首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
Abstract

The objective of this study was to evaluate dry matter (DM), nitrogen yield, N2 fixation (Ndfa) and soil N uptake (Ndfs) in the shrubby medic (Medicago arborea) and saltbush (Atriplex halimus) grown in pots either solely or in a mixture on a salt-affected soil, using 15N dilution method. The combined DM of both species was considerably higher than that of solely grown shrubs. The inclusion of saltbush in the mixed cropping system decreased Ndfs by shrubby medic and enhanced % Ndfa without affecting amounts of N2 fixed. It can be concluded that the use of mixed cropping system of shrubby medic and saltbush could be a promising bio-saline agricultural approach to utilize salt affected soils in terms of forage yield and N2 fixation.  相似文献   

2.
Carbon isotope discrimination (Δ) was measured in irrigated and droughted potato. Under irrigation, Δ in leaflets at given nodes increased (P < 0.001) between 21 and 63 d after emergence (DAE), which was attributed to increasing stomatal conductance (gs) during leaf expansion. The effect of leaf position on Δ was non-significant in mature leaves. Under drought, Δ decreased (P < 0.001) in successive leaves up the stem, reflecting changes in gs and water stress. At each node Δ remained constant or decreased, suggesting that effects of water stress were greater than changes with leaf expansion. There were significant differences in Δ between cultivars in both treatments, and in the progressive decrease in Δ up the stem under drought. Differences in Δ between cultivars were consistent with differences in stomatal control of leaf water status following water stress. Values for Δ in tubers were consistently lower than in stem and leaf, and decreased more rapidly. Differences in Δ between cultivars did not reflect dry matter production in either treatment, and differences in water use were non-significant between cultivars under drought. So, plants can achieve similar dry matter production through different growth strategies when irrigated or droughted, and Δ does not provide a simple, indirect method of selecting for dry matter production under water stress.  相似文献   

3.
With the increasing global demand for food, fuel and fibre, the use of plant growth regulators in agriculture has become an agricultural practice aimed to improve physiological and productive responses. Our work aimed to evaluate the effect of tryptophol (Tol), a precursor of auxin, on common bean (Phaseolus vulgaris L.). The experiment was conducted in pots under greenhouse conditions, where we evaluated the Tol effect on bean crop under two different application forms: TSoil – soil application of Tol (4.10?4 mg L?1) and TLeaf – leaf tryptophol application (4.10?4 mg L?1), plus a reference treatment (0 mg L?1 of Tol). We analysed the variables: shoot fresh and dry matter; root dry matter, area and volume; leaf macro and micronutrients; CO2 net assimilation rate (A); stomatal conductance (gS); internal CO2 concentration (CI); foliar transpiration (E); photosynthetic pigment content and some crop production attributes. The application of Tol through the foliar pathway proved to be more advantageous because it improved the shoot fresh and dry matter, increased the root volume and area, favoured less foliar transpiration and improved the length of pods, while the application of Tol in soil induced higher nitrogen accumulation in leaves. Our observations allow the characterization of Tol as a bioactive metabolite, suggesting an important potential for use in agricultural systems.  相似文献   

4.
A. fabae populations, started at the 3–4 leaf-stage of sugar beet in the glasshouse and peaking at 3000 individuals per plant, reduced leaf area by 64% at the 14 leaf-stage. The size of the heavily-infested leaves number 5 to 10 was reduced by 80% or more. The rate of leaf growth regained normal values after the aphid populations collapsed, but the infested plants did not make up for the decrease in leaf area production that had been incurred during the infestation. Total dry matter production over a period of 15 weeks was reduced by 47%. Honeydew had no effect on leaf size or dry matter production. Sugar beet plants in the field became infested with A. fabae at the 2–3, 4–5 and 6–8 leaf stages. Maximum populations of 800, 2100 and 2200 aphids per plant were recorded, respectively. The pertinent reductions in leaf area were 91%, 67% and 34% at the 10–12 leaf-stage and 79%, 65% and 14% at harvest while the total dry matter produced was reduced by 91%, 79% and 16%. Neighbouring plants of the early-infested sugar beet plants gained significantly higher weights than control plants. Honeydew had no effect on leaf area or dry matter production. The consequences of these results for our understanding of Aphis fabae injury in sugar beet and aphid control in the field are discussed.  相似文献   

5.
Environmental conditions control physiological processes in plants and thus their growth. The predicted global warming is expected to accelerate tree growth. However, the growth response is a complex function of several processes with both direct and indirect effects. To analyse this problem we have used needle nitrogen productivity, which is an aggregate parameter for production of new foliage. Data on needle dry matter, production, and nitrogen content in needles of Scots pine ( Pinus sylvestris) and Norway spruce ( Picea abies) from a wide range of climatic conditions were collected and needle nitrogen productivities, defined as dry matter production of needles per unit of nitrogen in the needle biomass, were calculated. Our results show that the nitrogen productivity for spruce is insensitive to temperature. However, for pine, temperature affects both the magnitude of nitrogen productivity at low needle biomass and the response to self-shading but the temperature response is small at the high end of needle biomass. For practical applications it may be sufficient to use a species-specific nitrogen productivity that is independent of temperature. Because temperature affects tree growth indirectly as well as through soil processes, the effects of temperature change on tree growth and ecosystem carbon storage should mainly be derived from effects on nitrogen availability through changes in nitrogen mineralization. In addition, this paper summarises data on dry matter, production and nitrogen content of needles of conifers along a temperature gradient.  相似文献   

6.
Hairy root clones of Scopolia japonica were established by selection of adventitious roots formed on the root segments inoculated with Agrobacterium rhizogenes strain 15834. Twenty-nine isolated hairy root clones displayed various phenotypes characterized by growth rate, opine production and tropane alkaloid production. Of these, two highly alkaloid productive clones SI and S22 were examined for their growth rate and alkaloid productivity under various cultural conditions. When the most scopolamine-productive clone SI was cultured for 4 weeks at 25°C in the dark, the weight of the root tissue was increased by 40 times and the content of scopolamine reached a level of 0.5% on a dry weight basis in each optimum medium. On culture of the most hyoscyamine-productive clone S22 under the same conditions as with S1, the weight was increased by 102 times and the content of hyoscyamine was 1.3% on a dry weight basis in each optimum medium.  相似文献   

7.
The effect of cell density (1–4.5 g L-1) and light intensity (44 and 82 mol m-2 s-1) on fatty acid composition andeicosapentaenoic acid (EPA, 20:5 3) production was studied ina semi-continuous culture of Monodus subterraneus grown in a helicaltubular photobioreactor (`Biocoil') under laboratory conditions. Under lowlight, the highest proportion of EPA (31.5% of total fatty acids) and EPAcontent (3.5% of dry weight), biomass productivity (1.3 g L-124 h-1) and EPA productivity (44 mg L-1 24 h-1)occurred at optimal cell density of about 1.7 g L-1. Cell densityhad no effect on the total fatty acid (TFA) content and was maintained atca. 11% of dry weight. Under high light, the highest proportion ofEPA to fatty acids (31.8%), the total fatty acids content (13.4%) andEPA content (4.3% of dry weight) occurred at cell density of about 3.4gL-1. But the highest biomass productivity (1.7 g L-124 h-1) and EPA productivity (56 mg L-1 24 h-1) wereobtained at a cell density of 1.6 and 2.6g L-1, respectively. Ourresults suggest that manipulating the cell density and light intensity canmodify the composition of fatty acid and production of eicosapentaenoicacid (EPA) in M. subterraneus.  相似文献   

8.
Identifying forage species that are productive in saline environments is an important research priority in many areas of the world affected by salinity. The salt and waterlogging tolerances of 19 species of Melilotus were evaluated in a series of glasshouse experiments. Measurements taken on each species included: dry matter (DM) production, root growth and development, shoot ion (Na+, K+ and Cl) concentrations, root porosity, and in vitro estimates of nutritive value. Research on several species was restricted because of their potential as weed risks. Of the remaining species, M. siculus (syn. M. messanensis), an annual species, showed high relative salt and waterlogging tolerances, good DM production under non-stressed and stressed (saline and hypoxic) conditions, a high level of root porosity under stagnant conditions, low tissue ion (Na+, Cl) concentrations, and a reasonable dry matter digestibility content (range 66–69%) under highly saline conditions. M. sulcatus ssp. segetalis and M. indicus were also identified as species with good DM production and tolerance to salinity and waterlogging stresses. Further weed risk assessments and field trials on these species are required before they can be promoted for use as pasture forages on saline areas.  相似文献   

9.
Due to global warming, there is a need to increase the water use efficiency of crops under rainfed agriculture, particularly in semi-arid regions. Therefore, the effect of NPK fertilizer application (with or without liming) on the water use efficiency of a maize/cowpea intercropping system was investigated in the semi-arid part of Brazil. The crops were grown on a strongly acidic, sandy soil with three treatments: (i) Complete NPK fertilizer application with lime (Compl), (ii) Complete NPK fertilizer application without lime (Compl-L) and (iii) Control. On the average, dry matter production was 2.6 times higher with the Compl treatment than in the Control and 1.6 times higher than in the Compl-L treatment. The soil water balance was calculated with two different model approaches (HILLFLOW and EPICSEAR). When checked against measured soil water content during the growing period, both models produced accurate results, but only EPICSEAR was sensitive to the effects of liming and fertilizer application on soil water balance and dry matter production at this site. Comparison between the Compl and the Compl-L treatments shows that the increase in transpirational water use efficiency (WUET) (+63 and +80%, respectively) is mainly due to the application of NPK. Although the site is highly acid, liming was of minor importance for increasing the WUET. However, observations and simulations demonstrate that, through the additional application of lime, the gross water use efficiency (WUEC) in a maize/cowpea intercropping system can be increased by 60% compared to sole application of NPK and by more than 160% compared to the control. Abbreviations: EPIC – erosion productivity impact calculator; EPICSEAR – erosion productivity impact calculator for semi-arid regions; TDR – time domain reflectometry; WUE – water use efficiency.  相似文献   

10.
Two-year-old 1·5-kg rainbow trout were held in cages and conditioned by feeding either on low-fat chopped herring (H trout) or dry pellets (P trout) for 15 weeks. Their satiation amounts were then determined under standard conditions. On a wet weight basis H trout ate 2·5-3·5 times more food than P trout; this was sufficient to compensate for the high water content of herring and thereby maintain the dry matter intake. When P trout were offered herring (PH trout) they consumed more food than when offered dry pellets but not as much as H trout. Stomach capacity restricted the intake and their dry matter intake was reduced by c. 40%. When H trout were offered dry pellets (HP trout) they adjusted their intake immediately close to the level of P trout although their larger stomachs could have accommodated more than twice this volume of dry food. The return of appetite after a satiation meal was almost linear with time. Appetite increased at c. 556 mg g-1 body weight h-1 for H trout and at 142 mg g-1 bw h-1 for P trout. The return of appetite in PH trout was significantly slower (c. 370 mg g-1 bw h-1) than in H trout; the previous dietary history of the PH trout limited their capacity to process larger volumes of wet food in a single meal. Fish offered dry diet (P and HP trout) had similar rates of appetite return despite their previous feeding history suggesting that the property of the dry feed itself might limit meal size. The total gastric emptying time of diets of similar dry matter content (with and without large amounts of water) was similar, but the delay time before gastric emptying starts tended to be longer for dry diets. Dry pellets appear to impose a demand for water that prolongs the gastric delay. This water demand is met partly by drinking since the trout fed on dry pellets drank significantly more (436 ± 189 mg kg-1 h-1) than unfed and herring-fed trout which drank little or not at all (65 ± 113 and 70 ± 66 mg kg-1 h-1 respectively). Dietary water facilitated food processing and increased daily dry matter intake of trout when fed four times a day. When only one satiation meal per day was allowed, dietary water had no effect. It is concluded from this work that, in addition to gastric volume, a short-term limitation on the size of satiation meals in the rainbow trout is the availability of water to moisturize the food and thus to promote gastric digestion and emptying.  相似文献   

11.
During the productive Paleoproterozoic (2.4–1.8 Ga) and less productive Mesoproterozoic (1.8–1.0 Ga), the ocean was suboxic to anoxic and multicellular organisms had not yet evolved. Here, we link geologic information about the Proterozoic ocean to microbial processes in modern low-oxygen systems. High iron concentrations and rates of Fe cycling in the Proterozoic are the largest differences from modern oxygen-deficient zones. In anoxic waters, which composed most of the Paleoproterozoic and ~40% of the Mesoproterozoic ocean, nitrogen cycling dominated. Rates of N2 production by denitrification and anammox were likely linked to sinking organic matter fluxes and in situ primary productivity under anoxic conditions. Additionally autotrophic denitrifiers could have used reduced iron or methane. 50% of the Mesoproterozoic ocean may have been suboxic, promoting nitrification and metal oxidation in the suboxic water and N2O and N2 production by partial and complete denitrification in anoxic zones in organic aggregates. Sulfidic conditions may have composed ~10% of the Mesoproterozoic ocean focused along continental margins. Due to low nitrate concentrations in offshore regions, anammox bacteria likely dominated N2 production immediately above sulfidic zones, but in coastal regions, higher nitrate concentrations probably promoted complete S-oxidizing autotrophic denitrification at the sulfide interface.  相似文献   

12.
The productivity of wheat and barley was compared in soils of different salt concentrations with a limited water supply. Productivity was assessed as total dry weight or dry weight per unit of water used (water use efficiency, WUE). Barley achieved the highest productivity because it used more of the available water and it had a greater WUE for above-ground dry weight. However, when WUE for total organic weight of roots and shoots was determined, or WUE was corrected for grain production, wheat and barley had the same productivity. In two experiments in drying soils with different salt concentrations but the same amount of soil water, wheat and barley had a higher dry weight than salt-tolerant grasses and they were more productive than C4 halophytes and non-halophytes when adjusted for water use. In one experiment, sown at a low plant density, barley and wheat used less water than some halophytes and they completed their life cycle leaving some water behind in the soil. Their higher WUE did not compensate for their lower water use. However, when all species were sown at a high density, wheat and barley were either as productive or more productive than the most salt-tolerant species, including a C4 halophyte, as they used all the available water and had the highest WUE. A sunflower cultivar was similary more productive than a salt-tolerant relative. The contribution that salt-tolerant relatives of wheat, barley and sunflower can make to genetically improving the productivity of these species in dry saline soils is questioned.  相似文献   

13.
We tested 10 different Chlorella and Parachlorella strains under lipid induction growth conditions in autotrophic laboratory cultures. Between tested strains, substantial differences in both biomass and lipid productivity as well as in the final content of lipids were found. The most productive strain (Chlorella vulgaris CCALA 256) was subsequently studied in detail. The availability of nitrates and/or phosphates strongly influenced growth and accumulation of lipids in cells by affecting cell division. Nutrient limitation substantially enhanced lipid productivity up to a maximal value of 1.5 g l−1 day−1. We also demonstrated the production of lipids through large-scale cultivation of C. vulgaris in a thin layer photobioreactor, even under suboptimal conditions. After 8 days of cultivation, maximal lipid productivity was 0.33 g l−1 day−1, biomass density was 5.7 g l−1 dry weight and total lipid content was more than 30% dry weight. C. vulgaris lipids comprise fatty acids with a relatively high degree of saturation compared with canola oil offering a possible alternative to the use of higher plant oils.  相似文献   

14.
The response of spring barley (Hordeum vulgare, cvs Carnival and Atem), faba beans (Vicia faba, cv. Maris Bead), sugar beet (Beta vulgaris, cv. Monoire), forage maize (Zea mays, cv. Leader), forage peas (Pisum sativum, cv. Poneka) and white turnip (Brassica campestris, cv. Barkant) to topsoil compaction was investigated in a three year trial. Soil compaction was induced by tractor wheeling after crop sowing. Compaction reduced leaf area and dry matter accumulation in all crops in every season. Yield of barley was reduced by 29%, 27% and 40% in 1984, 1986 and 1987 respectively. Yield of maize, peas and turnip decreased by 33%, 14% and 13% in 1986 and 25%, 16% and 19% in 1987. Yields of beans and sugar beet were decreased by 34% and 35% respectively in 1984. Light interception was decreased in all crops in all three years of study but, with the exception of maize in 1987, the efficiency of conversion of radiant energy to dry matter was not significantly affected by soil compaction. It is concluded that reduced dry matter production and yield due to soil compaction was more a consequence of reduced light interception because of restricted leaf area development rather than as a result of an impaired ability of crops to utilise intercepted radiant energy.  相似文献   

15.
Of anthropogenic methane emissions, 40% can be attributed to agriculture, the majority of which are from enteric fermentation in livestock. With international commitments to tackle drivers of climate change, there is a need to lower global methane emissions from livestock production. Gastrointestinal helminths (parasitic worms) are globally ubiquitous and represent one of the most pervasive challenges to the health and productivity of grazing livestock. These parasites influence a number of factors affecting methane emissions including feed efficiency, nutrient use, and production traits. However, their effects on methane emissions are unknown. This is to our knowledge the first study that empirically demonstrates disease-driven increases in methane (CH4) yield in livestock (grams of CH4 per kg of dry matter intake). We do this by measuring methane emissions (in respiration chambers), dry matter intake, and production parameters for parasitised and parasite-free lambs. This study shows that parasite infections in lambs can lead to a 33% increase in methane yield (g?CH4/kg DMI). This knowledge will facilitate more accurate calculations of the true environmental costs of parasitism in livestock, and reveals the potential benefits of mitigating emission through controlling parasite burdens.  相似文献   

16.
A study was made of the effect of the herbicides 2,4-D, amitrole, atrazine, chlorsulfuron, diclofop-methyl, diquat, glyphosate, paraquat and trifluralin on the nodulation of sub-clover (Trifolium subterraneum L. ‘Clare’), the growth ofR. trifolii TA1 in liquid nutrient medium and the ability of herbicide-treated inoculum to successfully nodulate sub-clover plants. As concentrations of amitrole, diclofop-methyl and glyphosate in the rooting environment increased from 0 to 20 mg ai L−1, nodulation decreased linearly. The other herbicides at these concentrations caused more severe decreases in nodulation. Growth ofR. trifolii TA1 in nutrient broth was significantly retarded by all concentrations of diquat, 2 mg ai L−1 of paraquat, 10 mg ai L−1 of glyphosate and 2 mg ai L−1 of chlorsulfuron. Other herbicides did not suppress rhizobial growth. Inoculation with TA1 that had been grown in the presence of amitrole, atrazine or glyphosate and then washed free of the herbicide decreased nodulation of sub-clover, indicating that these herbicides may physiologically influence the nodulating potential of certain strains of Rhizobium. The remaining herbicides showed no indications of this effect.  相似文献   

17.
Photosynthetic area index (PAI), radiation interception (I) and dry matter partitioning between shoots and roots were measured for Miscanthus sinensis‘Giganteus' grown from micro-propagated transplants on a fertile peaty loam soil in eastern England. In the establishment year, Miscanthus plants produced 35 and 70 shoots plant-1 at densities of 4.0 and 1.8 plants m-2 respectively. At the higher density, there were 140 shoots m-2 with the largest reaching a height of 1.8 m; these canopies attained a maximum PAI of 5.45, intercepting 94% of incident radiation. Leaf lamina contributed c. 90% of total photosynthetic area with stems contributing the remainder. At the lower density, maximum PAI and I values were 2.88 and 86% respectively. PAI was related to I by calculating attenuation coefficients (k); these indicated that Miscanthus canopies were more effective at intercepting radiation per unit PAI at the lower density (k= -0.31) compared with the higher density (k= -0.20). Radiation interception was related to dry matter accumulated by calculating conversion efficiencies (e). At 4 plants m-2, × for shoot dry matter production was 1.17g MJ-1. Miscanthus partitioned a relatively large amount of total dry matter into below-ground biomass. By plant senescence, c. 30% of total dry matter had been partitioned into root and rhizome; rhizome biomass contributed 80% of below-ground dry matter, × increased to 1.62 g MJ-1 when calculated on a total dry matter basis (shoot + root + rhizome). Total dry matter production was increased 68% by a 2.2-fold increase in plant density.  相似文献   

18.
Estimates of land use and plant productivity are combined to predict total annual primary production in the UK as 252 million tonnes dry matter (10.5 t ha?1yr?1). Annual above ground production is predicted to be 165 Mt (6.9 t ha?1yr?1). Within these totals, intensive agriculture contributes 60%, productive woodland 8%, natural vegetation 26% and urban vegetation 5%. However, only 25% of total plant production is cropped by man and animals, and most of this is subsequently discarded as wastes and residues. 2112 PJ of organic material is available for fuel without reducing food or fibre production, but since much of this could not be economically collected, 859 PJ is calculated as a more realistic biofuel contribution by the year 2000. After deducting 50% conversion losses, this could save P1 billion (1979 prices) in oil imports. Short rotation energy plantations, forest residues, coppice woodlands, animal and crop wastes, industrial and domestic wastes, catch crops, natural vegetation and urban vegetation all have immediate or short term potential as biofuel sources. Sensitive planning is required to reduce environmental impact, but in some cases more diverse wildlife habitats may be created.  相似文献   

19.
The fresh water microalga Neochloris oleoabundans was investigated for its ability to accumulate lipids and especially triacylglycerols (TAG). A systematic study was conducted, from the determination of the growth medium to its characterization in an airlift photobioreactor. Without nutrient limitation, a maximal biomass areal productivity of 16.5 g m−2 day−1 was found. Effects of nitrogen starvation to induce lipids accumulation was next investigated. Due to initial N. oleoabundans total lipids high content (23% of dry weight), highest productivity was obtained without mineral limitation with a maximal total lipids productivity of 3.8 g m−2 day−1. Regarding TAG, an almost similar productivity was found whatever the protocol was: continuous production without mineral limitation (0.5 g m−2 day−1) or batch production with either sudden or progressive nitrogen deprivation (0.7 g m−2 day−1). The decrease in growth rate reduces the benefit of the important lipids and TAG accumulation as obtained in nitrogen starvation (37% and 18% of dry weight, respectively).  相似文献   

20.
Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha−1 during the growing season in the Inner Mongolia steppe. Shiping Wang and He Zhou contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号