首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The detailed interaction of human myelin basic protein (MBP) with charged lipids may be critical in organizing the myelin sheath into its biologically functional structure. Carbon-13 and phosphorus-31 nuclear magnetic resonance spectroscopy has been used to study this interaction by examining spectral consequences of additions of MBP to membrane preparations of the negatively charged lipid phosphatidylglycerol (PG). Lipid head group 13C and 31P linewidths were found to narrow upon addition of protein, while concomitant broadening was noted for bilayer carbon resonances. At intermediate MBP/PG ratios, two components in slow exchange on the NMR time scale (bulk PG and a protein-induced PG domain) were observed for the 13C resonance of the head group carbon atom adjacent to phosphate. These results, and other spectral evidence, suggested that head groups in free PG vesicles are motionally restricted by intermolecular interactions which are disrupted by competition with MBP Lys and Arg positively charged side chains. Titration of PG with the homopolypeptide poly-L-lysine produced comparable effects on PG 13C head group spectra, indicating that electrostatic attractions constitute the primary basis of the observed interactions. Vicinal and/or geminal 13C-31P coupling constants measured from the spectra of PG head group carbons were found to be essentially invariant for free PG in dimethyl sulfoxide solution, free PG vesicles, PG vesicles + MBP, and PG vesicles + poly-L-lysine. Comparison of the spectral effects induced in PG head group resonances by normal vs multiple sclerosis-derived MBP (MS-MBP) indicated that the MS-MBP is relatively less effective in converting PG to the protein-induced domain, a result which was attributed to increased protein self-aggregation arising from the reduced net positive character of the MS protein samples.  相似文献   

2.
Computer-generated "hydropathic" profiles were constructed for graphic comparison of the amino acid sequences for P2 protein, 18.5 kilodalton (kDa) myelin basic protein (BP), and myelin proteolipid protein (PLP). Profiles were also obtained for cytochrome b5, a membrane protein known to be capable of reversible association with lipid bilayers and of a size comparable to that of the myelin BPs. Analysis of the PLP sequence produced profiles generally compatible with the suggestions that PLP has three transbilayer and two bilayer intercalating segments. Profiles for P2 and 18.5 kDa BP were found to contain hydrophilic segments separated by relatively short hydrophobic regions. Whereas hydropathic indices in hydrophobic regions of P2, 18.5 kDa BP, and PLP fall in the value ranges recently reported for cores of globular proteins and intrabilayer domains of membrane proteins, hydrophobic sections of P2 and 18.5 kDa BP have hydropathic indices similar to those in the hydrophobic core (transprotein) regions of globular proteins. None of them are comparable to the region of cytochrome b5 known to anchor that protein in its membrane or to the segments of PLP sequence proposed as intrabilayer domains. This comparison suggests that neither BP has structural characteristics compatible with insertion into the hydrocarbon core of the myelin lipid bilayer, a conclusion that is consistent with a recently published study that identified the bilayer penetrating proteins of myelin with a hydrophobic probe. The above findings suggest an enhancement for some details of myelin architecture and a cautious approach to interpreting data for BP intercalation into bilayers.  相似文献   

3.
Structure and function of the proline-rich region of myelin basic protein   总被引:2,自引:0,他引:2  
P E Fraser  C M Deber 《Biochemistry》1985,24(17):4593-4598
Myelin basic protein (MBP)--the major extrinsic membrane protein of central nervous system myelin--from several species contains a rarely encountered highly conserved triproline segment as residues 99-101 of its 170-residue sequence. Cis peptide bonds are known to arise at X-Pro junctions in proteins and may be of functional significance in protein folding, chain reversal, and/or maintenance of tertiary structure. We have examined the conformation of this proline-rich region using principally 13C nuclear magnetic resonance spectroscopy (125 MHz) both in intact bovine MBP and in several MBP fragment peptides which we synthesized, including octapeptide 97-104 (Arg-Thr-Pro-Pro-Pro-Ser-Gln-Gly). Results suggested an all-trans conformation in aqueous solution for the triproline segment in MBP hexapeptide (99-104), heptapeptide (98-104), and octapeptide. Comparison with the 13C spectrum of intact MBP (125 MHz) suggested that the proline-rich region, as well as all other X-Pro MBP peptide junctures, was also essentially all trans in aqueous solution. Although experiments in which octapeptide 97-104 was bound to a lipid preparation (4:1 dipalmitoylphosphatidylcholine/dimyristoylphosphatidic acid) demonstrated that cis-proline bonds do arise (to the extent of ca. 5%) in the membrane environment, a role of linear chain propagation is suggested for the triproline segment of myelin basic protein.  相似文献   

4.
Low-frequency motion in membranes. The effect of cholesterol and proteins   总被引:3,自引:0,他引:3  
Nuclear magnetic resonance (NMR) relaxation techniques have been used to study the effect of lipid-protein interactions on the dynamics of membrane lipids. Proton enhanced (PE) 13C-NMR measurements are reported for the methylene chain resonances in red blood cell membranes and their lipid extracts. For comparison similar measurements have been made of phospholipid dispersions containing cholesterol and the polypeptide gramicidin A+. It is found that the spin-lattice relaxation time in the rotating reference frame (T1 rho) is far more sensitive to protein, gramicidin A+ or cholesterol content than is the laboratory frame relaxation time (T1). Based on this data it is concluded that the addition of the second component to a lipid bilayer produces a low-frequency motion in the region of 10(5) to 10(7) Hz within the membrane lipid. The T1 rho for the superimposed resonance peaks derived from all parts of the phospholipid chain are all influenced in the same manner suggesting that the low frequency motion involves collective movements of large segments of the hydrocarbon chain. Because of the molecular co-operativity implied in this type of motion and the greater sensitivity of T1 rho to the effects of lipid-protein interactions generally, it is proposed that these low-frequency perturbations are felt at a greater distance from the protein than those at higher frequencies which dominate T1.  相似文献   

5.
The effects of myelin basic protein on the aggregation, lipid bilayer merging, intercommunication of aqueous compartments and leakage of small unilamellar vesicles of egg phosphatidylcholine containing different proportions of galactocerebroside and sulfatide were investigated. This was performed employing light scattering, absorbance changes and fluorescence assays (resonance energy transfer, Terbium/dipicolinic acid assay and carboxyfluorescein release). The apposition of membranes rapidly induced by myelin basic protein is enhanced by sulfatide but reduced by galactocerebroside compared to vesicles of egg phosphatidylcholine alone. On the other hand, the presence of either glycosphingolipid in the membrane interferes with the induction by myelin basic protein of lipid bilayer merging, subsequent fusion and changes of the membrane permeability. Our results support an important modulation by sulfatide and galactocerebroside on the interactions among membranes induced by myelin basic protein, depending on the relative proportions of the glycosphingolipids and phosphatidylcholine.  相似文献   

6.
Kimura S  Naito A  Tuzi S  Saitô H 《Biopolymers》2001,58(1):78-88
We have recorded (13)C NMR spectra of selectively [3-(13)C]Ala-, [1-(13)C]Ala-, or [1-(13)C]Val-labeled synthetic transmembrane peptides of bacteriorhodopsin (bR) and enzymatically cleaved C-2 fragment in the solid and dimyristoylphosphatidylcholine bilayer. It turned out that these transmembrane peptides either in hexafluoroisopropanol or cast from it take an ordinary alpha-helix (alpha(I)-helix) irrespective of their amino acid sequences with reference to the conformation-dependent (13)C chemical shifts of (Ala)(n) taking the alpha-helix form. These transmembrane peptides are not always static in the lipid bilayer as in the solid state but undergo rigid-body motions with various frequencies as estimated from suppressed peaks either by fast isotropic or large-amplitude motions (>10(8) Hz) or intermediate frequencies (10(5) or 10(3) Hz). Further, (13)C chemical shifts of the [3-(13)C]Ala-labeled peptides in the bilayer were displaced downfield by 0.3-1.1 ppm depending upon amino acid sequence with respect to those in the solid state, which were explained in terms of local conformational fluctuation (10(2) Hz) deviated from the torsion angles (alpha(II)-helix) from those of standard alpha-helix, under anisotropic environment in lipid bilayer, in addition to the above-mentioned rigid-body motions. The carbonyl (13)C peaks, on the other hand, are not sensitively displaced by such local anisotropic fluctuations, because they are more sensitive to the manner of hydrogen-bond interactions. The amino acid sequences of these peptides inserted within the bilayer were not always the same as those of intact bR, causing disposition of the transmembrane alpha-helical segment from that of intact bR. Finally, we confirmed that the (13)C NMR peak positions of the random coil form are located at the boundary between the alpha-helix and a turned structure in loop regions.  相似文献   

7.
Membrane proteins change their conformations to respond to environmental cues, thus conformational plasticity is important for function. The influenza A M2 protein forms an acid-activated proton channel important for the virus lifecycle. Here we have used solid-state NMR spectroscopy to examine the conformational plasticity of membrane-bound transmembrane domain of M2 (M2TM). (13)C and (15)N chemical shifts indicate coupled conformational changes of several pore-facing residues due to changes in bilayer thickness, drug binding, and pH. The structural changes are attributed to the formation of a well-defined helical kink at G34 in the drug-bound state and in thick lipid bilayers, nonideal backbone conformation of the secondary-gate residue V27 in the presence of drug, and nonideal conformation of the proton-sensing residue H37 at high pH. The chemical shifts constrained the (?, ψ) torsion angles for three "basis" states, the equilibrium among which explains the multiple resonances per site in the NMR spectra under different combinations of bilayer thickness, drug binding, and pH conditions. Thus, conformational plasticity is important for the proton conduction and inhibition of M2TM. The study illustrates the utility of NMR chemical shifts for probing the structural plasticity and folding of membrane proteins.  相似文献   

8.
The hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine([125I]TID) was used to label myelin basic protein or polylysine in aqueous solution and bound to lipid vesicles of different composition. Although myelin basic protein is a water soluble protein which binds electrostatically only to acidic lipids, unlike polylysine it has several short hydrophobic regions. Myelin basic protein was labeled to a significant extent by TID when in aqueous solution indicating that it has a hydrophobic site which can bind the reagent. However, myelin basic protein was labeled 2-4-times more when bound to the acidic lipids phosphatidylglycerol, phosphatidylserine, phosphatidic acid, and cerebroside sulfate than when bound to phosphatidylethanolamine, or when in solution in the presence of phosphatidylcholine vesicles. It was labeled 5-7-times more than polylysine bound to acidic lipids. These results suggest that when myelin basic protein is bound to acidic lipids, it is labeled from the lipid bilayer rather than from the aqueous phase. However, this conclusion is not unequivocal because of the possibility of changes in the protein conformation or degree of aggregation upon binding to lipid. Within this limitation the results are consistent with, but do not prove, the concept that some of its hydrophobic residues penetrate partway into the lipid bilayer. However, it is likely that most of the protein is on the surface of the bilayer with its basic residues bound electrostatically to the lipid head groups.  相似文献   

9.
Determining the atomic resolution structures of membrane proteins is of particular interest in contemporary structural biology. Helical membrane proteins constitute one-third of the expressed proteins encoded in a genome, many drugs have membrane-bound proteins as their receptors, and mutations in membrane proteins result in human diseases. Although integral membrane proteins provide daunting technical challenges for all methods of protein structure determination, nuclear magnetic resonance (NMR) spectroscopy can be an extremely versatile and powerful method for determining their structures and characterizing their dynamics, in lipid environments that closely mimic the cell membranes. Once milligram amounts of isotopically labeled protein are expressed and purified, micelle samples can be prepared for solution NMR analysis, and lipid bilayer samples can be prepared for solid-state NMR analysis. The two approaches are complementary and can provide detailed structural and dynamic information. This paper describes the steps for membrane protein structure determination using solution and solid-state NMR. The methods for protein expression and purification, sample preparation and NMR experiments are described and illustrated with examples from the FXYD proteins, a family of regulatory subunits of the Na,K-ATPase.  相似文献   

10.
N Zumbulyadis  D F O'Brien 《Biochemistry》1979,18(24):5427-5432
Proton and carbon-13 nuclear magnetic resonance (1H and 13C NMR) spectra of rhodopsin-phospholipid membrane vesicles and sonicated disk membranes are presented and discussed. The presence of rhodopsin in egg phosphatidylcholine vesicles results in homogeneous broadening of the methylene and methyl resonances. This effect is enhanced with increasing rhodopsin content and decreased by increasing temperature. The proton NMR data indicate the phospholipid molecules exchange rapidly (less than 10(-3) s) between the bulk membrane lipid and the lipid in the immediate proximity of the rhodopsin. These interactions result in a reduction in either or both the frequency and amplitude of the tilting motion of the acyl chains. The 13C NMR spectra identify the acyl chains and the glycerol backbone as the major sites of protein lipid interaction. In the disk membranes the saturated sn-1 acyl chain is significantly more strongly immobilized than the polyunsaturated sn-2 acyl chain. This suggest a membrane model in which the lipid molecules preferentially solvate the protein with the sn-1 chain, which we term an edge-on orientation. The NMR data on rhodopsin-asolectin membrane vesicles demonstrate that the lipid composition is not altered during reconstitution of the membranes from purified rhodopsin and lipids in detergent.  相似文献   

11.
12.
P O Quist 《Biophysical journal》1998,75(5):2478-2488
The natural-abundance 13C NMR spectrum of gramicidin A in a lipid membrane was acquired under magic-angle spinning conditions. With fast sample spinning (15 kHz) at approximately 65 degrees C the peaks from several of the aliphatic, beta-, alpha-, aromatic, and carbonyl carbons in the peptide could be resolved. The resolution in the 13C spectrum was superior that observed with 1H NMR under similar conditions. The 13C linewidths were in the range 30-100 Hz, except for the alpha- and beta-carbons, the widths of which were approximately 350 Hz. The beta-sheet-like local structure of gramicidin A was observed as an upfield shift of the gramicidin alpha and carbonyl resonances. Under slow sample spinning (500 Hz), the intensity of the spinning sidebands from 13C in the backbone carbonyls was used to determine the residual chemical shift tensor. As expected, the elements of the residual chemical shift tensor were consistent with the single-stranded, right-handed beta6.3 helix structure proposed for gramicidin A in lipid membranes.  相似文献   

13.
P J Spooner  D M Small 《Biochemistry》1987,26(18):5820-5825
Triacylglycerols are the major substrates for lipolytic enzymes that act at the surface of emulsion-like particles such as triglyceride-rich lipoproteins, chylomicrons, and intracellular lipid droplets. This study examines the effect of cholesterol on the solubility of a triacylglycerol, triolein, in phospholipid surfaces. Solubilities of [carbonyl-13C]triolein in phospholipid bilayer vesicles containing between 0 and 50 mol % free cholesterol, prepared by cosonication, were measured by 13C NMR. The carbonyl resonances from bilayer-incorporated triglyceride were shifted downfield in the 13C NMR spectra from those corresponding to excess, nonincorporated material. This enabled solubilities to be determined directly from carbonyl peak intensities at most cholesterol concentrations. The bilayer solubility of triolein was inversely proportional to the cholesterol/phospholipid mole ratio. In pure phospholipid vesicles the triolein solubility was 2.2 mol %. The triglyceride incorporation decreased to 1.1 mol % at a cholesterol/phospholipid mole ratio of 0.5, and at a mole ratio of 1.0 for the bilayer lipids, the triolein solubility was reduced to just 0.15 mol %. The effects of free cholesterol were more pronounced and progressive than observed previously on the bilayer solubility of cholesteryl oleate (Spooner, P. J. R., Hamilton, J. A., Gantz, D. L., & Small, D. M. (1986) Biochim. Biophys. Acta 860, 345-353]. As with cholesteryl oleate, we suggest that cholesterol also displaces solubilized triglyceride to deeper regions of the bilayer.  相似文献   

14.
In patients with Alzheimer's disease, the microtubule-associated protein tau is found aggregated into paired helical filaments (PHFs) in neurofibrillary deposits. In solution, tau is intrinsically unstructured. However, the tubulin binding domain consisting of three or four 31-32 amino acid repeat regions exhibits both helical and β-structure propensity and makes up the proteolysis resistant core of PHFs. Here, we studied the structure and dynamics of the three-repeat domain of tau (i.e. K19) when bound to membranes consisting of a phosphatidylcholine and phosphatidylserine mixture or phosphatidylserine alone. Tau K19 binds to phospholipid vesicles with submicromolar affinity as measured by fluorescence spectroscopy. The interaction is driven by electrostatic forces between the positively charged protein and the phospholipid head groups. The structure of the membrane-bound state of K19 was studied using CD spectroscopy and solid-state magic-angle spinning NMR spectroscopy. To this end, the protein was selectively (13)C-labeled at all valine and leucine residues. Isotropic chemical shift values of tau K19 were consistent with a β-structure. In addition, motionally averaged (1)H-(13)C dipolar couplings indicated a high rigidity of the protein backbone. The structure formation of K19 was also shown to depend on the charge density of the membrane. Phosphatidylserine membranes induced a gain in the α-helix structure along with an immersion of K19 into the phospholipid bilayer as indicated by a reduction of the lipid chain (2)H NMR order parameter. Our results provide structural insights into the membrane-bound state of tau K19 and support a potential role of phospholipid membranes in mediating the physiological and pathological functions of tau.  相似文献   

15.
Natural abundance 13C nuclear magnetic spin-lattice relaxation times have been measured for bovine brain phosphatidylserine vesicles with and without bound proteins. The relaxation times were lower than published values for the corresponding nuclei in egg phosphatidylcholine, but showed the same trend, with relaxation times increasing along the acyl chains away from the polar headgroup. These times were inversely related to the degree of saturation of the lipid. Cytochrome c caused insignificant changes in the lipid acyl chain relaxation rates but reduced the resonance intensities, in agreement with Brown and Wüthrich (Biochem. Biophys. Acta 468 (1977) 389). In contrast, the basic protein from bovine myelin did not affect the intensities but reduced the relaxation times for 13C nuclei near the bilayer centre, and for nuclei near carbon-carbon double bonds. These proteins also dramatically broadened the serine headgroup carboxyl resonance. It appears, in accord with other recent evidence, that the basic protein does penetrate the hydrophobic region of the bilayer (possibly to the centre), producing quantitatively similar changes in the relaxation rates to proteolipid protein, an integral membrane protein.  相似文献   

16.
X-ray diffraction techniques have been used to study the structures of lipid bilayers containing basic proteins. Highly ordered multilayer specimens have been formed by using the Langmuir-Blodgett method in which a solid support is passed through a lipid monolayer held at constant surface pressure at an air/water interface. If the lipid monolayer contains acidic lipids then basic proteins in the aqueous subphase are transferred with the monolayer and incorporated into the multi-membrane stack. X-ray diffraction patterns have been recorded from multilayers of cerebroside sulphate and 40% (molar) cholesterol both with and without polylysine, cytochrome c and the basic protein from central nervous system myelin. Electron density profiles across the membranes have been derived at between 6 A and 12 A resolution. All of the membrane profiles have been placed on an absolute scale of electron density by the isomorphous exchange of cholesterol with a brominated cholesterol analog. The distributions and conformations of the various basic proteins incorporated within the cerebroside sulphate/cholesterol bilayer are very different. Polylysine attaches to the surface of the lipid bilayer as a fully extended chain while cytochrome c maintains its native structure and attaches to the bilayer surface with its short axis approximately perpendicular to the membrane plane. The myelin basic protein associates intimately with the lipid headgroups in the form of an extended molecule, yet its dimension perpendicular to the plane of the membrane of approx. 15 A is consistent with the considerable degree of secondary structure found in solution. In the membrane plane, the myelin basic protein extends to cover an area of about 2500 A2. There is no significant penetration of the protein into the hydrocarbon region of the bilayer or, indeed, beyond the position of the sulphate group of the cerebroside sulphate molecule.  相似文献   

17.
A multilayered complex forms when a solution of myelin basic protein is added to single-bilayer vesicles formed by sonicating myelin lipids. Vesicles and multilayers have been studied by electron microscopy, biochemical analysis, and X-ray diffraction. Freeze-fracture electron microscopy shows well-separated vesicles before myelin basic protein is added, but afterward there are aggregated, possibly multilayered, vesicles and extensive planar multilayers. The vesicles aggregate and fuse within seconds after the protein is added, and the multilayers form within minutes. No intra-bilayer particles are seen, with or without the protein. Some myelin basic protein, but no lipid, remains in the supernatant after the protein is added and the complex sedimented for X-ray diffraction. A rather variable proportion of the protein is bound. X-ray diffraction patterns show that the vesicles are stable in the absence of myelin basic protein, even under high g-forces. After the protein is added, however, lipid/myelin basic protein multilayers predominate over single-bilayer vesicles. The protein is in every space between lipid bilayers. Thus the vesicles are torn open by strong interaction with myelin basic protein. The inter-bilayer spaces in the multilayers are comparable to the cytoplasmic spaces in central nervous system myelins . The diffraction indicates the same lipid bilayer thickness in vesicles and multilayers, to within 1 A. By comparing electron-density profiles of vesicles and multilayers, most of the myelin basic protein is located in the inter-bilayer space while up to one-third may be inserted between lipid headgroups. When cytochrome c is added in place of myelin basic protein, multilayers also form. In this case the protein is located entirely outside the unchanged bilayer. Comparison of the various profiles emphasizes the close and extensive apposition of myelin basic protein to the lipid bilayer. Numerous bonds may form between myelin basic protein and lipids. Cholesterol may enhance binding by opening gaps between diacyl-lipid headgroups.  相似文献   

18.
Recoverin, a member of the EF-hand protein superfamily, serves as a calcium sensor in retinal rod cells. A myristoyl group covalently attached to the N-terminus of recoverin facilitates its binding to retinal disk membranes by a mechanism known as the Ca(2+)-myristoyl switch. Samples of (15)N-labeled Ca(2+)-bound myristoylated recoverin bind anisotropically to phospholipid membranes as judged by analysis of (15)N and (31)P chemical shifts observed in solid-state NMR spectra. On the basis of a (2)H NMR order parameter analysis performed on recoverin containing a fully deuterated myristoyl group, the N-terminal myristoyl group appears to be located within the lipid bilayer. Two-dimensional solid-state NMR ((1)H-(15)N PISEMA) spectra of uniformly and selectively (15)N-labeled recoverin show that the Ca(2+)-bound protein is positioned on the membrane surface such that its long molecular axis is oriented approximately 45 degrees with respect to the membrane normal. The N-terminal region of recoverin points toward the membrane surface, with close contacts formed by basic residues K5, K11, K22, K37, R43, and K84. This orientation of the membrane-bound protein allows an exposed hydrophobic crevice, near the membrane surface, to serve as a potential binding site for the target protein, rhodopsin kinase. Close agreement between experimental and calculated solid-state NMR spectra of recoverin suggests that membrane-bound recoverin retains the same overall three-dimensional structure that it has in solution. These results demonstrate that membrane binding by recoverin is achieved primarily by insertion of the myristoyl group inside the bilayer with apparently little rearrangement of the protein structure.  相似文献   

19.
In aqueous solution bovine myelin basic protein exhibits no significant alpha-helical or beta-pleated sheet structure. However, in vivo this protein is associated largely with the myelin membrane: experiments have therefore been performed to determine the structure of the protein when bound to lipid bilayers. Circular dichroism spectra show that this protein undergoes a major conformational change on binding to lipid bilayer vesicles formed from diacylphosphatidylserine or diacylphosphatidic acid, and on binding to micelles of several detergents. Association with diacylphosphatidylcholine failed to induce a structural change: this observation is interpreted in terms of an earlier report that lysophosphatidylcholine does increase the alpha-helical content of basic protein. These circular dichroism measurements and studies of the binding to the bilayer-forming lipids appear to provide support for significant hydrophobic lipid-protein interactions. Similar studies using two peptides produced by cleavf basic protein indicate that a major structure-forming region in the middle of the protein has been disrupted by this scission.  相似文献   

20.
D-Penicillamine(2,5)-enkephalin (DPDPE) is a potent opioid peptide that exhibits a high selectivity for the delta-opiate receptors. This zwitterionic peptide has been shown, by pulsed-field gradient 1H NMR diffusion studies, to have significant affinity for a zwitterionic phospholipid bilayer. The bilayer lipid is in the form of micelles composed of dihexanoylphosphatidylcholine (DHPC) and dimyristoylphosphatidylcholine (DMPC) mixtures, where the DMPC forms the bilayer structure. At high lipid concentration (25% w/w) these micelles orient in the magnetic field of an NMR spectrometer. The resulting 1H-13C dipolar couplings and chemical shift changes in the natural abundance 13C resonances for the Tyr and Phe aromatic rings were used to characterize the orientations in the bilayer micelles of these two key pharmacophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号