首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The sustainability of using irrigation to produce food depends not only on the availability of sufficient water, but also on the soil's ‘response’ to irrigation. Stocks of carbon (C) and nitrogen (N) are key components of soil organic matter (SOM), which is important for sustainable agricultural production. While there is some information about the effects of irrigation on soil C stocks in cropping systems, there is a paucity of such studies in pastoral food production systems. For this study, we sampled soils from 34 paired, irrigated and unirrigated pasture sites across New Zealand (NZ) and analysed these for total C and N. On average, irrigated pastures had significantly (< 0.05) less soil carbon (C) and nitrogen (N) than adjacent unirrigated pastures, with differences of 6.99 t C ha?1 and 0.58 t N ha?1 in the uppermost 0.3 m. Differences in C and N tended to occur throughout the soil profile, so the cumulative differences increased with depth, and the proportion of the soil C lost from deeper horizons was large. There were no relationships between differences in soil C and N stocks and the length of time under irrigation. This study suggests SOM will decrease when pastures under a temperate climate are irrigated. On this basis, increasing the area of temperate pasture land under irrigation would result in more CO2 in the atmosphere and may directly and indirectly increase N leaching to groundwater. Given the large and increasing area of land being irrigated both in NZ and on a global scale, there is an urgent need to determine whether the results found in this study are also applicable in other regions and under different land management systems (e.g. arable).  相似文献   

2.
Variation in mineral nitrogen under grazed grassland swards   总被引:1,自引:0,他引:1  
The effects of fertilizer N input to grazed grass swards on the extent and forms of mineral N in soil profiles were examined at five sites in England, each with a wide range of fertilizer N treatments. Changes in total mineral N (TN=NH 4 + + NO 3 - ) and in the ratio of the contents of NH 4 + and NO 3 - (NR) were examined in relation to soil type, treatment, soil depth and sampling time.Measured losses of NO 3 - during the drainage period increased with increasing soil NO 3 - levels in the soil profile at three of the sites. When the data were expressed on a ratio (NR) basis, in order to provide some indication of nitrification rate, there was also a good relationship with leaching losses. Thus as NR increased, so leaching decreased. There were distinct changes in mineral N, especially in NR in the top 10 cm of the soil profile, with treatment. At all sites, the values for this ratio decreased with increasing rates of fertilizer addition even when there was little or no difference between the treatments in TN. Furthermore, when the treatments finished at two of the sites and a common application rate was applied, differences in the ratio related to the previous treatment remained. It was suggested that this effect resulted from differences in nitrification rates stimulated by the different N fertilizer treatments.  相似文献   

3.
Increased reactive atmospheric N deposition has been implicated in floristic changes in species‐rich acidic and calcareous grasslands, but the fate of this pollutant N in these ecosystems is unknown. This paper reports the first analysis of N budgets and N fluxes for two grasslands in the White Peak area of Derbyshire, one of the most heavily N‐polluted locations in the UK. N fluxes were monitored in lysimeter cores (retaining the original turfs) taken from field plots of unimproved acidic and calcareous grasslands that had received (in addition to ambient N deposition) simulated enhanced N deposition treatments of 3.5 and 14 g N m?2 yr?1 for 6 years. The influence of reducing phosphorus limitation was assessed by factorial additions of P. Seasonal leached losses of nitrate, ammonia and organic N were monitored in detail along with estimates of N removal through simulated grazing and gaseous losses through denitrification and volatilization. The rates of N fluxes by these pathways were used to create N budgets for the grasslands. Both grasslands were found to be accumulating much of the simulated additional N deposition: up to 89% accumulated in the calcareous grassland and up to 38% accumulated in the acidic grassland. The major fluxes of N loss from these grasslands were by simulated grazing and leaching of soluble organic N (constituting 90% of leached N under ambient conditions). Leached inorganic N (mainly nitrate) contributed significantly to the output flux of N under the highest N treatment only. Loss of N through ammonia volatilization accounted for less than 6% of the N added as simulated deposition, while denitrification contributed significantly to output fluxes only in the acidic grassland during winter. The implications of the results for ecosystem N balances and the likely consequences of N accumulation on these grasslands are discussed.  相似文献   

4.
At an upland field site in Scotland on an established Festuca-Agrostis pasture, the effects of soil amendment on root dynamics, using nitrogen and lime and the regular application of insecticide, were studied over a period of 1 year. The most common insect root herbivore at the site was Tipula paludosa, and the application of insecticide (chlorpyrifos) reduced numbers of all insect larvae of all species. Root biomass, root appearance, root disappearance and root density were all reduced by insecticide. This reduced rooting could reflect reduced root replacement, due to the reduction in root herbivory in insecticide-treated plots or could be a direct affect of insecticide application on the roots. Root appearance, root disappearance and C and N input to the soil were increased by treatment with nitrogen and lime, while root survival time was reduced. The nitrogen and lime treatment also increased bacterial numbers in the soil and enhanced their potential C utilization. An altered rooting density and longevity was brought about by the two soil treatments, which could have both direct and indirect effects on the soil biota.  相似文献   

5.
不同水氮水平对川西亚高山林地土壤酶活性的影响   总被引:3,自引:0,他引:3  
为探讨氮沉降在不同土壤水分状况下对林下土壤中参与土壤碳氮磷循环主要酶(β-D-葡萄糖苷酶(β-D-glucosidase,βG)、过氧化物酶(Peroxidase, PER)、多酚氧化酶(Polyphenol oxidase, PPO)、β-N-乙酰葡糖胺糖苷酶(β-N-acetylglucosaminidase, NAG)和酸性磷酸酶(Acid phosphatase, AP))活性的动态影响,于2017年开展了盆栽模拟试验。试验以青杨扦插苗为植物材料,采用两因素(土壤水分和氮沉降)的随机区组设计,土壤水分含量分别为40%(W40)、60%(W60)和80%(W80)最大田间持水量,氮沉降水平分别为:0(N0)、4(N4)和8(N8)g N m~(-2) a~(-1)。在土壤水分达到预定的水分含量后开始氮沉降处理,于氮沉降后的6 h、24 h和3、7、14、31、62 d采集土壤样品进行土壤酶活性的测定。结果表明:土壤含水量的降低显著降低了βG、NAG和PPO活性,且在W40时达到最低;对AP和PER活性无显著影响。氮沉降抑制了βG、NAG和AP活性,而且施氮浓度越大,抑制效应越强;对PER和PPO活性无显著影响。水氮交互作用对上述5种土壤酶活性均无显著影响。5种土壤酶活性在施氮7 d或14 d内变化较大,之后随处理时间的延长逐步平稳。两个月的实验期间,在不同水氮处理下,5种土壤酶活性基本都呈现升高-降低-升高-降低的双峰模式。该研究可为理解氮沉降对不同水分状况地区森林生态系统中土壤碳氮磷循环的生态学过程提供科学参考。  相似文献   

6.
Summary The effect of different methods of nitrogen fertilizer application on the algal flora and biological nitrogen fixation (Acetylene-reducing activity) in a wetland rice soil was studied in pot and field experiments. Broadcast application of urea inhibited nitrogen fixation and favored the growth of green algae. In contrast, deep placement of urea supergranules (1–2 g urea granules) did not suppress the growth of N2-fixing blue-green algae and permitted acetylene-reducing activity on the soil surface to continue virtually uninhibited.  相似文献   

7.
Biochar is a pyrolysed biomass and largely consists of pyrogenic carbon (C), which takes much longer to decompose compared to the biomass it is made from. When applied to soil, it could increase agricultural productivity through nutrient retention and changing soil properties. The biochar‐mediated nutrient retention capacity depends on the biochar properties, which change with time, and on soil properties. Here, we examined the effects of a wood biochar (20 t ha?1), that has aged (21 months) in a grassland field, on gross nitrogen (N) mineralization (GNM) and 15N recovery using a 15N tracer. A field experiment was conducted in two soil types, that is a Tenosol and a Dermosol, and also included a phosphorus (P) addition treatment (1 kg ha?1). Compared to the control, biochar with P addition significantly increased GNM in the Tenosol. Possibly, biochar and P addition enhanced nutrient availability in this nutrient‐limited soil, thereby stimulating microbial activity. In contrast, biochar addition reduced GNM in the Dermosol, possibly by protecting soil organic matter (SOM) from decomposition through sorption onto biochar surfaces and enhanced formation of organo‐mineral complexes in this soil that had a higher clay content (29% vs. 8% in the Tenosol). Compared to the control, biochar significantly increased total 15N recovery in the Tenosol (on average by 12%) and reduced leaching to subsurface soil layers (on average by 52%). Overall, 15N recovery was greater in the Dermosol (83%) than the Tenosol (63%), but was not affected by biochar or P. The increased N recovery with biochar addition in the sandy Tenosol may be due to retention at exchange sites on aged biochar, while such beneficial effects may not be visible in soils with higher clay content. Our results suggest that aged biochar may increase N use efficiency through reduced leaching or gaseous losses in sandy soils.  相似文献   

8.
Understanding soil organic carbon (SOC) sequestration is important to develop strategies to increase the SOC stock and, thereby, offset some of the increases in atmospheric carbon dioxide. Although the capacity of soils to store SOC in a stable form is commonly attributed to the fine (clay + fine silt) fraction, the properties of the fine fraction that determine the SOC stabilization capacity are poorly known. The aim of this study was to develop an improved model to estimate the SOC stabilization capacity of Allophanic (Andisols) and non‐Allophanic topsoils (0–15 cm) and, as a case study, to apply the model to predict the sequestration potential of pastoral soils across New Zealand. A quantile (90th) regression model, based on the specific surface area and extractable aluminium (pyrophosphate) content of soils, provided the best prediction of the upper limit of fine fraction carbon (FFC) (i.e. the stabilization capacity), but with different coefficients for Allophanic and non‐Allophanic soils. The carbon (C) saturation deficit was estimated as the difference between the stabilization capacity of individual soils and their current C concentration. For long‐term pastures, the mean saturation deficit of Allophanic soils (20.3 mg C g?1) was greater than that of non‐Allophanic soils (16.3 mg C g?1). The saturation deficit of cropped soils was 1.14–1.89 times that of pasture soils. The sequestration potential of pasture soils ranged from 10 t C ha?1 (Ultic soils) to 42 t C ha?1 (Melanic soils). Although meeting the estimated national soil C sequestration potential (124 Mt C) is unrealistic, improved management practices targeted to those soils with the greatest sequestration potential could contribute significantly to off‐setting New Zealand's greenhouse gas emissions. As the first national‐scale estimate of SOC sequestration potential that encompasses both Allophanic and non‐Allophanic soils, this serves as an informative case study for the international community.  相似文献   

9.
Improving nitrogen (N) management for greater agricultural output while minimizing unintended environmental consequences is critical in the endeavor of feeding the growing population sustainably amid climate change. Enhanced‐efficiency fertilizers (EEFs) have been developed to better synchronize fertilizer N release with crop uptake, offering the potential for enhanced N use efficiency (NUE) and reduced losses. Can EEFs play a significant role in helping address the N management challenge? Here we present a comprehensive analysis of worldwide studies published in 1980–2016 evaluating four major types of EEFs (polymer‐coated fertilizers PCF, nitrification inhibitors NI, urease inhibitors UI, and double inhibitors DI, i.e. urease and nitrification inhibitors combined) regarding their effectiveness in increasing yield and NUE and reducing N losses. Overall productivity and environmental efficacy depended on the combination of EEF type and cropping systems, further affected by biophysical conditions. Best scenarios include: (i) DI used in grassland (= 133), averaging 11% yield increase, 33% NUE improvement, and 47% decrease in aggregated N loss (sum of NO3, NH3, and N2O, totaling 84 kg N/ha); (ii) UI in rice‐paddy systems (= 100), with 9% yield increase, 29% NUE improvement, and 41% N‐loss reduction (16 kg N/ha). EEF efficacies in wheat and maize systems were more complicated and generally less effective. In‐depth analysis indicated that the potential benefits of EEFs might be best achieved when a need is created, for example, by downward adjusting N application from conventional rate. We conclude that EEFs can play a significant role in sustainable agricultural production but their prudent use requires firstly eliminating any fertilizer mismanagement plus the implementation of knowledge‐based N management practices.  相似文献   

10.
A network of long-term monitoring sites on nitrogen (N) input and output of forests across Germany showed that a number of Germany's forests are subject to or are experiencing N saturation and that spruce (Picea abies) stands have high risk. Our study was aimed at (1) quantifying the changes in gross rates of microbial N cycling and retention processes in forest soils along an N enrichment gradient and (2) relating the changes in soil N dynamics to N losses. We selected spruce sites representing an N enrichment gradient (indicated by leaching : throughfall N ratios) ranging from 0.04–0.13 (low N),≤0.26 (intermediate N enrichment) to≥0.42 (highly N enriched). To our knowledge, our study is the first to report on mechanistic changes in gross rates of soil N cycling and abiotic NO3 retention under ambient N enrichment gradient. Gross N mineralization, NH4+ immobilization, gross nitrification, and NO3 immobilization rates increased up to intermediate N enrichment level and somewhat decreased at highly N-enriched condition. The turnover rates of NH4+ and microbial N pools increased while the turnover rates of the NO3 pool decreased across the N enrichment gradient. Abiotic immobilization of NH4+ did not differ across sites and was lower than that of NO3. Abiotic NO3 immobilization decreased across the N enrichment gradient. Microbial assimilation and turnover appeared to contribute largely to the retention of NH4+. The increasing NO3 deposition and decreasing turnover rates of the NO3 pool, combined with decreasing abiotic NO3 retention, possibly contributed to increasing NO3 leaching and gaseous emissions across the N enrichment gradient. The empirical relationships of changes in microbial N cycling across the N enrichment gradient may be integrated in models used to predict responses of forest ecosystems (e.g. spruce) to increasing N deposition.  相似文献   

11.
对于养分贫瘠的盐渍化草地生态系统, 大气氮沉降如何影响土壤氮循环过程是一个目前尚未解决的问题。该研究在位于华北地区山西省右玉县境内的盐渍化草地建立了一个模拟氮沉降的试验平台, 设置8个氮添加水平, 分别为0、1、2、4、8、16、24、32 g·m-2·a-1 (N0、N1、N2、N4、N8、N16、N24、N32), 生长季5-9月, 每月月初以喷施的方式等量添加NH4NO3。从2017年5月到2019年10月, 运用顶盖PVC管法每月一次进行净氮矿化速率的测定同时计算了净氮矿化速率对不同水平氮添加的敏感性。主要结果表明: (1)高水平氮添加(N16、N24、N32)显著增加土壤无机氮库; (2)该盐渍化草地土壤氮矿化以硝化作用为主, 经过3年氮添加以后, 高氮添加(N24、N32)显著促进了土壤净硝化速率, 并且不同氮添加水平在不同的月份和年份中表现出差异性响应; (3)不同氮添加水平对土壤净氮矿化敏感性的影响在不同降水年份差异显著, 短期低水平氮添加提高了土壤净氮矿化的敏感性, 而高水平氮添加降低土壤净氮矿化敏感性; (4)盐渍化草地土壤净氮矿化速率与土壤温度和水分呈正相关关系, 与土壤pH呈负相关关系。因此, 在当前氮沉降增加的背景下, 北方盐渍化草地土壤氮矿化速率对低氮添加的敏感性较高, 结合氮沉降的特点, 未来模型预测应该同时考虑氮沉降对盐渍化草地的可能影响。  相似文献   

12.
放牧对草原土壤的影响   总被引:79,自引:7,他引:79  
介绍了放牧对草原土壤物理性质 (容重、渗透率 )、化学性质 (有机质、N素 )和微生物的影响。由于草原土壤系统本身的复杂性、滞后性和弹性 ,放牧对土壤性质的影响不尽相同。一般而言 ,随放牧强度的增大 ,动物践踏作用的增强 ,土壤孔隙分布的空间格局发生变化 ,土壤的总孔隙减少 ,特别是大孔隙 (>5 0μm)和较大中等孔隙 (9~ 5 0μm)减少 ,使土壤容重增加 ,土壤的渗透阻力加大 ,土壤的保水和持水能力下降。但在有机质含量很低的沙质土壤中 ,超载过牧 ,造成有机质含量降低 ,土壤的团粒结构减少 ,稳定性团聚体减少 ,土壤结构遭到破坏 ,使得土壤容重反而降低。土壤有机质和放牧之间存在复杂的相互关系 ,土壤有机质对放牧的响应受多种因素的影响 ,这些因素包括植被和土壤的初始状况 ;环境因素 ,特别是水分和温度 ;放牧历史 (强度、频率、持续时间和动物类型 )。同时 ,土壤有机质含量低的土壤比含量高的土壤更易受放牧的影响 ,而使有机质发生变化。土壤微生物量碳是最具活性的土壤碳库 ,对环境的变化敏感 ,能较早地指示生态系统功能的变化。当考虑时间尺度时 ,高强度放牧对土壤肥力有负面的影响 ,短期内 ,由于加速了养分的循环效率 ,产生有利的影响 ,但长期无管理的超载放牧必然造成系统物质 (资源 )输入和输  相似文献   

13.
Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie   总被引:16,自引:2,他引:14  
Fires in the tallgrass prairie are frequent and significantly alter nutrient cycling processes. We evaluated the short-term changes in plant production and microbial activity due to fire and the long-term consequences of annual burning on soil organic matter (SOM), plant production, and nutrient cycling using a combination of field, laboratory, and modeling studies. In the short-term, fire in the tallgrass prairie enhances microbial activity, increases both above-and belowground plant production, and increases nitrogen use efficiency (NUE). However, repeated annual burning results in greater inputs of lower quality plant residues causing a significant reduction in soil organic N, lower microbial biomass, lower N availability, and higher C:N ratios in SOM. Changes in amount and quality of below-ground inputs increased N immobilization and resulted in no net increases in N availability with burning. This response occurred rapidly (e.g., within two years) and persisted during 50 years of annual burning. Plant production at a long-term burned site was not adversely affected due to shifts in plant NUE and carbon allocation. Modeling results indicate that the tallgrass ecosystem responds to the combined changes in plant resource allocation and NUE. No single factor dominates the impact of fire on tallgrass plant production.  相似文献   

14.
邓健  赵雪  卢笑玥  张丹  徐莉萍  朱运  吴林豪  李江文 《生态学报》2023,43(16):6539-6549
日益加剧的大气氮沉降对土壤养分循环过程产生了深刻影响,土壤养分转化相关酶是其关键调控途径,而土壤不同粒级团聚体结构和环境差异导致其中酶活性介导的养分转换过程可能不同。但目前对半干旱区土壤团聚体水平养分转化相关酶活性对氮沉降的响应还不清楚。基于黄土高原自然草地持续3年的野外氮添加控制试验,分析不同氮添加水平下土壤不同粒级团聚体中的基础理化性质、氮(亮氨酸氨基肽酶LAP和β-1,4-N-乙酰氨基葡萄糖苷酶NAG)和磷转化相关的酶(磷酸单酯酶PME、磷酸二酯酶PDE和植酸酶phyA)活性及酶计量比,探索氮添加对团聚体酶活性的影响。结果表明:(1)氮添加导致了不同粒级团聚体中pH显著降低;高氮添加引起土壤团聚体有机碳、全氮、硝态氮、C : P和N : P升高;(2)随氮添加浓度增加,不同粒级团聚体中PME、PDE和phyA活性先降低后升高,而LAP、NAG和酶活性氮磷比均逐渐升高;团聚体酶活性总体表现为小团聚体(<0.25 mm)>中团聚体(0.25-2 mm)>大团聚体(>2 mm);(3)在中和大团聚体中氮添加通过影响土壤N相关养分调控P转化相关酶活性。总之,氮添加通过改变团聚体养分及其计量比、pH等影响氮、磷转化相关酶活性。  相似文献   

15.
Atmospheric nitrogen (N) deposition is composed of both inorganic nitrogen (IN) and organic nitrogen (ON), and these sources of N may exhibit different impacts on ecosystems. However, our understanding of the impacts of N deposition is largely based on experimental gradients of INs or more rarely ONs. Thus, the effects of N deposition on ecosystem productivity and biodiversity may be biased. We explored the differential impacts of N addition with different IN:ON ratios (0:10, 3:7, 5:5, 7:3, and 10:0) on aboveground net primary productivity (ANPP) of plant community and plant diversity in a typical temperate grassland with a long-term N addition experiment. Soil pH, litter biomass, soil IN concentration, and light penetration were measured to examine the potential mechanisms underlying species loss with N addition. Our results showed that N addition significantly increased plant community ANPP by 68.33%–105.50% and reduced species richness by 16.20%–37.99%. The IN:ON ratios showed no significant effects on plant community ANPP. However, IN-induced species richness loss was about 2.34 times of ON-induced richness loss. Soil pH was positively related to species richness, and they exhibited very similar response patterns to IN:ON ratios. It implies that soil acidification accounts for the different magnitudes of species loss with IN and ON additions. Overall, our study suggests that it might be reasonable to evaluate the effects of N deposition on plant community ANPP with either IN or ON addition. However, the evaluation of N deposition on biodiversity might be overestimated if only IN is added or underestimated if only ON is added.  相似文献   

16.
森林土壤氮素转换及其对氮沉降的响应   总被引:40,自引:5,他引:40  
近几十年人类活动向大气中排放的含氮化合物激增 ,并引起大气氮沉降也成比例增加。目前 ,氮沉降的增加使一些森林生态系统结构和功能发生改变 ,甚至衰退。近 2 0 a欧洲和北美有关氮沉降及其对森林生态系统的影响方面的研究较多 ,而我国少有涉及。森林土壤氮素转换是森林生态系统氮素循环的一个重要的组成部分 ,而矿化、硝化和反硝化作用是其核心过程 ,氮沉降作为驱动因子势必改变森林土壤氮素转换速度、方向和通量。根据国外近 2 0 a有关研究 ,首先介绍了森林土壤氮素转换过程和强度 ,论述森林土壤氮素在生态系统氮素循环中的作用 ,然后在此基础上 ,介绍了氮沉降对森林土壤氮素循环的研究途径 ,探讨了氮沉降对森林土壤氮素矿化、硝化和反硝化作用的影响及其机理  相似文献   

17.
采用密闭室法和离子交换树脂袋法,研究了科尔沁沙质草地不同处理(水添加、氮添加、水氮添加)氧挥发的损失量和硝态氮的淋溶量.结果表明:氮添加处理和水氮添加处理显著促进了氨挥发(P<0.05),最大氨挥发速率显著高于对照;氮添加处理和水氮添加处理的氨挥发累积量为111.80和148.64 mg·m-2,分别占氮添加量的1.1%和1.5%;水氮同时添加条件下,氨挥发累计量显著高于氨添加处理(P<0.05),水添加处理和对照相比没有显著差异(P>0.05);水氮添加处理显著增加了土壤深度20 cm处的硝态氮淋溶量(P<0.05),氮添加处理和水氮添加处理的硝态氮淋溶量分别是对照的1.96和4.22倍,然而在土壤深度40 cm处各处理硝态氮淋溶量差异不显著(P>0.05);可见,氮添加和水氮添加均促进了土壤的氧挥发,对硝态氮的淋溶没有显著影响.  相似文献   

18.
Seven years after fertilization the rate of CO2 production in the soil samples taken from the organic horizons of a poor pine forest site (Calluna vulgaris site type), treated with urea or ammonium nitrate with lime, was lower than that in the unfertilized soil. The same trend was also observed in samples of theEmpetrum-Calluna site type 14 years after fertilization. In the more fertileVaccinium myrtillus site type these rapidly-soluble N fertilizers had a long-term enhancing effect on the production of CO2. Apatite and biotite eliminated the decreasing effect of urea on the production of CO2. One reason for this might be the long-term increase in soil pH caused by apatite and biotite, or their constituents (Ca, Mg, K, P). Nitroform (a slow-releasing N fertilizer) had no statistically significant effect on the production of CO2 in soil samples from any of the forest types. Despite the high N mineralization in the samples from nitroform fertilized soils there was no nitrification, and the high content of total N indicated that after nitroform fertilization the losses of N were low.The correlation between the net mineralization values for C (CO2 production) and N was poor. However, multiple linear regression analysis, which also took into account the effect of nutrients and pH, indicated that there was a link between the mineralization of C and N.  相似文献   

19.
Witt  C.  Cassman  K.G.  Olk  D.C.  Biker  U.  Liboon  S.P.  Samson  M.I.  Ottow  J.C.G. 《Plant and Soil》2000,225(1-2):263-278
The effects of soil aeration, N fertilizer, and crop residue management on crop performance, soil N supply, organic carbon (C) and nitrogen (N) content were evaluated in two annual double-crop systems for a 2-year period (1994–1995). In the maize-rice (M-R) rotation, maize (Zea mays, L.) was grown in aerated soil in the dry season (DS) followed by rice (Oriza sativa, L.) grown in flooded soil in the wet season (WS). In the continuous rice system (R-R), rice was grown in flooded soil in both the DS and WS. Subplot treatments within cropping-system main plots were N fertilizer rates, including a control without applied N. In the second year, sub-subplot treatments with early or late crop residue incorporation were initiated after the 1995 DS maize or rice crop. Soil N supply and plant N uptake of 1995 WS rice were sensitive to the timing of residue incorporation. Early residue corporation improved the congruence between soil N supply and crop demand although the size of this effect was influenced by the amount and quality of incorporated residue. Grain yields were 13-20% greater with early compared to late residue incorporation in R-R treatments without applied N or with moderate rates of applied N. Although substitution of maize for rice in the DS greatly reduced the amount of time soils remained submerged, the direct effects of crop rotation on plant growth and N uptake in the WS rice crops were small. However, replacement of DS rice by maize caused a reduction in soil C and N sequestration due to a 33–41% increase in the estimated amount of mineralized C and less N input from biological N fixation during the DS maize crop. As a result, there was 11–12% more C sequestration and 5–12% more N accumulation in soils continuously cropped with rice than in the M-R rotation with the greater amounts sequestered in N-fertilized treatments. These results document the capacity of continuous, irrigated rice systems to sequester C and N during relatively short time periods. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
选取近30年荒漠草原灌丛引入形成的典型草地-灌丛镶嵌体内部的荒漠草地、草地边缘、灌丛边缘、灌丛地为研究样地,对各样地及其微生境(植丛与空斑)相关土壤指标进行测定,以了解荒漠草地向灌丛地转变过程中土壤氮素的响应特征.结果 表明:随草地灌丛化转变,草本与灌丛生物量均增加,其中一年生草本随灌丛引入增加明显;土壤水分、全碳、全...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号