首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have constructed and characterized for the first time a complementary DNA (cDNA) clone, pHMC3, which codes for a cardiac myosin heavy chain mRNA from human heart. This clone contains a 1.7 kb DNA segment and specifies 543 amino acids of the carboxyl portion of the myosin heavy chain. The DNA sequence and encoded amino acid sequence were compared to the hamster alpha (pVHC1) and beta (pVHC2/pVHC3) cardiac myosin heavy chain cDNA and amino acid sequences and the rat cardiac myosin heavy chain sequences as well. The myosin heavy chain mRNAs are highly conserved and this is reflected in our cDNA clone. The pHMC3 clone is 87.9% homologous to the hamster alpha cDNA and 92.2% homologous to the hamster beta cDNA clones. The 3 untranslated region of pHMC3 is 64.1% homologous to the hamster beta clone while the hamster alpha myosin heavy chain shows only 25% homology to pHMC3 and exhibits extensive diversity. Similar results rere obtained when pHMC3 was compared to the rat cardiac myosin heavy chain cDNA sequences. The comparisons showed that pHMC3 is a beta cardiac myosin heavy chain cDNA clone.  相似文献   

2.
cDNA clones for rat muscle-type creatine kinase and glycogen phosphorylase and aldolase A were isolated from a rat muscle cDNA library. An additional clone recognizing an unidentified 2.7-kilobase pair mRNA species was also isolated. These cDNA clones were used as probes to investigate the expression of the corresponding mRNAs during muscle development. Two aldolase A mRNA species were detected, one of 1650 bases expressed in non-muscle tissues, fetal muscle, and adult slow-twitch muscle, the other of 1550 bases was highly specific of adult fast-twitch skeletal muscle differentiation. These aldolase A mRNAs were shown by primer extension to differ by their 5' ends. The accumulation of muscle-type phosphorylase and creatine kinase and muscle-specific aldolase A mRNA accumulation during muscle development seems to be a coordinate process occurring progressively from the 17th day of intrauterine life up to the 30th day after birth. In contrast, the 2.7-kilobase pair RNA species is maximally expressed at the 1st week after birth as is the neonatal form of myosin heavy chain mRNA.  相似文献   

3.
4.
Summary The entire gene coding for the human -myosin heavy chain has been isolated from genomic EMBL3A phage libraries by chromosomal walking starting from clone gMHC-1, reported earlier (Appelhans and Vosberg 1983). gMHC-1 has been shown to carry coding information for the C-terminal two-thirds of -myosin heavy chain, which is expressed in cardiac muscle and in slow skeletal muscle fibers (Lichter et al. 1986). Three DNA clones were identified as overlapping with gMHC-1 by restriction mapping and DNA sequencing. They span a 30-kb region in the genome. About 22 kb extend from the initiation codon ATG to the poly(A) addition site. The clones include about 4 kb of 5 flanking sequences upstream of the promoter. Comparisons of - and -myosin heavy chain sequences indicate that gene duplication of the cardiac myosin heavy chain isogenes preceded the mammalian species differentiation.  相似文献   

5.
The messenger RNA (mRNA) coding for myosin heavy chain from the 16-day-old chick embryonic cardiac tissue was purified by a rapid isolation procedure and characterized. The mRNA can be translated with fidelity under optimally chosen conditions. The protein synthesized in response to the RNA was a polypeptide of 200,000 molecular weight, identical to the authentic myosin heavy chain from the homologous chick heart tissue. The purity of the mRNA was assessed by electrophoresis in denaturing gels, by immunoprecipitation of the translation product, and by analysis of the kinetics of hybridization with the complementary DNA (cDNA). The cDNA reassociated with myosin heavy-chain mRNA with kinetics characteristic of a pure mRNA. The sequence complexity data indicated that in the 16-day-old chick embryonic heart cells there is a single mRNA sequence coding for myosin heavy chain in contrast to two different mRNA sequences reportedly present in the skeletal muscle cells (M. Patrinou-Georgoulas and H. A. John, 1977, Cell12, 491).  相似文献   

6.
Summary We have isolated and characterized five overlapping clones that encompass 3.2 kb and encode a part of the short subfragment 2, the hinge, and the light meromyosin regions of the myosin heavy chain rod as well as 143 bp of the 3 untranslated portion of the mRNA. Northern blot analysis showed expression of this mRNA mainly in ventricular muscle of the adult chicken heart, with trace levels detected in the atrium. Transient expression was seen in skeletal muscle during development and in regenerating skeletal muscle following freeze injury. To our knowledge, this is the first report of an avian ventricular myosin heavy chain sequence. Phylogenetic analysis indicated that this isoform is a distant homolog of other ventricular and skeletal muscle myosin heavy chains and represents a distinct member of the multigene family of sarcomeric myosin heavy chains. The ventricular myosin heavy chain of the chicken is either paralogous to its counterpart in other vertebrates or has diverged at a significantly higher rate.Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, IL60637, USA  相似文献   

7.
8.
Human myosin heavy chains are encoded by a multigene family consisting of at least 10 members. A gene-specific oligonucleotide has been used to isolate the human beta myosin heavy chain gene from a group of twelve nonoverlapping genomic clones. We have shown that this gene (which is expressed in both cardiac and skeletal muscle) is located 3.6kb upstream of the alpha cardiac myosin gene. We find that DNA sequences located upstream of rat and human alpha cardiac myosin heavy chain genes are very homologous over a 300bp region. Analogous regions of two other myosin genes expressed in different muscles (cardiac and skeletal) show no such homology to each other. While a human skeletal muscle myosin heavy chain gene cluster is located on chromosome 17, we show that the beta and alpha human cardiac myosin heavy chain genes are located on chromosome 14.  相似文献   

9.
A cDNA library was constructed from mouse cardiac muscle mRNA, and a clone corresponding to part of the mRNA for the cardiac muscle isoform of actin was isolated from this library. The nucleotide sequence of the cloned insert was determined and was found to contain almost the complete amino acid coding region for actin (only codons for the first two amino acids, absent from the mature protein, were lacking) and a substantial portion derived from the 3 untranslated region of the mRNA. Comparison of the latter with the corresponding region in cardiac actin mRNA from man and rat showed that this 3 untranslated region has been subject to conservational pressure during evolution. However a comparison with the corresponding region in skeletal muscle actin mRNAs indicated that the pattern of conservation is quite different in the two striated muscle actin isoforms.  相似文献   

10.
In an attempt to define myosin heavy chain (MHC) gene organization and expression in adult human skeletal muscle, we have isolated and characterized genomic sequences corresponding to different human sarcomeric MHC genes (1). In this report, we present the complete DNA sequence of two different adult human skeletal muscle MHC cDNA clones, one of which encodes the entire light meromyosin (LMM) segment of MHC and represents the longest described MHC cDNA sequence. Additionally, both clones provide new sequence data from a 228 amino acid segment of the MHC tail for which no protein or DNA sequence has been previously available. One clone encodes a "fast" form of skeletal muscle MHC while the other clone most closely resembles a MHC form described in rat cardiac ventricles. We show that the 3' untranslated region of skeletal MHC cDNAs are homologous from widely separated species as are cardiac MHC cDNAs. However, there is no homology between the 3' untranslated region of cardiac and skeletal muscle MHCs. Isotype-specific preservation of MHC 3' untranslated sequences during evolution suggests a functional role for these regions.  相似文献   

11.
Parvalbumin in mouse muscle in vivo and in vitro   总被引:1,自引:0,他引:1  
Parvalbumin is a cytosolic calcium-binding protein found in adult fast-twitch mammalian muscle. Using an antibody to paravalbumin, we have shown that its distribution in adult mouse muscles is associated with certain fibre types. It is absent from slow-twitch type 1 fibres, is absent or at low levels in fast-twitch type 2A fibres, but is present at moderate or high levels in fast-twitch type 2B fibres. When adult mouse muscle is cultured with embryonic mouse spinal cord, the regenerated fibres become innervated, express the adult fast isoform of myosin heavy chain and appear histochemically as fast-twitch fibres. We therefore investigated whether these apparently mature fibres also contained parvalbumin. Parvalbumin was not found in any fibres of twenty mature cultures, suggesting that neurotrophic activity in the absence of specific adult nerve activity patterns was insufficient to cause the expression of parvalbumin in the cultures.  相似文献   

12.
13.
The PTP-2 cDNA encoding an intracellular protein tyrosine phosphatase (PTPase-2) was isolated and sequenced from mouse testis and T-cell cDNA libraries. This PTP-2 cDNA was found to be homologous to human PTP-TC and rat PTP-S, and contained 1,551 nucleotides, including 1,146 nucleotides encoding 382 amino acids as well as 5 (61 nucleotides) and 3 (344 nucleotides) non-coding regions. Northern blot analysis indicated that PTP-2 mRNA of 1.9 Kb was most abundant in testis and kidney, although it was also present in spleen, muscle, liver, heart and brain.Abbreviations PTPase Protein Tyrosine Phosphatase (EC3.1.3.48) - PTKase Protein Tyrosine Kinase (EC2.7.1.112)  相似文献   

14.
Tropomyosin of fast-twitch, slow-twitch and cardiac muscles of carp and icefish has been isolated by hydroxyapatite chromatography. The subunit distribution has been investigated by polyacrylamide gel electrophoresis and by peptide mapping. The purified skeletal muscle tropomyosins all belong to the alpha family and differ from higher vertebrate tropomyosin by the lack of beta subunits. Specific alpha isotypes are however encountered in fast-twitch fibres (alpha w subunit) and slow-twitch or intermediate (pink) fibres (alpha and alpha w subunits). The amino acid compositions and the paracrystals formed by the carp alpha w alpha w and alpha alpha w tropomyosins do not differ markedly from that of rabbit alpha alpha chains. They differ however by their capability to inhibit the ATPase activity of rabbit skeletal muscle acto-HMM system. A beta-like subunit is found in carp cardiac tropomyosin, in the proportion of 25% of the native protein, but not in icefish heart.  相似文献   

15.
A cDNA clone encoding skeletal muscle myosin light chain kinase (MLCK) was isolated from a rat skeletal muscle library using oligonucleotide probes. The total length of the rat skeletal muscle MLCK cDNA was 2823 base pairs with an open reading frame of 1830 base pairs. The deduced sequence of the 610-amino acid protein exhibited 96% amino acid identity to rabbit skeletal muscle MLCK in the carboxyl-terminal portion of the molecule, which contains the catalytic and the calmodulin-binding domains, and 58% identity in the amino-terminal region. Analysis of total rat mRNA revealed a single mRNA species of 3.4 kilobases that was unique to skeletal muscle. Further analysis of skeletal muscle tissue using fast-twitch glycolytic, fast-twitch oxidative glycolytic, and slow-twitch oxidative fibers isolated from rat leg revealed that the mRNA level for MLCK varied among the three fiber types. The results of kinase assays performed on the fibers showed that MLCK activity levels paralleled the MLCK mRNA levels found in each of the three types of skeletal muscle fibers studied. Fast-twitch oxidative glycolytic (gastrocnemius red) and slow-twitch oxidative (soleus) exhibited 60 and 13%, respectively, of the enzymatic activity present in fast-twitch glycolytic (gastrocnemius white) fibers.  相似文献   

16.
The catabolic action of glucocorticoids on the molecular level of the two main muscular proteins, myosin and actin, was found to depend on the type of muscle fibres. The synthesis rate of actin and myosin heavy chain was decreased in all types of muscle fibres, and in myosin light chain only in the slow-twitch red fibres. The turnover rate of actin and myosin heavy chain was also found decreased in all types of muscle fibres. The myosin light chains turned over more rapidly in dexamethasone-treated than in the control rats in all types of muscle fibres except in the case of the slow-twitch red ones as was shown by single and double isotope methods. Dexamethasone treatment enhanced the urinary 3-methylhistidine excretion in rats by 60%.  相似文献   

17.
Summary Single muscle fibres were isolated by microdissection from freeze-dried samples of rabbit psoas and soleus muscles. The individual fibres were typed according to qualitative histochemical reactions for succinate dehydrogenase or NADH-tetrazolium reductase and for alkaline Ca2+-activated myofibrillar myosin ATPase after acid or alkaline preincubation. Methods are described for electrophoretic analysis by means of polyacrylamide disc electrophoresis in the presence of SDS of total myofibrillar proteins in single fibres after pre-extraction of soluble proteins. Fast-twitch white fibres revealed a myosin light chain pattern characteristic of fast-type myosin with three light chains of apparent molecular weights of 22,300 (LC1), 18,400 (LC2) and 16,000 (LC3). Fast-twitch red fibres were indistinguishable in this respect from fast-twitch white fibres and showed an identical pattern of myosin light chains. Slow-twitch fibres could be characterized by a myosin light chain pattern typical of myosin of slow-twitch muscles with peptides of the apparent molecular weights of 23,500 (LC1Sa), 23,000 (LC1Sb) and 18,500 (LS2S). Slow-twitch fibres isolated from soleus as well as from psoas muscle were indistinguishable with regard to their myosin light chain patterns, thus suggesting that fibres of the same histochemical type correspond in their myosin light chain patterns irrespective of their origin from different muscles.Dedicated to the memory of Ernest Gutmann who has contributed so much to our knowledge on differentiation of muscle and who died on August 6, 1977  相似文献   

18.
19.
Isolation and characterization of plant myosin from pollen tubes of lily   总被引:7,自引:0,他引:7  
E. Yokota  T. Shimmen 《Protoplasma》1994,177(3-4):153-162
Summary A plant myosin was isolated from pollen tubes of lily,Lilium longiflorum. Pollen tubes were homogenized in low ionic strength solution containing casein, and myosin from this crude extract was purified by co-precipitation with F-actin prepared from chicken breast muscle, followed by hydroxylapatite column and gel filtration column chromatography. Upon SDS-PAGE on 6% polyacrylamide gel, only 170 kDa polypeptide was detected in the purified myosin fraction. Furthermore, with immunoblotting using antiserum raised against 170 kDa polypeptide, only the 170 kDa component crossreacted in the crude sample of pollen tube proteins. This antiserum did not crossreact with the heavy chain of skeletal muscle myosin. The ATPase activity of pollen tube myosin was stimulated up to 60-fold by F-actin prepared from chicken breast muscle. The translocation velocity of rhodamine-phalloidin-labeled F-actin on a glass surface covered with pollen tube myosin ranged from 6.0 to 9.8 m/s with an average of 7.7 m/s. This velocity was similar to or a little faster than that of the cytoplasmic streaming that occurred in pollen tubes. These results suggested that myosin composed of a 170 kDa heavy chain produces the motive force for cytoplasmic streaming in pollen tube of lily.Abbreviations ATP adenosine-5-triphosphate - DTT dithiothreitol - EGTA ethyleneglycol-bis-(-aminoethylether)N,N,N,N-tetraacetic acid - PAGE polyacrylamide gel electrophoresis - PIPES piperazin-N,N-bis-(2-ethanesulfonic acid) - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecylsulfate  相似文献   

20.
Antibodies specific for rabbit fast-twitch-muscle myosin LCIF light chain were purified by affinity chromatography and characterized by both non-competitive and competitive enzyme-linked immunosorbent assay (ELISA) and a gel-electrophoresis-derived assay (GEDELISA). The antibodies did not cross-react with myosin heavy chains, and were weakly cross-reactive with the LC2F [5,5'-dithio-(2-nitrobenzoic acid)-dissociated] light chain and with all classes of dissociated light chains (LC1Sa, LC1Sb and LC2S), as well as with the whole myosin, from hind-limb slow-twitch muscle. The immunoreactivity of myosins with a truly mixed light-chain pattern (e.g. vastus lateralis and gastrocnemius) correlated with percentage content of fast-twitch-muscle-type light chains. A more extensive immunoreactivity was observed with diaphragm and masseter myosins, which were also characterized, respectively, by a relative or absolute deficiency of LC1Sa light chain. Furthermore, it was found that the LC1Sb light chain of masseter myosin is antigenically different from its slow-twitch-muscle myosin analogue, and is immunologically related to the LC1F light chain. Rabbit masseter muscle from its metabolic and physiological properties and the content, activity and immunological properties of sarcoplasmic-reticulum adenosine triphosphatase, is classified as a red, predominantly fast-twitch, muscle. Therefore our results suggest that the two antigenically different iso-forms of LC1Sb light chain are associated with the myosins of fast-twitch red and slow-twitch red fibres respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号