首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of DNA attached to the chromosome scaffold   总被引:2,自引:0,他引:2       下载免费PDF全文
Two different methods have been described to investigate whether any specific DNA sequences are intimately associated with the metaphase chromosome scaffold. The chromosome scaffold, prepared by dehistonization of chromosomes with 2 M NaCl, is a nonhistone protein complex to which many looped DNA molecules are attached (Laemmli et al., 1977, Cold Spring Harbor Symp. Quant. Biol. 42:351--360). Chromosome scaffold DNA was prepared from dehistonized chicken MSB chromosomes by restriction endonuclease EcoRI digestion followed by removal of the looped DNA by sucrose gradient sedimentation. Alternatively, the scaffold DNA was prepared from micrococcal nuclease-digested intact chromosomes using sucrose gradients containing 2M NaCl. Solution hybridization of the radioactively labeled scaffold DNA with a large excess of total nuclear DNA revealed that, in either case, the scaffold DNA is not a unique sequence class of genomic DNA. Southern-blotting hybridization also showed that the scaffold DNA prepared from EcoRI-digested dehistonized chromosomes was not enriched (or depleted) in the ovalbumin gene sequences. The possibility of a dynamic interaction of protein and DNA in the chromosome scaffold and the possibility that the scaffold is a preparative artifact are discussed.  相似文献   

2.
Constitutive heterochromatin of a karyotypically conserved species of harvest mouse was compared to that of three karyotypically derived species of harvest mice by examining banding patterns produced on metaphase patterns produced by two of these restriction endonucleases (EcoRI and MboI) were compared to published G- and C-banded karyotypes and in situ hybridization of a satellite DNA repeat for these taxa. The third restriction endonuclease (PstI) did not produce a detectable pattern of digestion. For the most part, patterns produced by EcoRI and MboI can be related to C-banded chromosomes and in situ hybridization of satellite DNA sequences. Moreover, digestion with EcoRI reveals bands not apparent with these other techniques, suggesting that restriction endonuclease digestion of metaphase chromosomes may provide additional insight into the structure and organization of metaphase chromosomes. The patterns produced by restriction endonuclease digestion are compatible with the chromosomal evolution of these taxa, documenting that in the highly derived taxa not only are the chromosomes rearranged but the abundance of certain sequences is highly variable. However, technical variation and difficulty in producing consistent results even on a single slide with some restriction endonucleases documents the problems associated with this method.  相似文献   

3.
Chromosome-specific organization of human alpha satellite DNA   总被引:23,自引:3,他引:20       下载免费PDF全文
Restriction endonuclease analysis of human genomic DNA has previously revealed several prominent repeated DNA families defined by regularly spaced enzyme recognition sites. One of these families, termed alpha satellite DNA, was originally identified as tandemly repeated 340- or 680-base pair (bp) EcoRI fragments that hybridize to the centromeric regions of human chromosomes. We have investigated the molecular organization of alpha satellite DNA on individual human chromosomes by filter hybridization and in situ hybridization analysis of human DNA and DNA from rodent/human somatic cell hybrids, each containing only a single human chromosome. We used as probes a cloned 340-bp EcoRI alpha satellite fragment and a cloned alpha satellite-containing 2.0-kilobase pair (kbp) BamHI fragment from the pericentromeric region of the human X chromosome. In each somatic cell hybrid DNA, the two probes hybridized to a distinct subset of DNA fragments detected in total human genomic DNA. Thus, alpha satellite DNA on each of the human chromosomes examined--the X and Y chromosomes and autosomes 3, 4, and 21--is organized in a specific and limited number of molecular domains. The data indicate that subsets of alpha satellite DNA on individual chromosomes differ from one another, both with respect to restriction enzyme periodicities and with respect to their degree of sequence relatedness. The results suggest that some, and perhaps many, human chromosomes are characterized by a specific organization of alpha satellite DNA at their centromeres and that, under appropriate experimental conditions, cloned representatives of alpha satellite subfamilies may serve as a new class of chromosome-specific DNA markers.  相似文献   

4.
Conditions were determined for the methylation of intact yeast chromosomes by EcoRI, HhaI, and MspI bacterial methylases using an endonuclease protection assay while the chromosomes were embedded in agarose plugs suitable for transverse-field electrophoresis. Parameters were also established for the methylation of human chromosomes by EcoRI methylase. Methylation of embedded chromosomes by EcoRI methylase required prewashes with EDTA. EcoRI, HhaI, and MspI methylases showed optimal activity when nonacetylated bovine serum albumin, high levels of S-adenosylmethionine, and high levels of methylase were used. The use of bacterial methylases for methylation of embedded chromosomes will allow investigators to normalize variations in cellular DNA methylation prior to restriction and create new and rare endonuclease recognition sites which will facilitate the detection of chromosomal alterations and deletions.  相似文献   

5.
Analyzing the satellite DNA in the ant species Monomorium subopacum we found two unrelated families of satellite DNA. Because these satellite DNA families were isolated using the two enzymes HaeIII and EcoRI we called the two families HaeIII and EcoRI family, respectively. The HaeIII family proved to be organized in a 135-bp basic unit repeat, the EcoRI family in a 2.5-kb basic unit repeat. The latter represents perhaps the longest satellite DNA isolated up to now in insects. The HaeIII family apparently comprises about 10% of the total genomic DNA whereas the EcoRI family represents only about 1-2%. A comparative analysis of the two satellite DNA sequences showed no homology between the two families although both sequences possessed long A and T stretches. Eight of the 34 chromosomes showed hybridization with the HaeIII family and hybridization signals are visible in six chromosomes with the EcoRI family. Analysis of the electrophoretic mobility of satellite DNA on non-denaturing polyacrylamide showed that the HaeIII family is only slightly curved. However, the unit of the EcoRI satellite DNA family has curvature, especially the first 1000 bp of the monomeric repeat, in which this DNA is AT rich and has numerous A and T stretches. There are also internal inverted subrepeats in each family. The sequences of satellite DNA families found in Monomorium subopacum are different from the sequences of other satellite DNAs cloned in insects, including other species of ants.  相似文献   

6.
Cytological and biochemical experiments were undertaken in order to characterize the action of several restriction enzymes on fixed chromosomes of Tenebrio molitor (Coleoptera). EcoRI cuts the satellite DNA of this organism into suunit monomers of 142 bp in naked DNA and acts on fixed chromosomes cleaving and extracting these tandemly repeated sequences present in median centromeric heterochromatin. AluI, in contrast, is unable to attack the satellite sequences but does cut the main band DNA both in naked DNA and in fixed chromosomes. These enzymes therefore permit the in situ localization of satellite DNA or main band DNA in T. molitor. Other enzymes such HinfI or Sau3A do not produce longitudinal differentiation in chromosomes because of the extraction of DNA from satellite and main band DNA regions. In situ hybridization with a satellite DNA probe from T. molitor confirms that the DNA extracted from the chromosomes is the abundant and homogenous highly repeated DNA present in pericentromeric regions. These results plus the analysis of the DNA fractions retained on the slide and solubilized by the action of the restriction enzymes in situ provide evidence that: (a) as an exception to the rule EcoRI (6 bp cutter) is able to produce chromosome banding; (b) the size of the fragments produced by in situ digestion of satellite DNA with EcoRI is not a limiting factor in the extraction; (c) there is a remarkable accord between the action of EcoRI and AluI on naked DNA and on DNA in fixed chromosomes, and (d) the organization of specific chromosome regions seems to be very important in producing longitudinal differentiation on chromosomes.by E.R. Schmidt  相似文献   

7.
The restriction enzymes EcoRI and BamHI digest the genomic DNAs from six mustelids species Mustela lutreola, M. vision, M. erminea, M. sibirica, Vormela peregusna, producing repeated fragments varying in length. Some fragments were hybridized to chromosomes and restriction digests of DNAs from some mustelids and other mammals. The 0.7 kb EcoRI repeats from DNA of M. erminea are dispersed over chromosomes of carnivors. The 1.35, 1.9 and 2.7 kb BamHI repeats from DNA of polecat M. putorius furo are specific for mustelids. These repeats demonstrate interspecific variation in length and the number of copies. All BamHI repeats have no strict tandem organization. The 1.9 kb BamHI repeats are concentrated in the heterochromatic pericentromeric regions and additional chromosome arms. The 1.35 kb BamHI repeats are only located in the centromeric regions of chromosomes of five species and are absent in Vormela peregusna.  相似文献   

8.
Previously we reported the existence of a highly polymorphic satellite, deca-satellite, in the African green monkey genome; deca-satellite probe anneals to complex sets of repeated restriction endonuclease fragments that differ from individual to individual in the monkey population. Here we present experiments aimed at clarifying the structure and organization of deca-satellite sequences and investigating the mechanisms that generate the polymorphisms. Deca-satellite represents less than 1% of the monkey genome but the percentage varies from one monkey to another. The core sequence 5'-C-C-G-G within the ten base-pair deca-satellite repeat unit is well conserved and the central 5'-C-G is sometimes but not always methylated. Restriction endonuclease analysis with BamHI and EcoRI defines separate satellite domains that have evolved in an independent manner. In situ hybridization shows deca-satellite to be located at the centromeric regions of some but not all monkey chromosomes. This location is independently confirmed by a high frequency, in monkey libraries, of segments containing junctions between deca-satellite and alpha-satellite, the main monkey centromeric satellite. The total number of metaphase chromosomes that show centromeric grains after in situ hybridization with a deca-satellite probe varies from one monkey to another. Moreover, in situ hybridization to endoreduplicated diplochromosomes showed that deca-satellite is occasionally distributed asymmetrically on one or the other of the two pairs of sister chromatids in one diplochromosome. This indicates that major reorganization of the satellite can occur frequently in somatic cells. We discuss several possible mechanisms by which deca-satellite sequences could be either amplified or deleted during a single replicative cycle. Also, on the basis of the marked fluidity of deca-satellite abundance and organization and other well-known attributes of centromeric satellites, we suggest that the existence and maintenance of centromeric satellite rests on the role of the tandem repeats themselves and not on any particular nucleotide sequence, repeat length or organization.  相似文献   

9.
In the present study, we describe for the first time a family of 190-bp satellite DNA related to 5S rDNA in anurans and the existence of 2 forms of 5S rDNA, type I (201 bp) and type II (690 bp). The sequences were obtained from genomic DNA of Physalaemus cuvieri from Palmeiras, State of Bahia, Brazil. Analysis of the nucleotide sequence revealed that the satellite DNA obtained by digestion with EcoRI, called PcP190EcoRI, is 70% similar to the coding region of type I 5S rDNA and 66% similar to the coding region of type II 5S rDNA. Membrane hybridization and PCR amplification of the sequence showed that PcP190EcoRI is tandemly repeated. The satellite DNA as well as type I and type II 5S rDNA were localized in P. cuvieri chromosomes by fluorescent in situ hybridization. The PcP190EcoRI sequence was found in the centromeres of chromosomes 1-5 and in the pericentromeric region of chromosome 3. Type I 5S rDNA was detected in chromosome 3, coincident with the site of PcP190EcoRI. Type II 5S rDNA was located interstitially in the long arm of chromosome 5. None of these sequences co-localized with nucleolar organizer regions. Our data suggests that this satellite DNA originates from the 5S ribosomal multigene family, probably by gene duplication, nucleotide divergence and sequence dispersion in the genome.  相似文献   

10.
DNA was extracted from various rodent-human somatic cell hybrids that contained single or a few human chromosomes. These DNAs were examined by a combination of restriction endonuclease digestion, gel electrophoresis, and filter hybridisation to radioactive satellite DNA probes following transfer of the denatured restriction fragments from a gel to a nitrocellulose filter. In this way the arrangement of sequences homologous to human satellite III were examined on human chromosomes 1, 7, 11, 15, 22 and X. It was found that the distribution of restriction endonuclease sites within satellite III DNA is different on different chromosomes.  相似文献   

11.
We characterized 21 t(13;14) and 3 t(14;21) Robertsonian translocations for the presence of DNA derived from the short arms of the translocated acrocentric chromosomes and identified their centromeres. Nineteen of these 24 translocation carriers were unrelated. Using centromeric alpha-repeat DNA as chromosome-specific probe, we found by in situ hybridization that all 24 translocation chromosomes were dicentric. The chromatin between the two centomeres did not stain with silver, and no hybridization signal was detected with probes for rDNA or beta-satellite DNA that flank the distal and proximal ends of the rDNA region on the short arm of the acrocentrics. By contrast, all 24 translocation chromosomes gave a distinct hybridization signal when satellite III DNA was used as probe. This result strongly suggests that the chromosomal rearrangements leading to Robertsonian translocations occur preferentially in satellite III DNA. We hypothesize that guanine-rich satellite III repeats may promote chromosomal recombination by formation of tetraplex structures. The findings localize satellite III DNA to the short arm of the acrocentric chromosomes distal to centromeric alpha-repeat DNA and proximal to beta-satellite DNA.  相似文献   

12.
Summary EcoRI monomers of a highly repetitive DNA family of Beta vulgaris have been cloned. Sequence analysis revealed that the repeat length varies between 157–160 bp. The percentage of AT-residues is 62% on average. The basic repeat does not show significant homology to the BamHI sequence family of B. vulgaris that was analyzed by us earlier. Both the EcoRI and BamHI sequences are investigated and compared to each other with respect to their genomic organization in the genus Beta. Both repeats were found to be tandemly arranged in the genome of B. vulgaris in a satellite-like manner. The EcoRI satellite DNA is present in three sections (Beta, Corollinae and Nanae) of the genus, whereas the BamHI satellite DNA exists only in the section Beta. The distribution of the EcoRI and BamHI satellite families in the genus is discussed with respect to their evolution.  相似文献   

13.
Telomeres, DNA-protein structures, are important elements of the eukaryotic chromosome. Telomeric regions of the majority of higher plants contain heptanucleotides TTTAGGG arranged into a tandem repeat. However, some taxa have no such repeats. These are some species of lilies (Lilium) and onions (Allium). For example, terminal regions of chromosomes of Spanish onion (Allium fistulosum) contain satellite DNA whose unit repeats are 380 bp in length, and the short arm of its chromosome 8 contains rDNA repeats. This study deals with the terminal heterochromatin and organization of the satellite repeat in A. fistulosum. Fluorescent in situ hybridization (FISH) was used to locate the satellite DNA on chromosomes and on extended DNA of A. fistulosum. Nonsatellite DNA was found in the structure of telomeric repeat. Polymerase chain reaction (PCR) and Southern hybridization were used for analysis of terminal heterochromatin. Various rearrangements were found in the satellite repeat. The roles of retrotransposones and microsatellites in the formation of terminal heterochromatin are discussed.  相似文献   

14.
Restriction endonuclease cleavage of satellite DNA in intact bovine nuclei   总被引:1,自引:0,他引:1  
Lolya Lipchitz  Richard Axel 《Cell》1976,9(2):355-364
We have analyzed the efficiency with which specific nucleotide sequences within nucleosomes are recognized and cleaved by DNA restriction endonucleases. A system amenable to this sort of analysis is the cleavage of the bovine genome with the restriction endonuclease EcoRI. Bovine satellite I comprises 7% of the genome and is tandemly repetitious with an EcoRI site at 1400 base pair (bp) intervals within this sequence. The ease with which this restriction fragment can be measured permits an analysis of the accessibility of this sequence when organized in a nucleosomal array.Initial studies indicated that satellite I sequences are organized in a nucleosomal structure in a manner analogous to that observed for total genomic DNA. We then examined the accessibility of the EcoRI cleavage sites in satellite to endonucleolytic cleavage in intact nuclei. We find that whereas virtually all the satellite I sequences from naked DNA are cleaved into discrete 1400 bp fragments, only 33% of the satellite I DNA is liberated as this fragment from intact nuclei. These data indicate that 57% of the EcoRI sites in nuclei are accessible to cleavage and that cleavage can occur within the core of at least half the nucleosomal subunits. Analysis of the products of digestion suggests a random distribution of nucleosomes about the EcoRI sites of satellite I DNA.Finally, the observation that satellite sequences can be cleaved from nuclei to 1400 bp length fragments with their associated proteins provides a method for the isolation of specific sequences as chromatin. Using sucrose gradient velocity centrifugation, we have isolated a 70% pure fraction of satellite I chromatin. Nuclease digestion of this chromatin fraction reveals the presence of nucleosomal subunits and indicates that specific sequences can be isolated in this manner without gross disorganization of their subunit structure.  相似文献   

15.
Telomeres, DNA–protein structures, are important elements of the eukaryotic chromosome. Telomeric regions of the majority of higher plants contain heptanucleotides TTTAGGG arranged into a tandem repeat. However, some taxa have no such repeats. These are some species of Liliaceae and Alliaceae. For example, terminal regions of chromosomes of bunching onion (Allium fistulosum) contain satellite DNA whose unit repeats are 380 bp in length, and the short arm of its chromosome 8 contains rDNA repeats. This study deals with the terminal heterochromatin and organization of the satellite repeat in A. fistulosum. Fluorescent in situ hybridization (FISH) was used to locate the satellite DNA on chromosomes and on extended DNA of A. fistulosum.Nonsatellite DNA was found in the structure of telomeric repeat. Polymerase chain reaction (PCR) and Southern hybridization were used for analysis of terminal heterochromatin. Various rearrangements were found in the satellite repeat. The roles of retrotransposons and microsatellites in the formation of terminal heterochromatin are discussed.  相似文献   

16.
The technique of chromosomal orientation and direction fluorescence in situ hybridization (COD-FISH) was adapted for plant chromosomes in order to study long-range organization of two families of satellite repeats, VicTR-B of Vicia sativa and PisTR-B of Pisum sativum. The technique allowed FISH to be performed on mitotic chromosomes in a strand-specific manner, resulting in visualization of the repeat orientation along the chromosomes and with respect to the direction of telomeric repeats. The VicTR-B probe applied to V. sativa chromosomes produced signals on a single chromatid at most regions containing corresponding sequences, thus confirming a presence of long arrays of head-to-tail arranged repeat monomers which is typical for satellite DNA. However, hybridization signals of different or equal intensities on both chromatids were also detected at some loci, suggesting a more complex arrangement of the repeats. Similar observations were made for PisTR-B repeats on P. sativum chromosomes, although the proportion of loci displaying signals on both chromatids was lower. In contrast to VicTR-B, orientation of the PisTR-B clusters with respect to telomeric sequences appeared to be conserved among subtelomeric regions of metacentric chromosomes and of the short arms of acrocentric chromosomes.  相似文献   

17.
The 17S/5.8S/26S ribosomal DNA (rDNA) sequences were mapped to the three satellited (SAT) chromosomes in the common hexaploid cultivated oat Avena sativa (2n = 6x = 42, AACCDD genomes). In situ hybridization and Southern hybridization of maize and (or) wheat rDNA probes to DNA from nullisomics derived from the cultivar 'Sun II' allowed the placement of rDNA sequences to the physical chromosomes. A restriction map was produced for the rDNA sequences of 'Sun II' using a maize probe from the transcribed region of the 17S/26S rDNA repeat. The set of rDNA repeats on SAT 2 of 'Sun II' possesses a 10.5-kb EcoRI fragment not found in the rDNA repeats of SAT 1 and SAT 8. This 10.5-kb fragment results from the absence of an EcoRI site in the intergenic spacer (IGS) of SAT 2 repeats. Extensive polymorphisms were demonstrated for three hexaploid Avena species, namely, the Mediterranean-type cultivated oat A. byzantina and the wild species A. sterilis and A. fatua. However, geographically diverse A. sativa cultivars displayed little rDNA variation. In contrast with all of the A. sativa cultivars examined, the A. sterilis accessions generally lacked the 10.5-kb EcoRI fragment. The results support the hypothesis that A. sativa accessions descend from a limited ancestral cultivated population. The rDNA polymorphisms are attributed to differences in lengths and restriction sites of the IGS.  相似文献   

18.
Members of three prominent DNA families of Beta procumbens have been isolated as Sau3A repeats. Two families consisting of repeats of about 158 bp and 312 bp are organized as satellite DNAs (Sau3A satellites I and II), whereas the third family with a repeat length of 202 bp is interspersed throughout the genome. Multi-colour fluorescence in situ hybridization was used for physical mapping of the DNA families, and has shown that these tandemly organized families occur in large heterochromatic and DAPI positive blocks. The Sau3A satellite I hybridized exclusively around or near the centromeres of 10, 11 or 12 chromosomes. The Sau3A satellite family I showed high intraspecific variability and high-resolution physical mapping was performed on pachytene chromosomes using differentially labelled repeats. The physical order of satellite subfamily arrays along a chromosome was visualized and provided evidence that large arrays of plant satellite repeats are not contiguous and consist of distinct subfamily domains. Re-hybridization of a heterologous rRNA probe to mitotic metaphase chromosomes revealed that the 18S-5.8S-25S rRNA genes are located at subterminal position on one chromosome pair missing repeat clusters of the Sau3A satellite family I. It is known that arrays of Sau3A satellite I repeats are tightly linked to a nematode (Heterodera schachtii) resistance gene and our results show that the gene might be located close to the centromere. Large arrays of the Sau3A satellite II were found in centromeric regions of 16 chromosomes and, in addition, a considerable interspersion of repeats over all chromosomes was observed. The family of interspersed 202 bp repeats is uniformly distributed over all chromosomes and largely excluded from the rRNA gene cluster but shows local amplification in some regions. Southern hybridization has shown that all three families are specific for genomes of the section Procumbentes of the genus Beta.  相似文献   

19.
We describe the organization of the complex, interspersed 724 family of DNA sequences that is distributed in multiple copies about the pericentromeric region of human acrocentric chromosomes. 724 family members were isolated using an efficient recombination-based assay for nucleotide sequence homology to screen a human genomic library. Eight related but distinct 724 family members were isolated that hybridized to a total of 20 different human-genomic EcoRI DNA fragments spanning 100,000 base pairs. In contrast with tandemly clustered satellite and ribosomal DNA sequences also located on the short arms of human acrocentric chromosomes, 724 family members are interspersed. No evidence for local interspersion or homology between 724 family members and ribosomal or satellite DNA sequences was found. Juxtaposition of the complex 724 family to the nucleolus organizer region was a recent event in primate evolution. The unique organization of 724 family members on each of the five human acrocentric chromosomes indicates that the 724 family continues to evolve within the human karyotype.  相似文献   

20.
Constitutive heterochromatin of a karyotypically conserved species of harvest mouse was compared to that of three karyotypically derived species of harvest mice by examining banding patterns produced on metaphase chromosomes with three restriction endonucleases (EcoRI, MboI and PstI). Banding patterns produced by two of these restriction endonucleases (EcoRI and MboI) were compared to published G- and C-banded karyotypes and in situ hybridization of a satellite DNA repeat for these taxa. The third restriction endonuclease (PstI) did not produce a detectable pattern of digestion. For the most part, patterns produced by EcoRI and MboI can be related to C-banded chromosomes and in situ hybridization of satellite DNA sequences. Moreover, digestion with EcoRI reveals bands not apparent with these other techniques, suggesting that restriction endonuclease digestion of metaphase chromosomes may provide additional insight into the structure and organization of metaphase chromosomes. The patterns produced by restriction endonuclease digestion are compatible with the chromosomal evolution of these taxa, documenting that in the highly derived taxa not only are the chromosomes rearranged but the abundance of certain sequences is highly variable. However, technical variation and difficulty in producing consistent results even on a single slide with some restriction endonucleases documents the problems associated with this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号