首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replication-defective mutants of plasmid ColE1 were isolated from a chimeric plasmid formed by ligating a temperature-sensitive replication derivative of pSC101, pHSG1, with a ColE1-Tn3-containing plasmid. The replication-defective ColE1 mutants isolated were all spontaneous deletion mutants that had lost the ColE1 replication origin and regions adjacent to it. The extent of a deletion was determined by analyzing restriction endonuclease-generated deoxyribonucleic acid fragments of the ColE1 plasmid component of the chimeras by both agarose and polyacrylamide gel electrophoresis. None of the chimeras containing the replication-defective ColE1 mutants was able to replicate in the presence of chloramphenicol. The expression of ColE1 incompatibility was either markedly reduced or not detectable in the replication mutants isolated.  相似文献   

2.
Wang Z  Yuan Z  Hengge UR 《Plasmid》2004,51(3):149-161
With the increasing utilization of plasmid DNA as a biopharmaceutical drug, there is a rapidly growing need for high quality plasmid DNA for drug applications. Although there are several different kinds of replication origins, ColE1-like replication origin is the most extensively used origin in biotechnology. This review addresses problems in upstream and downstream processing of plasmid DNA with ColE1-like origin as drug applications. In upstream processing of plasmid DNA, regulation of replication of ColE1-like origin was discussed. In downstream processing of plasmid DNA, we analyzed simple, robust, and scalable methods, which can be used in the efficient production of pharmaceutical-grade plasmid DNA.  相似文献   

3.
The initiation stage of ColE1-type plasmid replication was reconstituted with purified protein fractions from Escherichia coli. The reconstituted system included DNA polymerase I, DNA ligase, RNA polymerase, DNA gyrase, and a discriminating activity copurifying with RNAase H (but free of RNAase III). Initiation of DNA synthesis in the absence of RNAase H did not occur at the normal replication origin and was non-selective with respect to the plasmid template. In the presence of RNAase H the system was selective for ColE1-type plasmids and could not accept the DNA of non-amplifiable plasmids. Electron microscopic analysis of the reaction product formed under discriminatory conditions indicated that origin usage and directionally of ColE1, RSF1030, and CloDF13 replication were consistent with the normal replication pattern of these plasmids. It is proposed that the initiation of ColE1-type replication depends on the formation of an extensive secondary structure in the origin primer RNA that prevents its degradation by RNAase H.  相似文献   

4.
The inhibition of plasmid ColE1 replication caused by a deletion of the ColE1 plasmid replication origin has been previously reported (T. Hashimoto-Gotoh and J. Inselburg, J. Bacteriol. 139:597-619). Evidence is presented showing that restoration of the deleted nucleotide sequence in the precise relationship it normally has to the rest of the replication region is essential for restoration of ColE1 replication capability to the deletion mutant.  相似文献   

5.
Deletion mutants of plasmid ColE1 that involve the replication origin and adjacent regions of the plasmid have been studied to determine the mechanism by which those mutations affect the expression of plasmid incompatibility. It was observed that (i) a region of ColE1 that is involved in the expression of plasmid incompatibility lies between base pairs -185 and -684; (ii) the integrity of at least part of the region of ColE1 DNA between base pairs -185 and -572 is essential for the expression of ColE1 incompatibility; (iii) the expression of incompatibility is independent of the ability of the ColE1 genome to replicate autonomously; (iv) plasmid incompatibility is affected by plasmid copy number; and (v) ColE1 plasmid-mediated DNA replication of the lambda phage-ColE1 chimera lambda imm434 Oam29 Pam3 ColE1 is inhibited by ColE1-incompatible but not by ColE1-compatible plasmids.  相似文献   

6.
Construction and characterization of a class of multicopy plasmid cloning vehicles containing the replication system of miniplasmid P15A are described. The constructed plasmids have cleavage sites within antibiotic resistance genes for a variety of commonly employed site-specific endonucleases, permitting convenient use of the insertional inactivation procedure for the selection of clones that contain hybrid DNA molecules. Although the constructed plasmids showed DNA sequence homology with the ColE1 plasmid within the replication region, were amplifiable by chloramphenicol or spectinomycin, required DNA polymerase I for replication, and shared other replication properties with ColE1, they were nevertheless compatible with ColE1. P15A-derived plasmids were not self-transmissible and were mobilized poorly by Hfr strains; however, mobilization was complemented by the presence of a ColE1 plasmid within the same cell.  相似文献   

7.
Starting from pAO3, a plasmid consisting of a quarter of colicinogenic factor E1 (ColE1) DNA, various small ColE1 derivatives were constructed by in vitro recombination and their ability to achieve autonomous replication was examined. The 436 base pair HaeIII-C fragment of pAO3 contained information for replication when it was recombined with the non-replicating Amp fragment. However, when it was connected to other DNA fragments, the resulting hybrid molecules were not isolated as plasmids. The present results indicate that the additional region of about 240 base pairs next to the HaeIII-C fragment of ColE1 is also essential for the maintenance of a plasmid state. Moreover, using various small ColE1 derivatives, the DNA region responsible for the interference and incompatibility functions of ColE1 DNAs was located. The results indicate that the interference and incompatibility functions are coded by the same ColE1 DNA segment and are not essential for the maintenance of a plasmid state.  相似文献   

8.
9.
Supercoiled plasmid molecules sensitive to nicking by RNase or alkali have been shown to accumulate during replication of colicinogenic factor E1 (ColE1) in Escherichia coli in the presence of chloramphenicol. The possibility that this sensitivity is due to the covalent integration of RNA molecules during the synthesis of plasmid DNA is supported by the demonstration that (a) strands of supercoiled ColE1 newly replicated in the presence of chloramphenicol exhibit sensitivity to RNase and alkali treatment, while (b) RNase- and alkali-resistant circular strands of plasmid DNA synthesized either before or after the addition of chloramphenicol remain resistant during subsequent replication of the plasmid in the presence of chloramphenicol. Furthermore, newly made plasmid DNA strands cannot act as templates for further rounds of replication if they possess an RNA segment. The existence of a repair mechanism for the removal of the RNA segment from supercoiled ColE1 DNA molecules was demonstrated by pulse-chase experiments. It was observed that the proportion of RNase-sensitive molecules is considerably higher in pulse-labeled as compared to continuously labeled ColE1 DNA synthesized in the presence of chloramphenicol, and the proportion of pulse-labeled ColE1 DNA that is RNase sensitive is greatly reduced during a chase period. Removal of the RNA segment is also carried out effectively at the restrictive temperature in temperature-sensitive DNA polymerase I mutants. In a survey of other bacterial mutants defective in the repair of damaged DNA, a substantial increase in the rate of accumulation of RNase-and alkali-sensitive supercoiled ColE1 DNA in the presence of chloramphenicol was observed in recBC and uvrA mutants in comparison with the wild-type strains.  相似文献   

10.
Incompatibility and transforming efficiency of ColE1 and related plasmids   总被引:6,自引:0,他引:6  
Summary Replicons derived from the ColE1 plasmid are incompatible with one another, but are compatible with their naturally occurring relatives ColK and CloDF13. The incompatibility results in loss, by segregation, of one or the other ColE1 plasmid. In most cases, the smaller derivatives tend to displace the larger ones, and the rate of displacement depends on the difference in size. One mini-plasmid retains only 19% of the sequences of ColE1, yet it exrrts strong incompatibility: other ColE1 plasmids are rapidly lost when it is introduced into the host. The region essential for ColE1 incompatibility is deduced to lie within 700 base pairs of the origin of replication.The transforming efficiency of any ColE1 plasmid is markedly lowered when another incompatible replicon is resident in the competent cells, even when the transforming plasmid is much smaller than the resident.A model of incompatibility is proposed to account for these effects.  相似文献   

11.
Colicinogenic factor E1 (ColE1) is present in Escherichia coli strain JC411 (ColE1) cells to the extent of about 24 copies per cell. This number does not appear to vary in situations which give rise to twofold differences in the amount of chromosomal deoxyribonucleic acid (DNA) present per cell. If cells are grown in the absence of glucose, approximately 80% of the ColE1 molecules can be isolated as strand-specific DNA-protein relaxation complexes. When glucose is present in the medium, only about 30% of the plasmid molecules can be isolated as relaxation complexes. Medium shift experiments in which glucose was removed from the medium indicate that within 15 min after the shift the majority (>60%) of the plasmid can be isolated as relaxation complex. This rapid shift to the complexed state is accompanied by a two- to threefold increase in the rate of plasmid replication. The burst of replication and the shift to the complexed state are both inhibited by the presence of chloramphenicol. Inhibition of protein synthesis in log cultures by the addition of chloramphenicol or amino acid starvation allows ColE1 DNA to continue replicating long after chromosomal replication has ceased. Under these conditions, noncomplexed plasmid DNA accumulates while the amount of DNA that can be isolated in the complexed state remains constant at the level that existed prior to treatment. In the presence of chloramphenicol, there appears to be a random dissociation and association of ColE1 DNA and “relaxation protein” during or between rounds of replication.  相似文献   

12.
DNA replication regulated by the priming promoter.   总被引:6,自引:2,他引:4       下载免费PDF全文
  相似文献   

13.
14.
A detailed analysis of the mobilizable, ColE1-like resistance plasmid, pUB2380, is reported. The 8.5-kb genome encodes six (possibly seven) major functions: (1) a ColD-like origin of replication, oriV, with associated replication functions, RNAI and RNAII; (2) a set of active mobilization functions highly homologous to that of ColE1, including the origin of transfer, oriT; (3) a ColE1-like multimer resolution site (cer); (4) a kanamycin-resistance determinant, aph, encoding an aminoglycoside-3'-phosphotransferase type 1; (5) an insertion sequence, IS1294; and (6) two genes, probably cotranscribed, of unknown function(s). The GC content of the various parts of the genome indicates that the plasmid is a hybrid structure assembled from DNA from at least three different sources, of which the replication region, the mobilization functions, and the resistance gene are likely to have originated in the enterobacteriaceae.  相似文献   

15.
Rozhon WM  Petutschnig EK  Jonak C 《Plasmid》2006,56(3):202-215
A small cryptic plasmid designated pHW15 was isolated from Rahnella genomospecies 2 WMR15 and its complete nucleotide sequence was determined. The plasmid contained 3002 bp with a G+C content of 47.4%. The origin of replication was identified by deletion analysis as a region of about 600 bp. This region had an identity of 70% to the replication origin of the ColE1 plasmid at the nucleotide level. Sequence analysis revealed the typical elements: RNA I, RNA II and their corresponding promoters, a sequence allowing hybridisation of RNA II to the DNA and favouring processing by RNaseH, a single-strand initiation determinant (ssi) that allows initiation of lagging-strand synthesis, and a terH sequence required for termination of lagging-strand synthesis. The plasmid contained three expressed open reading frames, one of which showed homology to a ColE1 plasmid-encoded protein. Furthermore, a multimer resolution site was identified by sequence analysis. Its deletion resulted in formation of plasmid multimers during growth leading to an increased plasmid loss rate.  相似文献   

16.
We report a technique which uses the cointegrate intermediate of transposon Tn1000 transposition as a means to lower the copy number of ColE1-type plasmids. The transposition of Tn1000 from one replicon to another is considered a two-step process. In the first step, the transposon-encoded TnpA protein mediates fusion of the two replicons to produce a cointegrate. In the second step, the cointegrate is resolved by site-specific recombination between the two transposon copies to yield the final transposition products: the target replicon with an integrated transposon plus the regenerated donor replicon. Using in vitro techniques, the DNA sequence of the Tn1000 transposon was altered so that cointegrate formation occurs but resolution by the site-specific recombination pathway is blocked. When this transposon was resident on an F factor-derived plasmid, a cointegrate was formed between a multicopy ColE1-type target plasmid and the conjugative F plasmid. Conjugational transfer of this cointegrate into a polA strain resulted in a stable cointegrate in which replication from the ColE1 plasmid origin was inhibited and replication proceeded only from the single-copy F factor replication origin. We assayed isogenic strains which harbored plasmids encoding chloramphenicol acetyltransferase to measure the copy number of such F factor-ColE1-type cointegrate plasmids and found that the copy number was decreased to the level of single-copy chromosomal elements. This method was used to study the effect of copy number on the expression of the fabA gene (which encodes the key fatty acid-biosynthetic enzyme beta-hydroxydecanoylthioester dehydrase) by the regulatory protein encoded by the fadR gene.  相似文献   

17.
The plasmid ColE2-P9 Rep protein specifically binds to the cognate replication origin to initiate DNA replication. The replicons of the plasmids ColE2-P9 and ColE3-CA38 are closely related, although the actions of the Rep proteins on the origins are specific to the plasmids. The previous chimera analysis identified two regions, regions A and B, in the Rep proteins and two sites, alpha and beta, in the origins as specificity determinants and showed that when each component of the region A-site alpha pair and the region B-site beta pair is derived from the same plasmid, plasmid DNA replication is efficient. It is also indicated that the replication specificity is mainly determined by region A and site alpha. By using an electrophoretic mobility shift assay, we demonstrated that region B and site beta play a critical role for stable Rep protein-origin binding and, furthermore, that 284-Thr in this region of the ColE2 Rep protein and the corresponding 293-Trp of the ColE3 Rep protein mainly determine the Rep-origin binding specificity. On the other hand, region A and site alpha were involved in the efficient unwinding of several nucleotide residues around site alpha, although they were not involved in the stable binding of the Rep protein to the origin. Finally, we discussed how the action of the Rep protein on the origin involving these specificity determinants leads to the plasmid-specific replication initiation.  相似文献   

18.
Summary We have localized the regions sufficient for autonomous replication on the genomes of the colicin E2 (ColE2) and colicin E3 (ColE3) plasmids and analyzed the replication functions carried by these regions. A 1.3 kb segment of each plasmid is sufficient for autonomous replication. Plasmids carrying this segment retain the replication properties of the original plasmid. The 1.3 kb segment consists of three functional portions. Firstly, a 0.9 kb region which specifies at least one trans-acting factor required for replication of each plasmid. Secondly, a 0.4 kb region located adjacent to one end of the 0.9 kb region, which is required for expression of the trans-acting factor(s) and probably contains the promoter. The region across the border of these two portions of ColE2 is involved in copy number control of the plasmid. The third portion is a 50 bp region adjacent to the other end of the 0.9 kb region, which contains a cis-acting site (origin) where replication initiates in the presence of the trans-acting factor(s). The action of the trans-acting factor(s) on the origin is plasmid specific. The 50 bp regions functioning as the origins of replication of ColE2 and ColE3 are the smallest among those in prokaryotic replicons so far identified and analyzed.  相似文献   

19.
Plasmid pWQ799 is a 6.9-kb plasmid isolated from Salmonella enterica serovar Borreze. Our previous studies have shown that the plasmid contains a functional biosynthetic gene cluster for the expression of the O:54 lipopolysaccharide O-antigen of this serovar. The minimal replicon functions of pWQ799 have been defined, and a comparison with nucleotide and protein databases revealed this replicon to be virtually identical to ColE1. This is the first report of involvement of ColE1-related plasmids in O-antigen expression. The replicon of pWQ799 is predicted to encode two RNA molecules, typical of other ColE1-type plasmids. RNAII, the putative replication primer from pWQ799, shares regions of homology with RNAII from ColE1. RNA1 is an antisense regulator of DNA replication in ColE1-related plasmids. The coding region for RNAI from pWQ799 shares no homology with any other known RNAI sequence but is predicted to adopt a secondary structure characteristic of RNAI molecules. pWQ799 may therefore represent a new incompatibility group within this family. pWQ799 also possesses cer, rom, and mob determinants, and these differ minimally from those of ColE1. The plasmid is mobilizable in the presence of either the broad-host-range helper plasmid pRK2013 or the IncI1 plasmid R64drd86. Mobilization and transfer of pWQ799 to other organisms provides the first defined mechanism for lateral transfer of O-antigen biosynthesis genes in S. enterica and explains both the distribution of related plasmids and coexpression of the O:54 factor with other O-factors in different Salmonella serovars. The base composition of the pWQ799 replicon sequences gives an average percent G+C value typical of Salmonella spp. In contrast, the percent G+C value is dramatically lower with rfb0:54, consistent with the possibility that the cluster was acquired from an organism with much lower G+C composition.  相似文献   

20.
The phenomenon of incompatibility has been investigated using deletion mutants of hybrid bireplicon plasmid pAS8. The hybrid pAS8 displays incompatibility specific for both components of its structure. In contrast to P-specificity of pAS8, functions of ColE1-specificity are not effectively expressed. Expression of ColE1-specificity in pAS8 plasmid and its derivatives is characterized by different directions and this is due to the presence or absence of genes of RP4 replication machinery in the plasmid DNA. Mutant plasmids show different efficiency of P-specificity depending on the extension of deletion in the region of essential genes of the RP4 component. Some of the mutants, in spite of the loss of replication genes, including origin of vegetative replication, are incompatible with the representatives of the Inc P group in both directions of testing. Different character and the level of expression of ColE1- and P-specificity in the pAS8 hybrid and its deletion derivatives are not associated with change in the number of plasmid DNA copies, for all of them are subjects to stringent control of replication. The data suggest the existence of incompatibility functions control mechanism which does not seem to include replication genes. Possible ways of realization of the inc genes functions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号