYC as in vertebrates and that arylalkylamines are involved in the insect output pathway.  相似文献   

9.
Radioautography of [3H]GABA accumulation and immunocytochemistry of glutamate decarboxylase have been used to study anatomically and morphologically the GABA system of the rat habenular (Hb) complex. Radioautographic visualisation of GABA specific neurons show a very high innervation of the complex including both stria medullaris (SM), the habenular commissure and the periventricular thalamic fibers (FPVT). A massive labeled fiber system in the SM appears to divide into two branches when it reaches the Hb nuclei: a part of fibers continue their course dorsally to the nuclei up to the habenular commissure; other fibers enter the Hb lateralis or run along the ventral Hb medialis at the level of FPVT. The staining is markedly diminished in the entire complex in response to SM lesions. In the Hb lateralis, the radioautographic-positive reaction is mainly bound to labeled fibers or axonal varicosities. However GAD immunocytochemistry reveals some GAD-positive cell bodies in the ventro-median portion of the nucleus. In the Hb medialis the radioautographic and immunocytochemical staining is observed in the neuropile between the unlabeled large cell bodies. In the subependymal layer bundles of processes are strongly labeled and form a continual strain behind the unlabeled ependymocytes. Three types of reactive terminals have been differentiated based on size and shape of vesicles. Some of them are exclusively characterized by clear round vesicles and probably have their origin in the septum. Others contain clear vesicles and some large dense-cored vesicles and disappear after mesencephalic Raphe lesions or 5,7-dihydroxytryptamine treatment. They could correspond to terminals of raphe neurons with a double potentiality GABA and 5HT. The last exhibit mainly a dense population of large dark-cored granules similar to the ones found in neurosecretory nerve endings. However numerous fibers morphologically similar to the reactive fibers are unlabeled.  相似文献   

10.
Dong YL  Wang W  Li H  Li ZH  Zhang FX  Zhang T  Lu YC  Li JL  Wu SX  Li YQ 《PloS one》2012,7(3):e34435
The brainstem premotor neurons of the facial nucleus (VII) and hypoglossal (XII) nucleus can integrate orofacial nociceptive input from the caudal spinal trigeminal nucleus (Vc) and coordinate orofacial nociceptive reflex (ONR) responses. However, the synaptoarchitectures of the ONR pathways are still unknown. In the current study, we examined the distribution of GABAergic premotor neurons in the brainstem local ONR pathways, their connections with the Vc projections joining the brainstem ONR pathways and the neurochemical properties of these connections. Retrograde tracer fluoro-gold (FG) was injected into the VII or XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the Vc. Immunofluorescence histochemical labeling for inhibitory/excitatory neurotransmitters combined with BDA/FG tracing showed that GABAergic premotor neurons were mainly distributed bilaterally in the ponto-medullary reticular formation with an ipsilateral dominance. Some GABAergic premotor neurons made close appositions to the BDA-labeled fibers coming from the Vc, and these appostions were mainly distributed in the parvicellular reticular formation (PCRt), dorsal medullary reticular formation (MdD), and supratrigeminal nucleus (Vsup). We further examined the synaptic relationships between the Vc projecting fibers and premotor neurons in the VII or XII under the confocal laser-scanning microscope and electron microscope, and found that the BDA-labeled axonal terminals that made asymmetric synapses on premotor neurons showed vesicular glutamate transporter 2 (VGluT2) like immunoreactivity. These results indicate that the GABAergic premotor neurons receive excitatory neurotransmission from the Vc and may contribute to modulating the generation of the tonic ONR.  相似文献   

11.
Retrograde and orthograde labeling of neurons projecting to the corpus allatum was performed in locust, grasshopper, cricket, and cockroach species in order to identify brain neurons that may be involved in the regulation of juvenile hormone production. In the acridid grasshopper Gomphocerus rufus L., and the locusts Locusta migratoria (R.&F.) and Schistocerca gregaria Forskal, the corpora allata are innervated by two morphologically distinguishable types of brain neurons. One group of 9–13 neurons (depending on species) with somata in the pars lateralis extend axons via the nervus corporis cardiaci 2 and nervus corporis allati 1 to the ipsilateral corpus allatum, whereas two cells in each pars lateralis have bilateral projections and innervate both glands. No direct connection between the pars intercerebralis and corpus allatum has been found. In contrast, neurons with paired axons innervating both glands are not present in Periplaneta americana (L.) and Gryllus bimaculatus de Geer. Instead, two cells in each pars lateralis project only to the gland contralateral to their somata. Electrophysiological experiments on acridid grasshoppers have confirmed the existence of a direct conduction pathway between the two glands via the paired axons of four cells that have been identified by neuroanatomy. These cells are not spontaneously active under experimental conditions. Ongoing discharges in the left and right nerves are unrelated, suggesting that the corpora allata receive independent neuronal inputs from the brain.  相似文献   

12.
The perinatal development of anterior commissure projections was studied in hamsters by use of carbocyanine crystals implanted either into the commissure or into the ventrolateral prosencephalon. The earliest fascicles of growing commissural fibers had reached the midline on day 14 of gestation (E14). On E15, these fibers had entered the opposite hemisphere and reached the borders of their target regions. No waiting period was observed, since on E16 axons were already collateralizing into most targets. On P1, labelled cells were seen in all regions projecting through the anterior commissure in adults, namely, the anterior olfactory nucleus, olfactory tubercle, piriform cortex, nucleus of the lateral olfactory tract, bed nucleus of the stria terminalis, insular, perirhinal, entorhinal, and temporal cortices, as well as the amygdaloid complex. No evidence of topographical exuberance was detected. Counts of labelled neurons showed that the number of commissural cells increased gradually after birth. It is concluded that the development of paleocortical connections through the anterior commissure employs progressive strategies, lacking the regressive phenomena that are characteristic of the neocortical projections through the corpus callosum.  相似文献   

13.
The perinatal development of anterior commissure projections was studied in hamsters by use of carbocyanine crystals implanted either into the commissure or into the ventrolateral prosencephalon. The earliest fascicles of growing commissural fibers had reached the midline on day 14 of gestation (E14). On E15, these fibers had entered the opposite hemisphere and reached the borders of their target regions. No waiting period was observed, since on E16 axons were already collateralizing into most targets. On P1, labelled cells were seen in all regions projecting through the anterior commissure in adults, namely, the anterior olfactory nucleus, olfactory tubercle, piriform cortex, nucleus of the lateral olfactory tract, bed nucleus of the stria terminalis, insular, perirhinal, entorhinal, and temporal cortices, as well as the amygdaloid complex. No evidence of topographical exuberance was detected. Counts of labelled neurons showed that the number of commissural cells increased gradually after birth. It is concluded that the development of paleocortical connections through the anterior commissure employs progressive strategies, lacking the regressive phenomena that are characteristic of the neocortical projections through the corpus callosum.  相似文献   

14.
Analysis of gene expression using gonadotropin-releasing hormone (GnRH) antisense oligonucleotide confirmed by immunocytochemical localization the occurrence of GnRH neurons along the nervus terminalis in the steelhead trout (Oncorhynchus mykiss). Double-label immunocytochemistry revealed the distribution of mammalian (m), salmon (s) and chicken II (cII)-type GnRHs and various pituitary hormones. Both sGnRH and mGnRH appeared to be colocalized in the same cells of the nervus terminalis. Chicken GnRH II-immunoreactivity was found only in fibers and terminals. In the younger fish [73 and 186 days after fertilization (DAF)] GnRH neurons were seen rostral to the olfactory bulb. A novel GnRH ganglion, along the nervus terminalis, was found at the cribriform bone (gCB). A few non-immunoreactive rounded cells were seen among the GnRH neurons. A second smaller ganglion was seen at the most rostrally located part of the ventromedial olfactory bulb (gROB). In the older fish (850 DAF) GnRH neurons were also observed in the basal forebrain. A small group of neurons (2–3 cells), at the caudoventromedial border of the olfactory bulb, formed the ganglion terminale. Occasionally isolated GnRH-immunoreactive cells were seen at the base of the olfactory epithelium, along the ventromedial margins of the olfactory nerve. GnRH-immunoreactive and GnRH mRNA expressing neurons were absent from midbrain regions at the ages observed. GnRH-immunoreactive fibers were present only in older fish. The pattern of distribution of fibers that were immunoreactive to all three forms of GnRH was identical. Fibers were seen along the medial side of the olfactory nerve, throughout the brain and in the pituitary, associated with growth hormone and somatolactin cells. This morphological study shows that molecular forms of GnRHs might have multiple functions.  相似文献   

15.
Investigations performed on adult insects revealed that putative components of the central pacemaker, the protein Period (PER) and the pigment-dispersing hormone (PDH), are immunocytochemically detectable in discrete sets of brain neurons throughout the class of Insecta, represented by a bristletail, mayfly, damselfly, 2 locust species, stonefly, 2 bug species, goldsmith beetle, caddisfly, honeybee, and 2 blowfly species. The PER-positive cells are localized in the frontal protocerebrum and in most species also in the optic lobes, which are their only location in damselfly and goldsmith beetle. Additional PER-positive cells occur in a few species either in the deuto- and tritocerebrum or in the suboesophageal ganglion. The PER staining was always confined to the cytoplasm. The PDH immunoreactivity consistently occurs in a cluster of perikarya located frontoventrally at the proximal edge of the medulla. The mayfly and both locust species possess additional PDH neurons in 2 posterior cell clusters at the proximal edge of the medulla, and mayfly, waterstrider, and 1 of the blowfly species in the central brain. PDH-positive fibers form a fanlike arrangement over the frontal side of the medulla. Two or just 1 bundle of PDH-positive fibers run from the optic lobe to the protocerebrum, with collaterals passing over to the contralateral optic lobe. Antisera to the prothoracicotropic (PTTH) and the eclosion (EH) hormones, which in some insects regulate the molting and ecdysis rhythms, respectively, typically react with a few neurons in the frontal protocerebrum. However, the PTTH-positive neurons of the mayfly and the damselfly and the EH-positive neurons of the caddisfly are located in the suboesophageal ganglion. No PTTH-like antigen was detected in locusts, and no EH-like antigens were detected in the damselfly, stonefly, locusts, and the honeybee. There are no signs of co-localization of the PER-, PDH-, PTTH-, and EH-like antigens in identical neurons.  相似文献   

16.
17.
Lizard skeletal muscle fiber types were investigated in the iliofibularis (IF) muscle of the desert iguana (Dipsosaurus dorsalis). Three fiber types were identified based on histochemical staining for myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alphaglycerophosphate dehydrogenase (alphaGPDH) activity. The pale region of the IF contains exclusively fast-twitch-glycolytic (FG) fibers, which stain dark for mATPase and alphaGPDH, light SDH. The red region of the IF contains fast-twitch-oxidative-glycolytic (FOG) fibers, which stain dark for all three enzymes, and tonic fibers, which stain light for mATPase, dark for SDH, and moderate for alphaGPDH. Enzymatic activities of myofibrillar ATPase, citrate synthase, and alphaGPDH confirm these histochemical interpretations. Lizard FG and FOG fibers possess twitch contraction times and resistance to fatigue comparable to analogous fibers in mammals, but are one-half as oxidative and several times as glycolytic as analogous fibers in rats. Lizard tonic fibers demonstrate the acetylcholine sensitivity common to other vertebrate tonic fibers.  相似文献   

18.
Golgi preparations of the anterior part of the truncus of the corpus callosum from 11 adult human brains were investigated. The vertical plane of section was situated symmetrically between the frontal and sagittal plane. The use of this oblique plane of section enabled easy identification of the neurons with dendrites intermingling with transcallosal fibers, what was not possible in standard frontal sections. 2 types of such neurons (with features of other interstitial neurons) were described: fusiform and multipolar. Both types of neurons were more frequently impregnated in areas adjacent to induseum griseum, cingular cortex, and in the depth of the callosal sulcus. Multipolar neurons were also present in the central core and in ventral parts of the corpus callosum, but fusiform ones were not present in ventral parts of the corpus callosum truncus. The dentrites of both types of neurons usually were perpendicular to, sometimes also parallel to transcallosal fibers. The impregnation of these neurons in groups and pairs suggest their integrative role, and their planar orientation in mentioned oblique plane corresponds to oblique direction of transcallosal cingulostriatal decussating fibers.  相似文献   

19.
Locustamyotropin-like immunoreactivity was visualized in the nervous system of Locusta migratoria by means of the peroxidase antiperoxidase method. Highly specific antibodies to the carboxy-terminus of the locustamyotropins were obtained by elution through an affinity column to which Lom-MT II was covalently bound. Specific cells in the nervous system of Locusta migratoria contain substances immunoreactive to anti-locustamyotropin. In total, about 100 cells immunoreactive to the Lom-MT-II antiserum were detected in the head ganglia, in the abdominal neuromeres of the metathoracic ganglion, and in the five free abdominal ganglia. In the brain, immunoreactive cell groups were situated in the inner and outer edge of the tritocerebrum. Prominent axon bundles tightly surround the tractus I to the corpora cardiaca. The corpora allata were innervated by the nervus corporis allati I coming from the corpora cardiaca and by fibers in the nervus corporis allati II originating from cell bodies in the suboesophageal ganglion. Immunoreactive cell bodies in the suboesophageal and abdominal ganglia are distributed along the anterior posterior midline axis, both dorsally and ventrally. The processes of the cell bodies in the abdominal ganglia leave the ganglia and were traced in the respective median nerves into the neurohaemal organs. Since the Lom-MT-II antiserum cross-reacts with all peptides of the locustamyotropin family that have a carboxy-terminus in common, these cells may contain one or several locustamyotropins. The Lom-MT antiserum also recognizes pheromone biosynthesis activating neurohormone, as was revealed by the intensive labeling of suboesophageal cell bodies in Bombyx mori.  相似文献   

20.
Leucine-enkephalin- and dopamine-like nerve cells and fibers were localized in the supraoesophageal ganglia (brain) of the American cockroach, Periplaneta americana, using immunofluorescence. The presence of leucine-enkephalin-like material was confirmed using immunoperoxidase staining. Several cells containing leucine-enkephalin-like material were found in the pars lateralis, and nerve fibers belonging to these cells were traced through the brain. Dopamine-like material was detected in deutocerebral neurons as well as the nerve processes arising from these cells which lead into the area of the deutocerebral glomeruli. Specific immunofluorescence was also obtained in the alpha and beta lobes of the corpora pedunculata with both the leucine-enkephalin and dopamine antibodies. However, the fluorescent banding pattern observed in both lobes was distinctly different with the two antibodies. No specific fluorescence was observed in the stalk or peduncle of the corpora pedunculata with either the leucine-enkephalin or the dopamine antibody. The findings suggest a possible interaction of leucine-enkephalinergic and dopaminergic nerve fibers in the alpha and beta lobes of the cockroach corpora pedunculata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号