首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
To investigate GABA(B) receptors along vagal afferent pathways, we recorded from vagal afferents, medullary neurons, and vagal efferents in ferrets. Baclofen (7-14 micromol/kg i.v.) reduced gastric tension receptor and nucleus tractus solitarii neuronal responses to gastric distension but not gastroduodenal mucosal receptor responses to cholecystokinin (CCK). GABA(B) antagonists CGP-35348 or CGP-62349 reversed effects of baclofen. Vagal efferents showed excitatory and inhibitory responses to distension and CCK. Baclofen (3 nmol i.c.v. or 7-14 micromol/kg i.v.) reduced both distension response types but reduced only inhibitory responses to CCK. CGP-35348 (100 nmol i.c.v. or 100 micromol/kg i.v.) reversed baclofen's effect on distension responses, but inhibitory responses to CCK remained attenuated. They were, however, reversed by CGP-62349 (0.4 nmol i.c.v.). In conclusion, GABA(B) receptors inhibit mechanosensitivity, not chemosensitivity, of vagal afferents peripherally. Mechanosensory input to brain stem neurons is also reduced centrally by GABA(B) receptors, but excitatory chemosensory input is unaffected. Inhibitory mechano- and chemosensory inputs to brain stem neurons (via inhibitory interneurons) are both reduced, but the pathway taken by chemosensory input involves GABA(B) receptors that are insensitive to CGP-35348.  相似文献   

3.
Helen E. Raybould   《Peptides》1991,12(6):1279-1283
The role of vagal afferent pathways and cholecystokinin (CCK) in mediating changes in gastric motor function after a meal was investigated in urethane-anesthetized rats. Proximal gastric motor function was measured manometrically, and nutrients were infused into an isolated segment of duodenum. Inhibition of gastric motility in response to duodenal infusion of protein (peptone or casein), but not carbohydrate (glucose), was significantly attenuated by administration of the CCK antagonist, L364,718. Selective ablation of vagal afferents by perineural treatment with the sensory neurotoxin, capsaicin, significantly reduced responses to both duodenal protein and glucose. These results suggest that protein in the duodenum decreases proximal gastric motor function via release of CCK and a vagal capsaicin-sensitive afferent pathway. In contrast, glucose acts via a capsaicin-sensitive vagal pathway not involving CCK. Thus separate neural and hormonal mechanisms mediate the effects of different nutrients in the duodenal feedback regulation of gastric motor function.  相似文献   

4.
The inhibitory action of hyperglycemia is mediated by vagal afferent fibers innervating the stomach and duodenum. Our in vitro studies showed that a subset of nodose ganglia neurons is excited by rising ambient glucose, involving inactivation of ATP-sensitive K(+) (K(ATP)) channels and leading to membrane depolarization and neuronal firing. To investigate whether nodose ganglia K(ATP) channels mediate gastric relaxation induced by hyperglycemia, we performed in vivo gastric motility studies to examine the effects of K(ATP) channel activators and inactivators. Intravenous infusion of 20% dextrose induced gastric relaxation in a dose-dependent manner. This inhibitory effect of hyperglycemia was blocked by diazoxide, a K(ATP) channel activator. Conversely, tolbutamide, a K(ATP) channel inactivator, induced dose-dependent gastric relaxation, an effect similar to hyperglycemia. Vagotomy, perivagal capsaicin treatment, and hexamethonium each prevented the inhibitory action of tolbutamide. Similarly, N(G)-nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase, also blocked tolbutamide's inhibitory effect. To show that K(ATP) channel inactivation at the level of the nodose ganglia induces gastric relaxation, we performed electroporation of the nodose ganglia with small interfering RNA of Kir6.2 (a subunit of K(ATP)) and plasmid pEGFP-N1 carrying the green fluorescent protein gene. The gastric responses to hyperglycemia and tolbutamide were not observed in rats with Kir6.2 small interfering RNA-treated nodose ganglia. However, these rats responded to secretin, which acts via the vagal afferent pathway, independently of K(ATP) channels. These studies provide in vivo evidence that hyperglycemia induces gastric relaxation via the vagal afferent pathway. This action is mediated through inactivation of nodose ganglia K(ATP) channels.  相似文献   

5.
Rectal distension (RD) is known to induce upper gastrointestinal (GI) symptoms. The aim of this study was to investigate the effects and underlying mechanisms of RD on gastric slow waves (GSW) and motor activity and furthermore to investigate the effects and mechanisms of electroacupuncture (EA) on GSW and motor activity. Eight female hound dogs chronically implanted with gastric serosal electrodes and a gastric fistula were studied in six separate sessions. Antral motility, GSW, heart rate variability, and rectal pressure were evaluated for the above purposes. 1) RD at a volume of 120 ml suppressed antral motility significantly. Guanethidine blocked the inhibitory effect of RD. EA at ST36 was able to restore the suppressed antral contractions induced by RD (16.6+/-1.7 vs. 8.0+/-1.4, P<0.001). Naloxone partially blocked the effect of EA on antral contractions. 2) RD reduced the percentage of normal GSW from 98.8+/-0.8% at baseline to 76.1+/-8.6% (P<0.05) that was increased to 91.8+/-3.0% with EA. The effects of EA on the GSW were nullified by the presence of naloxone. 3) EA did not show any significant effect on rectal pressure, suggesting that the ameliorating effects of EA on RD-induced impaired gastric motility were not due to a decrease in rectal pressure. 4) EA increased the vagal activity suppressed by RD. In conclusion, RD inhibits postprandial gastric motility and impairs GSW in dogs, and the inhibitory effects are mediated via the adrenergic pathways. EA at ST36 is able to restore the RD-induced impaired GSW and motor activities, possibly by enhancing vagal activity, and is partially mediated via the opioid pathway. EA may have therapeutic potential for functional gastrointestinal disorders.  相似文献   

6.
Metabotropic glutamate receptors (mGluR) are classified into group I, II, and III mGluR. Group I (mGluR1, mGluR5) are excitatory, whereas group II and III are inhibitory. mGluR5 antagonism potently reduces triggering of transient lower esophageal sphincter relaxations and gastroesophageal reflux. Transient lower esophageal sphincter relaxations are mediated via a vagal pathway and initiated by distension of the proximal stomach. Here, we determined the site of action of mGluR5 in gastric vagal pathways by investigating peripheral responses of ferret gastroesophageal vagal afferents to graded mechanical stimuli in vitro and central responses of nucleus tractus solitarius (NTS) neurons with gastric input in vivo in the presence or absence of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). mGluR5 were also identified immunohistochemically in the nodose ganglia and NTS after extrinsic vagal inputs had been traced from the proximal stomach. Gastroesophageal vagal afferents were classified as mucosal, tension, or tension-mucosal (TM) receptors. MPEP (1-10 microM) inhibited responses to circumferential tension of tension and TM receptors. Responses to mucosal stroking of mucosal and TM receptors were unaffected. MPEP (0.001-10 nmol icv) had no major effect on the majority of NTS neurons excited by gastric distension or on NTS neurons inhibited by distension. mGluR5 labeling was abundant in gastric vagal afferent neurons and sparse in fibers within NTS vagal subnuclei. We conclude that mGluR5 play a prominent role at gastroesophageal vagal afferent endings but a minor role in central gastric vagal pathways. Peripheral mGluR5 may prove a suitable target for reducing mechanosensory input from the periphery, for therapeutic benefit.  相似文献   

7.
目的:探讨下丘脑催产素(OXT)对大鼠摄食和胃动力的影响及调控机制。方法:采用荧光金逆行追踪结合免疫组化实验,观察大鼠视上核(SON)与弓状核(ARC)之间的神经通路;采用核团置管术观察ARC微量注射OXT对大鼠摄食的影响;采用单极电刺激观察电刺激SON对大鼠胃运动的影响及ARC微量注射OXT对大鼠胃运动和胃排空的影响。结果:荧光金逆行追踪结合免疫组化实验显示大鼠SON与ARC之间存在神经通路;ARC微量注射OXT大鼠0-2 h、0-3 h和0-4 h摄食量显著下降,OXT受体拮抗剂阿托西班可完全阻断OXT的抑制摄食作用,注射OXT和缩胆囊素(CCK)受体拮抗剂MK-329混合液后,OXT对大鼠摄食的抑制作用被部分阻断;电刺激SON,大鼠胃运动幅度和频率显著增强,预先向ARC内微量注射阿托西班后再电刺激SON,电刺激SON对胃运动的促进作用进一步增强;ARC微量注射OXT后,大鼠胃运动幅度和频率显著降低,阿托西班可完全阻断OXT对胃运动幅度和频率的抑制作用,MK-329可部分阻断OXT对胃运动幅度和频率的抑制作用;ARC微量注射OTX后,大鼠胃排空率显著降低,阿托西班可完全阻断OXT对胃排空的抑制作用,MK-329可部分阻断OXT对胃排空的抑制作用。结论:SON-ARC内具有OXT神经通路,且该通路由CCK介导。  相似文献   

8.
Goïot H  Laigneau JP  Devaud H  Sobhani I  Bado A 《FEBS letters》2005,579(9):1911-1916
The stomach was reported to synthesize and secrete leptin mainly in the gastric lumen. Gastric leptin release is markedly increased after food intake, by vagal cholinergic stimulation and by cholecystokinin and secretin. Here we show that human gastric MKN-74 cells produce leptin that increases upon challenge with cholecystokinin, insulin, glucocorticoids and all-trans retinoic acid through activation of the leptin gene promoter. In addition, we demonstrate that forskolin and BRL37344 which increased cAMP levels, fail to affect the activity of leptin gene promoter in MKN74 expressing beta(3)-adrenoceptor cells but, induce a 2-fold decrease in this activity in adipose 3T3-L1 cells. These data described for the first time, similarities and more interestingly, differences in the regulation of the leptin gene promoter in gastric cells as compared to adipocytes.  相似文献   

9.
We examined c-fos expression in specific brain nuclei in response to gastric distension and investigated whether 5-HT released from enterochromaffin (EC) cells was involved in this response. The role of 5-HT3 receptors in this mechanism was also addressed. Release of 5-HT was examined in an ex vivo-perfused stomach model, whereas c-fos expression in brain nuclei induced by gastric distension was examined in a freely moving conscious rat model. Physiological levels of gastric distension stimulated the vascular release of 5-HT more than luminal release of 5-HT, and induced c-fos expression in the nucleus of the solitary tract (NTS), area postrema (AP), paraventricular nucleus (PVN), and supraoptic nucleus (SON). The c-fos expression in all these brain nuclei was blocked by truncal vagotomy as well as by perivagal capsaicin treatment, suggesting that vagal afferent pathways may mediate this response. Intravenous injection of 5-HT3 receptor antagonist granisetron blocked c-fos expression in all brain nuclei examined, although intracerebroventricular injection of granisetron had no effect, suggesting that 5-HT released from the stomach may activate 5-HT3 receptors located in the peripheral vagal afferent nerve terminals and then induce brain c-fos expression. c-fos Positive cells in the NTS were labeled with retrograde tracer fluorogold injected in the PVN, suggesting that neurons in the NTS activated by gastric distension project axons to the PVN. The present results suggest that gastric distension stimulates 5-HT release from the EC cells and the released 5-HT may activate 5-HT3 receptors located on the vagal afferent nerve terminals in the gastric wall leading to neuron activation in the NTS and AP and subsequent activation of neurons in the PVN and SON.  相似文献   

10.
High fat maintenance diet attenuates hindbrain neuronal response to CCK   总被引:2,自引:0,他引:2  
Rats maintained on a high fat diet reduce their food intake less in response to exogenous cholecystokinin (CCK) than rats maintained on a low fat diet. In addition, inhibition of gastric emptying by CCK is markedly attenuated in rats maintained on a high fat diet. Both inhibition of food intake and gastric emptying by CCK are mediated by sensory fibers in the vagus nerve. These fibers terminate on dorsal hindbrain neurons of the nucleus of the solitary tract and area postrema. To determine whether diet-induced changes in the control of feeding and gastric emptying are accompanied by altered vagal sensory responsiveness, we examined dorsal hindbrain expression of Fos-like immunoreactivity (Fos-li) following intraperitoneal CCK injection of rats maintained on high fat or low fat diets. Following CCK, there were numerous Fos-li nuclei in the area postrema and in the commissural and medial subnuclei of the nucleus of the solitary tract of rats maintained on a low fat diet. However, Fos-li was absent or rare in the brains of rats maintained on a high fat diet. These data suggest that the vagal sensory response to exogenous CCK is reduced in rats maintained on a high fat diet. Our results also are consistent with our previous findings that CCK-induced reduction of food intake and gastric emptying are both attenuated in rats maintained on a high fat diet. In addition our results support the hypothesis that attenuation of CCK-induced inhibition of food intake and gastric emptying may be due to diet-induced diminution of vagal CCK responsiveness.  相似文献   

11.
Acute experiments on rats showed that the intragastric administration of an aqueous solution of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) elicited depression of the electrical activity of the gastric wall manifested by a decrease in the amplitude and frequency of the basic electrical rhythm and by its complete stopping in most cases. MNNG abolished the excitatory reaction caused both by the vagal electric stimulation and administration of carbacholine, but there persists an inhibitory reaction elicited both by the vagal stimulation and infusion of ATP.  相似文献   

12.
This study examined the neural pathways innervating Brunner's glands using a novel in vitro model of acinar secretion from Brunner's glands in submucosal preparations from the guinea pig duodenum. Neural pathways were activated by focal electrical stimulation and excitatory agonists, and videomicroscopy was used to monitor dilation of acinar lumen. Electrical stimulation of perivascular nerves evoked large dilations that were blocked by TTX (1 microM) or the muscarinic receptor antagonist 4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride (1 microM). The nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium iodide (100 microM) had no effect, and the nerve-evoked responses were not inhibited by hexamethonium (200 microM). Dilations were abolished in preparations from chronically vagotomized animals. Activation of submucosal ganglia significantly dilated submucosal arterioles but not Brunner's glands. Effects of electrical stimulation of perivascular and submucosal nerves were not altered by guanethidine. Capsaicin and substance P also dilated arterioles but had no effect on Brunner's glands. Cholinergic (choline acetyltransferase-immunoreactive) nerve fibers were found in Brunner's glands. These findings demonstrate that Brunner's glands are innervated by cholinergic vagal fibers but not by capsaicin-sensitive or intrinsic enteric nerves.  相似文献   

13.
Hyperglycemia has a profound effect on gastric motility. However, little is known about the site and mechanism that sense alteration in blood glucose level. The identification of glucose-sensing neurons in the nodose ganglia led us to hypothesize that hyperglycemia acts through vagal afferent pathways to inhibit gastric motility. With the use of a glucose-clamp rat model, we showed that glucose decreased intragastric pressure in a dose-dependent manner. In contrast to intravenous infusion of glucose, intracisternal injection of glucose at 250 and 500 mg/dl had little effect on intragastric pressure. Pretreatment with hexamethonium, as well as truncal vagotomy, abolished the gastric motor responses to hyperglycemia (250 mg/dl), and perivagal and gastroduodenal applications of capsaicin significantly reduced the gastric responses to hyperglycemia. In contrast, hyperglycemia had no effect on the gastric contraction induced by electrical field stimulation or carbachol (10(-5) M). To rule out involvement of serotonergic pathways, we showed that neither granisetron (5-HT(3) antagonist, 0.5 g/kg) nor pharmacological depletion of 5-HT using p-chlorophenylalanine (5-HT synthesis inhibitor) affected gastric relaxation induced by hyperglycemia. Lastly, N(G)-nitro-L-arginine methyl ester (L-NAME) and a VIP antagonist each partially reduced gastric relaxation induced by hyperglycemia and, in combination, completely abolished gastric responses. In conclusion, hyperglycemia inhibits gastric motility through a capsaicin-sensitive vagal afferent pathway originating from the gastroduodenal mucosa. Hyperglycemia stimulates vagal afferents, which, in turn, activate vagal efferent cholinergic pathways synapsing with intragastric nitric oxide- and VIP-containing neurons to mediate gastric relaxation.  相似文献   

14.
Pepsinogen secretion from isolated gastric glands, stimulated by 8-bromoadenosine 3',5'-cyclic monophosphate (8BrcAMP), forskolin, or cholecystokinin octapeptide, was inhibited by the presence of amphotericin B in the incubation medium. However, amphotericin had no effect, or only a slight effect (less than 10% inhibition), on pepsinogen secretion stimulated by crude secretin. Incubation of glands with either of the mitochondrial inhibitors, rotenone or carbonyl cyanide m-chlorophenylhydrazone, reduced pepsinogen secretory responses both to 8BrcAMP and to crude secretin. This suggests that amphotericin inhibition, which is secretagogue specific, was not the result of a general metabolic inhibition. Amphotericin caused an increase in sodium and chloride content and a decrease in potassium content of glands. Experiments in which the medium content of either sodium, potassium, or chloride was varied, suggested that part of the amphotericin inhibition could be attributed to a rise in intracellular chloride content. Results did not support the involvement of changes in intracellular sodium or potassium content in the inhibitory mechanism of amphotericin. It was concluded that amphotericin caused a rapid and secretagogue-specific inhibition of pepsinogen secretion in isolated gastric glands, and that the mechanism of inhibition may, to some extent, involve changes in intracellular chloride content.  相似文献   

15.
Vagal efferents, consisting of distinct lower motor and preganglionic parasympathetic fibers, constitute the motor limb of vagally mediated reflexes. Arising from the nucleus ambiguus, vagal lower motor neurons (LMN) mediate reflexes involving striated muscles of the orad gut. LMNs provide cholinergic innervation to motor end plates that are inhibited by myenteric nitrergic neurons. Preganglionic neurons from the dorsal motor nucleus implement parasympathetic motor and secretory functions. Cholinergic preganglionic neurons form parallel inhibitory and excitatory vagal pathways to smooth muscle viscera and stimulate postganglionic neurons via nicotinic and muscarinic receptors. In turn, the postganglionic inhibitory neurons release ATP, VIP, and NO, whereas the excitatory neurons release ACh and substance P. Vagal motor effects are dependent on the viscera's intrinsic motor activity and the interaction between the inhibitory and excitatory vagal influences. These interactions help to explain the physiology of esophageal peristalsis, gastric motility, lower esophageal sphincter, and pyloric sphincter. Vagal secretory pathways are predominantly excitatory and involve ACh and VIP as the postganglionic excitatory neurotransmitters. Vagal effects on secretory functions are exerted either directly or via release of local mediators or circulating hormones.  相似文献   

16.
Obestatin is a new peptide for which anorexigenic effects were recently reported in mice. We investigate whether peripheral injection of obestatin or co-injection with cholecystokinin (CCK) can modulate food intake, gastric motor function (intragastric pressure and emptying) and gastric vagal afferent activity in rodents. Obestatin (30, 100 and 300 microg/kg, i.p.) did not influence cumulative food intake for the 2h post-injection in rats or mice nor gastric emptying in rats. In rats, obestatin (300 microg/kg) did not modify CCK (1 microg/kg, i.p.)-induced significant decrease in food intake (36.6%) and gastric emptying (31.0%). Furthermore, while rats injected with CCK (0.3 microg/kg, i.v.) displayed gastric relaxation, no change in gastric intraluminal pressure was elicited by obestatin (300 microg/kg, i.v.) pre- or post-CCK administration. In in vitro rat gastric vagal afferent preparations, 20 units that had non-significant changes in basal activity after obestatin at 30 microg responded to CCK at 10 ng by a 182% increase. These data show that obestatin neither influences cumulative food intake, gastric motility or vagal afferent activity nor CCK-induced satiety signaling.  相似文献   

17.
18.
Quin 2-loaded isolated rabbit gastric glands and purified peptic cells were used to measure free cytosolic Ca2+ ([Ca2+]i) during hormone stimulation. Rabbit gastric glands are composed of peptic and parietal cells with less than 1% endocrine cells. Although both cell types responded to the same hormones, they may be distinguished in terms of the source of Ca2+ bringing about the change in [Ca2+]i. Experiments were designed to assign changes in [Ca2+]i to either the peptic or parietal cells and to attempt to maintain these distinctions in the mixed cell population of gastric glands. It was shown that the peptide cholecystokinin octapeptide induced a rapid and transient increase in [Ca2+]i of isolated peptic cells. This signal was independent of medium Ca2+ and insensitive to the Ca2+ channel blockers La3+ and nifedipine. In gastric glands, the Ca2+ outdependent increase in (Ca2+)i (the secondary transient) was slower and dose dependently blocked by La3+ and nifedipine. This allowed [Ca2+]i levels in the physiologically more intact rabbit gastric glands to be dissected and correlated with fluorescence changes of quin 2 in either cell type. The transient increase in [Ca2+]i coincided with a burst of pepsin but not acid secretion. A subsequent slower phase of pepsin secretion took place while the cells restored near resting [Ca2+]i. Using a combination of the Ca2+ ionophore A23187 and the protein kinase C activating phorbol ester 12-O-tetra-decanoylphorbol 13-acetate, the hormone response pattern of pepsin secretion could be mimicked. The intracellular Ca2+ stores of the peptic cells in the gastric gland remained depleted of Ca2+ until specific antagonists were added. The reloading of intracellular stores required medium Ca2+ although [Ca2+]i was maintained at resting level during the entire reloading period. Hence, a specialized pathway of Ca2+ reloading is postulated.  相似文献   

19.
We have observed that in chloralose-anesthetized animals, gastric distension (GD) typically increases blood pressure (BP) under normoxic normocapnic conditions. However, we recently noted repeatable decreases in BP and heart rate (HR) in hypercapnic-acidotic rats in response to GD. The neural pathways, central processing, and autonomic effector mechanisms involved in this cardiovascular reflex response are unknown. We hypothesized that GD-induced decrease in BP and HR reflex responses are mediated during both withdrawal of sympathetic tone and increased parasympathetic activity, involving the rostral (rVLM) and caudal ventrolateral medulla (cVLM) and the nucleus ambiguus (NA). Rats anesthetized with ketamine and xylazine or α-chloralose were ventilated and monitored for HR and BP changes. The extent of cardiovascular inhibition was related to the extent of hypercapnia and acidosis. Repeated GD with both anesthetics induced consistent falls in BP and HR. The hemodynamic inhibitory response was reduced after blockade of the celiac ganglia or the intraabdominal vagal nerves with lidocaine, suggesting that the decreased BP and HR responses were mediated by both sympathetic and parasympathetic afferents. Blockade of the NA decreased the bradycardia response. Microinjection of kainic acid into the cVLM reduced the inhibitory BP response, whereas depolarization blockade of the rVLM decreased both BP and HR inhibitory responses. Blockade of GABA(A) receptors in the rVLM also reduced the BP and HR reflex responses. Atropine methyl bromide completely blocked the reflex bradycardia, and atenolol blocked the negative chronotropic response. Finally, α(1)-adrenergic blockade with prazosin reversed the depressor. Thus, in the setting of hypercapnic-acidosis, a sympathoinhibitory cardiovascular response is mediated, in part, by splanchnic nerves and is processed through the rVLM and cVLM. Additionally, a vagal excitatory reflex, which involves the NA, facilitates the GD-induced decreases in BP and HR responses. Efferent chronotropic responses involve both increased parasympathetic and reduced sympathetic activity, whereas the decrease in BP is mediated by reduced α-adrenergic tone.  相似文献   

20.
The neurohumoral pathways mediating intracisternal TRH-induced stimulation of gastric acid secretion were investigated. In urethane-anesthetized rats, with gastric and intrajugular cannulas, TRH or the analog [N-Val2]-TRH (1 microgram) injected intracisternally increased gastric acid output for 90 min. Serum gastrin levels were not elevated significantly. Under these conditions the TRH analog, unlike TRH, was devoid of thyrotropin-releasing activity as measured by serum TSH levels. In pylorus-ligated rats, gastrin values were not modified 2 h after peptide injection whereas gastric acid output was enhanced. TRH (0.1-1 micrograms) stimulated vagal efferent discharge, recorded from a multifiber preparation of the cervical vagus in urethane-anesthetized rats and the response was dose-dependent. The time course of vagal activation was well correlated with the time profile of gastric stimulation measured every 2 min. These results demonstrated that gastric acid secretory stimulation elicited by intracisternal TRH is not related to changes in circulating levels of gastrin or TSH but is mediated by the activation of efferent vagal pathways that stimulated parietal cell secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号