首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A putative juvenile hormone esterase (JHE) binding protein, P29, was isolated from the tobacco hornworm Manduca sexta [J. Biol. Chem. 275(3), 1802-1806]. A homolog of P29 was identified in Drosophila melanogaster by sequence alignment. This gene, CG3776 was cloned, recombinant DmP29 expressed in Escheriscia coli and two anti-DmP29 antisera raised. In vitro binding of the P29 homolog to Drosophila JHE was confirmed. P29 mRNA and an immunoreactive protein of 25 kDa were detected in Drosophila larvae, pupae and adults. The predicted size of the protein is 30 kDa. Drosophila P29 is predicted to localize to mitochondria (MitoProt; 93% probability) and has a 6 kDa N-terminal targeting sequence. Subcellular organelle fractionation and confocal microscopy of Drosophila S2 cells confirmed that the immunoreactive 25 kDa protein is present in mitochondria but not in the cytosol. Expression of P29 without the predicted N-terminal targeting sequence in High Five cells showed that the N-terminal targeting sequence is shorter than predicted, and that a second, internal mitochondrial targeting signal is also present. An immunoreactive protein of 50 kDa in the hemolymph does not result from alternative splicing of CG3776 but may result from dimerization of P29. The function of P29 in mitochondria and the possible interaction with JHE are discussed.  相似文献   

2.
Nucleoside diphosphate kinase (NDPK) was purified from Drosophila melanogaster by a combination of anion-exchange, hydroxyapatite, and reversed-phase chromatography. The identity of the purified enzyme was confirmed by sequencing internal peptides (the N-terminus appeared to be blocked). Post-translational modifications were investigated by using protein chemical and mass spectrometric methods. Analysis by nanoelectrospray ionization-mass spectrometry revealed that the mass of the enzyme was considerably smaller than that predicted from its amino acid sequence. Although its open-reading frame predicts a 153-residue polypeptide, the mature enzyme was found to comprise 152 amino acids, being modified by proteolytic removal of the initiator Met and N-acetylation of Ala2. This explains why the observed pI of the Drosophila enzyme is more acidic than that predicted from its amino acid sequence. No additional post-translational modifications such as glycosylation or O-phosphorylation, which have been identified on homologous NDPKs from other organisms, were detected on the Drosophila enzyme.  相似文献   

3.
The maintenance of the telomeres in Drosophila species depends on the transposition of the non-LTR retrotransposons HeT-A, TAHRE and TART. HeT-A and TART elements have been found in all studied species of Drosophila suggesting that their function has been maintained for more than 60 million years. Of the three elements, HeT-A is by far the main component of D. melanogaster telomeres and, unexpectedly for an element with an essential role in telomere elongation, the conservation of the nucleotide sequence of HeT-A is very low. In order to better understand the function of this telomeric retrotransposon, we studied the degree of conservation along HeT-A copies. We identified a small sequence within the 3' UTR of the element that is extremely conserved among copies of the element both, within D. melanogaster and related species from the melanogaster group. The sequence corresponds to a piRNA target in D. melanogaster that we named HeT-A_pi1. Comparison with piRNA target sequences from other Drosophila retrotransposons showed that HeT-A_pi1 is the piRNA target in the Drosophila genome with the highest degree of conservation among species from the melanogaster group. The high conservation of this piRNA target in contrast with the surrounding sequence, suggests an important function of the HeT-A_pi1 sequence in the co-evolution of the HeT-A retrotransposon and the Drosophila genome.  相似文献   

4.
Previously we identified juvenile hormone esterase (JHE) from Drosophila melanogaster by the criteria that it showed both appropriate developmental expression and kinetics for juvenile hormone (JH). We also noted three further esterases of D. melanogaster with some JHE-like characteristics, such as a GQSAG active site motif, a particular amphipathic helix, or close phylogenetic relationship with other JHEs. In this study, these JHE-like enzymes were expressed in vitro and their kinetic parameters compared with those of the previously identified JHE. Despite considerable phylogenetic distance between some of the esterases, they could all hydrolyse racemic JHIII. However, only the previously identified JHE had kinetic parameters (K(M) and k(cat)) towards various forms of JH (racemic or individual isomers of JHIII, JHII, JHI, and methyl farnesoate) consistent with a physiological role in JH regulation. Furthermore, only this JHE showed a preference for artificial substrates with acyl chain lengths similar to that of JH. This suggests that there is probably only one physiologically functional JHE in D. melanogaster but multiple esterases with JH esterase activity. Genomic comparisons of the selective JHE across 11 other Drosophila species showed a single orthologue in 10 of them but Drosophila willistoni has 16 full-length copies, five of them with the GQSAG motif and amphipathic helix.  相似文献   

5.
Juvenile hormone esterase (JHE) is a highly specific enzyme important for regulating the onset of metamorphosis in lepidopteran insects. After affinity chromatography of the hemolymph proteins of Manduca sexta, the pure JHE protein was digested with Lys-C and the resultant peptides were purified by microbore HPLC. Two peptides were selected for sequencing. Based upon these amino acid sequences, degenerate RT-PCR was performed in order to amplify a partial cDNA sequence from mRNA from the fat body of M. sexta. A 1512bp partial cDNA was generated and found to be highly homologous to the JHE from Heliothis virescens. 5' and 3' RACE were performed to obtain the full length cDNA sequence. The cDNA has a total length of 2220bp, with a 1749bp coding region. The deduced protein sequence contains 573 amino acids.  相似文献   

6.
The central nervous system of Drosophila melanogaster contains an alpha-bungarotoxin-binding protein with the properties expected of a nicotinic acetylcholine receptor. This protein was purified 5800-fold from membranes prepared from Drosophila heads. The protein was solubilized with 1% Triton X-100 and 0.5 M sodium chloride and then purified using an alpha-cobratoxin column followed by a lentil lectin affinity column. The purified protein had a specific activity of 3.9 micromol of 125I-alpha-bungarotoxin binding sites/g of protein. The subunit composition of the purified receptor was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. This subunit profile was identical with that revealed by in situ labeling of the membrane-bound protein using the photolyzable methyl-4-azidobenzoimidate derivative of 125I-alpha-bungarotoxin. The purified receptor reveals two different protein bands with molecular masses of 42 and 57 kDa. From sedimentation analysis of the purified protein complex in H2O and D2O and gel filtration, a mass of 270 kDa was calculated. The receptor has a s(20,w) of 9.4 and a Stoke's radius of 7.4 nm. The frictional coefficient was calculated to be 1.7 indicating a highly asymmetric protein complex compatible with a transmembrane protein forming an ion channel. The sequence of a peptide obtained after tryptic digestion of the 42-kDa protein allowed the specific identification of the Drosophila D alpha5 subunit by sequence comparison. A peptide-specific antibody raised against the D alpha5 subunit provides further evidence that this subunit is a component of an alpha-bungarotoxin binding nicotinic acetylcholine receptor from the central nervous system of Drosophila.  相似文献   

7.
8.
9.
The sequence and genome annotations of Drosophila melanogaster were initially published in late 1999 and early 2000. Since then, the Berkeley Drosophila Genome Project (BDGP) and FlyBase have improved the quality of the sequence and reviewed the annotations by hand, respectively, to produce an account of the fruit fly genome that is of the highest quality. This review discusses the main features of this process, both from the point of view of the biology revealed in the end result and in the development of software that has been central to this genome sequencing and annotation project.  相似文献   

10.
Retroviruses and retrotransposons insert into the host genome with no obvious sequence specificity. We examined the target sites of the retroelement ZAM by sequencing each host-ZAM junction in the genome of Drosophila melanogaster. Our overall data provide compelling evidence that ZAM integration machinery recognizes and leads to ZAM insertion into the sequence 5'-GCGCGCg-3'. This unique property of ZAM will facilitate the development of new tools to study the integration process of retroelements.  相似文献   

11.
We previously reported the identification of a putative juvenile hormone esterase (JHE) binding protein DmP29 in Drosophila melanogaster and its primary localization to the mitochondria [Liu, Z., Ho, L., Bonning, B.C., 2007. Localization of a Drosophila melanogaster homolog of the putative juvenile hormone esterase binding protein of Manduca sexta. Insect Biochem. Mol. Biol. 37(2), 155-163]. To further characterize DmP29, we identified potential ligands of this protein. Recombinant DmP29 was shown by ligand blot and co-immunoprecipitation analyses to bind recombinant JHE as well as to larval serum proteins (LSP). The possible biological relevance of the in vitro DmP29-JHE interaction is provided by detection of JHE activity in D. melanogaster mitochondrial fractions; 0.48 nmol JH hydrolyzed/min/mg mitochondrial protein, 97% of which was inhibited by the JHE-specific inhibitor OTFP. However, the DmP29-LSP interactions may not be biologically relevant. Given the high abundance, and "sticky" nature of these proteins, interaction of DmP29 with LSP may result from non-specific associations. No DmP29 interactions with non-specific esterases were detected by co-immunoprecipitation analyses. The potential role of DmP29 as a chaperone of JHE is discussed.  相似文献   

12.
13.
Juvenile hormone esterase (JHE) is a selective enzyme that hydrolyzes the methyl ester of juvenile hormone. This enzyme plays an important role in the regulation of metamorphosis in caterpillars, and is implicated in additional roles in development and reproduction in this and other orders of insect. The full length coding region of the JHE cDNA from Manduca sexta was subcloned into the baculovirus AcMNPV genome under the control of the p10 promoter. The recombinant virus demonstrated the expression of high levels of JHE activity when infected into Hi5 cells from Trichoplusia ni. The recombinant protein was partially purified by anion exchange chromatography and its biochemical characterization showed similar features to the wild type protein. The recombinant JHE has an estimated MW of 66500 Da. Some heterogeneity with the enzyme was observed when analyzed by isoelectric focusing, although the peak of JHE activity was observed at pI=6.0. It is highly sensitive to trifluoroketone inhibitors and certain phosphoramidothiolates, while relatively insensitive to other common esterase inhibitors. Incubating the enzyme with various organic solvents and detergents showed that the enzyme is activated at lower concentrations of solvents/detergents and remains significantly active even at high concentrations. The high tolerance of organic solvents may make this JHE enzyme useful in future applications as a synthetic catalyst.  相似文献   

14.
《Insect Biochemistry》1991,21(6):583-595
A major peak of juvenile hormone esterase (JHE) activity approaching 330 nmol JH III hydrolyzed/min/ml of hemolymph was observed during the last larval growth stage in Lymantria dispar. A smaller peak of JHE occurred 3–5 days after pupation. The gypsy moth JHE was purified from larval hemolymph using a classical approach. A specific activity of 766 units per mg of protein and a Km of 3.6 × 10−7 M for racemic JH III and the (10R, 11S) enantiomer of JH II was determined for the purified enzyme. The 62 kDa esterase was insensitive to inhibition by O,O-diisopropyl phosphorofluoridate (DFP), or by phenylmethylsulfonyl fluoride (PMSF). Two forms of JHE isolated by RP-HPLC were indistinguishable by HPLC tryptic peptide mapping and share an identical N-terminal amino acid sequence. Polyclonal antisera raised against gypsy moth enzyme cross-reacted with JHE from Trichoplusia ni but not with JHE from Manduca sexta. A weak cross-reactivity was observed with JHE from Heliothis virescens. Forty amino acid residues of the N-terminus were placed in sequence. The N-terminal sequence of JHE from L. dispar showed little homology to the sequence of JHE from H. virescens. The immunological and structural data support the conclusion that markedly different esterases, which catalyze the hydrolysis of juvenile hormone, are present in the hemolymph of different Lepidoptera.  相似文献   

15.
Mammalian mitochondrial small subunit ribosomal proteins were separated by two-dimensional polyacrylamide gel electrophoresis. The proteins in six individual spots were subjected to in-gel tryptic digestion. Peptides were separated by capillary liquid chromatography, and the sequences of selected peptides were obtained by electrospray tandem mass spectrometry. The peptide sequences obtained were used to screen human expressed sequence tag data bases, and complete consensus cDNAs were assembled. Mammalian mitochondrial small subunit ribosomal proteins from six different classes of ribosomal proteins were identified. Only two of these proteins have significant sequence similarities to ribosomal proteins from prokaryotes. These proteins correspond to Escherichia coli S10 and S14. Homologs of two human mitochondrial proteins not found in prokaryotes were observed in the genomes of Drosophila melanogaster and Caenorhabditis elegans. A homolog of one of these proteins was observed in D. melanogaster but not in C. elegans, while a homolog of the other was present in C. elegans but not in D. melanogaster. A homolog of one of the ribosomal proteins not found in prokaryotes was tentatively identified in the yeast genome. This latter protein is the first reported example of a ribosomal protein that is shared by mitochondrial ribosomes from lower and higher eukaryotes that does not have a homolog in prokaryotes.  相似文献   

16.
With the rapid increase in the size of the genome sequence database, computational analysis of RNA will become increasingly important in revealing structure-function relationships and potential drug targets. RNA secondary structure prediction for a single sequence is 73 % accurate on average for a large database of known secondary structures. This level of accuracy provides a good starting point for determining a secondary structure either by comparative sequence analysis or by the interpretation of experimental studies. Dynalign is a new computer algorithm that improves the accuracy of structure prediction by combining free energy minimization and comparative sequence analysis to find a low free energy structure common to two sequences without requiring any sequence identity. It uses a dynamic programming construct suggested by Sankoff. Dynalign, however, restricts the maximum distance, M, allowed between aligned nucleotides in the two sequences. This makes the calculation tractable because the complexity is simplified to O(M(3)N(3)), where N is the length of the shorter sequence.The accuracy of Dynalign was tested with sets of 13 tRNAs, seven 5 S rRNAs, and two R2 3' UTR sequences. On average, Dynalign predicted 86.1 % of known base-pairs in the tRNAs, as compared to 59.7 % for free energy minimization alone. For the 5 S rRNAs, the average accuracy improves from 47.8 % to 86.4 %. The secondary structure of the R2 3' UTR from Drosophila takahashii is poorly predicted by standard free energy minimization. With Dynalign, however, the structure predicted in tandem with the sequence from Drosophila melanogaster nearly matches the structure determined by comparative sequence analysis.  相似文献   

17.
Peptidomics of the larval Drosophila melanogaster central nervous system   总被引:10,自引:0,他引:10  
Neuropeptides regulate most, if not all, biological processes in the animal kingdom, but only seven have been isolated and sequenced from Drosophila melanogaster. In analogy with the proteomics technology, where all proteins expressed in a cell or tissue are analyzed, the peptidomics approach aims at the simultaneous identification of the whole peptidome of a cell or tissue, i.e. all expressed peptides with their posttranslational modifications. Using nanoscale liquid chromatography combined with tandem mass spectrometry and data base mining, we analyzed the peptidome of the larval Drosophila central nervous system at the amino acid sequence level. We were able to provide biochemical evidence for the presence of 28 neuropeptides using an extract of only 50 larval Drosophila central nervous systems. Eighteen of these peptides are encoded in previously cloned or annotated precursor genes, although not all of them were predicted correctly. Eleven of these peptides were never purified before. Eight other peptides are entirely novel and are encoded in five different, not yet annotated genes. This neuropeptide expression profiling study also opens perspectives for other eukaryotic model systems, for which genome projects are completed or in progress.  相似文献   

18.
Juvenile hormone regulates the development and reproduction in a variety of insects. Juvenile hormone esterase (JHE) is a selective enzyme, which hydrolyzes the methyl ester of JH and alters its activity. In Tenebrio molitor, JHE has been previously purified from pupae and a partial cDNA was amplified by RT-PCR using fat body mRNA. The previous report indicated that several forms of the JHE protein were present in pupal homogenate. In this study, we report the full-length cDNA, which was obtained by RACE methods. The deduced protein sequence corresponds to peptides from two proteins of different molecular weights in the previous study. The coding region of the full-length cDNA was subcloned into the AcMNPV genome and high levels of expression of the JHE enzyme from the viral p10 promoter were demonstrated in cell culture. The majority of JHE is secreted from the cells as a soluble enzyme. The recombinant JHE enzyme was biochemically characterized. The recombinant protein appears by PAGE analysis as a monomer of approximately the same MW (66000) and pI (4.9) as was expected from the deduced amino acid sequence of the cDNA.  相似文献   

19.
A Test of Neutral Molecular Evolution Based on Nucleotide Data   总被引:96,自引:24,他引:72       下载免费PDF全文
The neutral theory of molecular evolution predicts that regions of the genome that evolve at high rates, as revealed by interspecific DNA sequence comparisons, will also exhibit high levels of polymorphism within species. We present here a conservative statistical test of this prediction based on a constant-rate neutral model. The test requires data from an interspecific comparison of at least two regions of the genome and data on levels of intraspecific polymorphism in the same regions from at least one species. The model is rejected for data from the region encompassing the Adh locus and the 5' flanking sequence of Drosophila melanogaster and Drosophila sechellia. The data depart from the model in a direction that is consistent with the presence of balanced polymorphism in the coding region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号