首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FL5.12 pro-B lymphoma cells utilize the mitochondrial pathway to apoptosis in response to tumor necrosis factor (TNF) receptor occupation, yet high levels of the Bcl-2 family antiapoptotic protein, Bcl-x(L), fail to protect these cells against TNF-receptor-activated death. Bcl-x(L) expression delays, but does not totally block, the release of mitochondrial cytochrome c (cyt c) in these cells in response to TNFalpha-induced apoptosis and caspase-9 is processed prior to mitochondrial cyt c release under these circumstances. Early processing of caspase-9 also occurred in Apaf-1 knockout murine fibroblasts in response to TNF-receptor occupation. A caspase-9-specific inhibitor was more effective in delaying the progression of apoptosis in the FL5.12 Bcl-x(L) cells than was an inhibitor specific to caspase-3. Furthermore, downregulation of caspase-9 levels by RNA interference resulted in partial protection of these cells against TNF-receptor-activated apoptosis, indicating that caspase-9 activation contributed to early amplification of the caspase cascade. Consistent with this, proteolytic processing of caspase-9 was observed prior to processing by caspase-3, suggesting that caspase-3 was not responsible for early caspase-9 activation. We show that murine caspase-9 is efficiently processed by active caspase-8 at SEPD, the motif at which caspase-9 autoprocesses following its recruitment to the apoptosome. Our results suggest that, in addition to processing procaspase-3 and the BH3 protein Bid, active caspase-8 can cleave and activate procaspase-9 in response to TNF receptor crosslinking in murine cells.  相似文献   

2.
Caspase-9 can be activated without proteolytic processing   总被引:25,自引:0,他引:25  
The recombinant form of the proapoptotic caspase-9 purified following expression in Escherichia coli is processed at Asp315, but largely inactive; however, when added to cytosolic extracts of human 293 cells it is activated 2000-fold in the presence of cytochrome c and dATP. Thus, the characteristic activities of caspase-9 are context-dependent, and its activation may not recapitulate conventional caspase activation mechanisms. To explore this hypothesis we produced recombinant forms of procaspase-9 containing mutations that disabled one or both of the interdomain processing sites of the zymogen. These mutants were able to activate downstream caspases, but only in the presence of cytosolic factors. The mutant with both processing sites abolished had 10% of the activity of wild-type, and was able to support apoptosis, with equal vigor to wild-type, when transiently expressed in 293 cells. Thus caspase-9 has an unusually active zymogen that does not require proteolytic processing, but instead is dependent on cytosolic factors for expression of its activity.  相似文献   

3.
Granzyme B (GrB), acting similar to an apical caspase, efficiently activates a proteolytic cascade after intracellular delivery by perforin. Studies here were designed to learn whether the physiologic effector, GrB-serglycin, initiates apoptosis primarily through caspase-3 or through BH3-only proteins with subsequent mitochondrial permeabilization and apoptosis. Using four separate cell lines that were either genetically lacking the zymogen or rendered deficient in active caspase-3, we measured apoptotic indices within whole cells (active caspase-3, mitochondrial depolarization [DeltaPsim] and TUNEL). Adhering to these conditions, the following were observed in targets after GrB delivery: (a) procaspase-3-deficient cells fail to display a reduced DeltaPsim and DNA fragmentation; (b) Bax/Bak is required for optimal DeltaPsim reduction, caspase-3 activation, and DNA fragmentation, whereas BID cleavage is undetected by immunoblot; (c) Bcl-2 inhibits GrB-mediated apoptosis (reduced DeltaPsim and TUNEL reactivity) by blocking oligomerization of caspase-3; and (d) in procaspase-3-deficient cells a mitochondrial-independent pathway was identified which involved procaspase-7 activation, PARP cleavage, and nuclear condensation. The data therefore support the existence of a fully implemented apoptotic pathway initiated by GrB, propagated by caspase-3, and perpetuated by a mitochondrial amplification loop but also emphasize the presence of an ancillary caspase-dependent, mitochondria-independent pathway.  相似文献   

4.
The mechanism by which membrane-bound Bcl-2 inhibits the activation of cytoplasmic procaspases is unknown. Here we characterize an intracellular, membrane-associated form of procaspase-3 whose activation is controlled by Bcl-2. Heavy membranes isolated from control cells contained a spontaneously activatable caspase-3 zymogen. In contrast, in Bcl-2 overexpressing cells, although the caspase-3 zymogen was still associated with heavy membranes, its spontaneous activation was blocked. However, Bcl-2 expression had little effect on the levels of cytoplasmic caspase activity in unstimulated cells. Furthermore, the membrane-associated caspase-3 differed from cytosolic caspase-3 in its responsiveness to activation by exogenous cytochrome c. Our results demonstrate that intracellular membranes can generate active caspase-3 by a Bcl-2-inhibitable mechanism, and that control of caspase activation in membranes is distinct from that observed in the cytoplasm. These data suggest that Bcl-2 may control cytoplasmic events in part by blocking the activation of membrane-associated procaspases.  相似文献   

5.
Mammalian caspases are a family of cysteine proteases that plays a critical role in apoptosis. We have analyzed caspase-2 processing in human cell lines containing defined mutations in caspase-3 and caspase-9. Here we demonstrate that caspase-2 processing, during cell death induced by UV irradiation, depends both on caspase-9 and caspase-3 activity, while, during TNF-alpha-dependent apoptosis, capase-2 processing is independent of caspase-9 but still requires caspase-3. In vitro procaspase-2 is the preferred caspase cleaved by caspase-3, while caspase-7 cleaves procaspase-2 with reduced efficiency. We have also demonstrated that caspase-2-mediated apoptosis requires caspase-9 and that cells co-expressing caspase-2 and a dominant negative form of caspase-9 are impaired in activating a normal apoptotic response and release cytochrome c into the cytoplasm. Our findings suggest a role played by caspase-2 as a regulator of the mitochondrial integrity and open questions on the mechanisms responsible for its activation during cell death.  相似文献   

6.
The evidence implicating a mode of cell death that either favors or argues against caspase-dependent apoptosis is available in studies that used experimental models of Parkinson’s disease. We sought to investigate the mechanisms by which release of cytochrome c is not linked to caspase activation during rotenone-induced dopaminergic (DA) neurodegeneration. Unlike caspase activation in 6-hydroxydopamine-treated cells, both MN9D DA neuronal cells and primary cultures of mesencephalic neurons showed no obvious signs of caspase activation upon exposure to rotenone. We found that intracellular levels of ATP significantly decreased at the early phase of neurodegeneration (<~24 h) and therefore external addition of ATP to the lysates obtained at this stage reconstituted caspase-3 activity. At a later phase of cell death (>~24 h), both decreased levels of ATP and procaspase-9 contributed to the lack of caspase-3 activation. Under this condition, calpain and the proteasome system were responsible for the degradation of procaspase-9. Consequently, external addition of ATP and procaspase-9 to the lysates harvested at the later phase was required for activation of caspase-3. Similarly, caspase-3 activity was also reconstituted in the lysates harvested from cells co-treated with inhibitors of these proteases and incubated in the presence of external ATP. Taken together, our findings provided a sequential mechanism underlying how DA neurons may undergo caspase-independent cell death, even in the presence of cytoplasmic cytochrome c following inhibition of mitochondrial complex I.  相似文献   

7.
Galectin-1 (gal-1) triggers T cell death by several distinct intracellular pathways including the activation of the death-receptor pathway. The aim of this study was to investigate whether gal-1 induced activation of the death-receptor pathway in Jurkat T lymphocytes mediates apoptosis via the mitochondrial pathway linked by truncated Bid (tBid). We demonstrate that gal-1 induced proteolytic cleavage of the death agonist Bid, a member of the Bcl-2/Bcl-xL family and a substrate of activated caspase-8, was inhibited by caspase-8 inhibitor II (Z-IETD-FMK). Downstream of Bid, gal-1 stimulated mitochondrial cytochrome c release as well as the activation and proteolytic processing of initiator procaspase-9 were effectively decreased by caspase-8 inhibitor II. Blocking of gal-1 induced cleavage of effector procaspase-3 by caspase-8 inhibitor II as well as by caspase-9 inhibitors I (Z-LEHD-FMK) and III (Ac-LEHD-CMK) indicates that receptor and mitochondrial pathways converged in procaspase-3 activation and contribute to proteolytic processing of effector procaspase-6 and -7. Western blot analyses and immunofluorescence staining revealed that exposure of Jurkat T cells to gal-1 resulted in the cleavage of the DNA-repair enzyme poly (ADP-ribose) polymerase, cytoskeletal α-fodrin, and nuclear lamin A as substrates of activated caspases. Our data demonstrate that Bid provides a connection between the death receptor and the mitochondrial pathway of gal-1 induced apoptosis in human Jurkat T lymphocytes.  相似文献   

8.
BACKGROUND: Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested. METHODS: Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy. RESULTS: AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell. CONCLUSIONS: The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.  相似文献   

9.
Caspase-associated recruitment domains (CARDs) are protein interaction domains that participate in activation or suppression of CARD-carrying members of the caspase family of apoptosis-inducing proteases. A novel CARD-containing protein was identified that is overexpressed in some types of cancer and that binds and suppresses activation of procaspase-9, which we term TUCAN (tumor-up-regulated CARD-containing antagonist of caspase nine). The CARD domain of TUCAN selectively binds itself and procaspase-9. TUCAN interferes with binding of Apaf1 to procaspase-9 and suppresses caspase activation induced by the Apaf1 activator, cytochrome c. Overexpression of TUCAN in cells by stable or transient transfection inhibits apoptosis and caspase activation induced by Apaf1/caspase-9-dependent stimuli, including Bax, VP16, and staurosporine, but not by Apaf1/caspase-9-independent stimuli, Fas and granzyme B. High levels of endogenous TUCAN protein were detected in several tumor cell lines and in colon cancer specimens, correlating with shorter patient survival. Thus, TUCAN represents a new member of the CARD family that selectively suppresses apoptosis induced via the mitochondrial pathway for caspase activation.  相似文献   

10.
The DNA-interactive drug, echinomycin, is a potent antitumor agent, which is able to induce apoptosis in a multitude of cancer cell lines. Previously, we showed that echinomycin strongly inhibited the growth of a variety of cancer cell lines, and the activation of mitogen-activated protein kinases (MAPK) in human colon cancer cells (HT-29). However, little information currently exists regarding the details of intracellular signaling pathways such as the MAPK, mitochondrial, and caspase pathways. In order to clarify this issue, we verified the plausible molecular signaling cascade by performing an immunobiochemical apoptosis experiment involving the mitochondrial and caspase pathways. The apoptotic process of HT-29 cells was accompanied by the activation of procaspase-9, -3 and cytochrome c release. Both caspase and MAPK inhibitors were used in the determination of the specific roles of MAPK and caspase in echinomycin-induced apoptosis. ERK (PD98059) or caspase-3-specific (Z-DEVD-FMK) inhibitors were discovered to significantly attenuate echinomycin-induced apoptosis. PD98059 treatment or overexpression of kinase-inactive ERK did not alter the echinomycin-induced cytochrome c release into the cytosol, but did diminish the activation of procaspase-3. Also, Z-DEVD-FMK was found to have no effect on either cytochrome c release or ERK activation. Taken together, these results indicate that cytochrome c release, and the activation of ERK and caspase-3 in the final apoptosis pathway are all relevant factors in echinomycin-induced apoptosis. To our knowledge, this study is the first to delineate the echinomycin's direct detrimental effects on colon cancer cells.  相似文献   

11.
We studied the mechanism of intra-mitochondrial death initiator caspase-9 activation by a redox response, in which hydrogen peroxide (H(2)O(2)) caused a subtle decrease in the inner membrane potential (Deltapsim) with little evidence of cytochrome c release. Initiation of the intra-mitochondrial autocleavage of procaspase-9 preceded the onset of caspase cascade induction in the cytosol. Purified mitochondria demonstrated procaspase-9 processing and releasing abilities when exposed to H(2)O(2). Bcl-2 overexpression caused accumulation of the active form caspase-9 in the mitochondria, rendering the cells resistant to the redox stress. Intriguingly, disulfide-bonded dimers of autoprocessed caspase-9 were generated in the mitochondria in the pre-apoptotic phase. Using a substrate-analog inhibitor, dimer formation of procaspase-9 was also detectable inside the mitochondria. Furthermore, thiol reductant thioredoxin blocked the caspase-9 activation step and the cell death induction. Thus, redox stress-responsive thiol-disulfide converting reactions in the mitochondrion seemed to mediate procaspase-9 assembly that allows autoprocessing. This study offers an explanation for the recent observation that Apaf-1-null cells can execute apoptosis, which can be blocked by Bcl-2, and supports the proposition that the cytochrome c-Apaf-1-procaspase-9 complex functions in the caspase amplification rather than in its initiation.  相似文献   

12.
Oncogenic c-Myc renders cells sensitive to TRAIL-induced apoptosis, and existing data suggest that c-Myc sensitizes cells to apoptosis by promoting activation of the mitochondrial apoptosis pathway. However, the molecular mechanisms linking the mitochondrial effects of c-Myc to the c-Myc-dependent sensitization to TRAIL have remained unresolved. Here, we show that TRAIL induces a weak activation of procaspase-8 but fails to activate mitochondrial proapoptotic effectors Bax and Bak, cytochrome c release or downstream effector caspase-3 in non-transformed human fibroblasts or mammary epithelial cells. Our data is consistent with the model that activation of oncogenic c-Myc primes mitochondria through a mechanism involving activation of Bak and this priming enables weak TRAIL-induced caspase-8 signals to activate Bax. This results in cytochrome c release, activation of downstream caspases and postmitochondrial death-inducing signaling complex -independent augmentation of caspase-8-Bid activity. In conclusion, c-Myc-dependent priming of the mitochondrial pathway is critical for the capacity of TRAIL-induced caspase-8 signals to activate effector caspases and for the establishment of lethal caspase feedback amplification loop in human cells.  相似文献   

13.
At weaning, milk producing mammary epithelial cells undergo apoptosis and are removed by phagocytosis. Here, we show that mouse mammary gland involution is associated with mitochondrial cytochrome c release and processing of numerous caspases, including caspase-1, -3, -7, -8 and -9. Induction of caspase-3-like activity paralleled cleavage of poly-(ADP--ribose) polymerase. Dexamethasone inhibited processing of caspase-3, -7 and -8 and apoptosis, but had no effect on caspase-1 accumulation and cytochrome c release. In Bcl-2 transgenic animals, cytochrome c release, caspase activation and apoptosis were impaired. Thus, the pro-apoptotic signaling pathway in mammary epithelial cells during involution involves the release of cytochrome c and activation of caspases. It is inhibited by Bcl-2 at the mitochondrial level and by dexamethasone at a post-mitochondrial level.  相似文献   

14.
The release of cytochrome c from mitochondria results in the formation of an Apaf-1-caspase-9 apoptosome and induces the apoptotic protease cascade by activation of procaspase-3. The present studies demonstrate that heat shock protein 90 (Hsp90) forms a cytosolic complex with Apaf-1 and thereby inhibits the formation of the active complex. Immunodepletion of Hsp90 depletes Apaf-1 and thereby inhibits cytochrome c-mediated activation of caspase-9. Addition of purified Apaf-1 to Hsp90-depleted cytosolic extracts restores cytochrome c-mediated activation of procaspase-9. We also show that Hsp90 inhibits cytochrome c-mediated oligomerization of Apaf-1 and thereby activation of procaspase-9. Furthermore, treatment of cells with diverse DNA-damaging agents dissociates the Hsp90-Apaf-1 complex and relieves the inhibition of procaspase-9 activation. These findings provide the first evidence for a negative cytosolic regulator of cytochrome c-dependent apoptosis and for involvement of a chaperone in the caspase cascade.  相似文献   

15.
BACKGROUND: Previous work has shown that teratogens such as hyperthermia (HS), 4-hydroperoxycyclophosphamide (4CP), and staurosporine (ST) induce cell death in day 9 mouse embryos by activating the mitochondrial apoptotic pathway. Key to the activation of this pathway is the activation of a caspase cascade involving the cleavage-induced activation of an initiator procaspase, caspase-9, and the downstream effector procaspase, caspase-3. For example, procaspase-3, an inactive proenzyme of 32 kDa is cleaved by activated caspase-9 to generate a large subunit of approximately 17 kDa and a small subunit of approximately 10 kDa. In turn, caspase-3 is known to target a variety of cellular proteins for proteolytic cleavage as part of the process by which dying cells are eliminated. Previous work has also shown that neuroepithelial cells are sensitive to teratogen-induced activation of this pathway and subsequent cell death whereas cells of the heart are resistant. Although caspase-3 is a key effector caspase activated by teratogens, two other effector caspases, caspase-6 and caspase-7, are known; however, their role in teratogen-induced cell death is unknown. METHODS: Because cleavage-induced generation of specific subunits is the most specific assay for activation of caspases, we have used antibodies that recognize the procaspase and one of its active subunits and a Western blot approach to assess the activation of caspase-6 and caspase-7 in day 9 mouse embryos (or heads, hearts and trunks isolated from whole embryos) exposed to HS, 4CP, and ST. To probe the relationship between teratogen-induced activation of caspase-9/caspase-3 and the activation of caspase-6/caspase-7, we used a mitochondrial-free embryo lysate with or without the addition of cytochrome c, recombinant active caspase-3, or recombinant active caspase-9. RESULTS: Western blot analyses show that these three teratogens, HS, 4CP, and ST, induce the activation of procaspase-6 (appearance of the 13 kDa subunit, p13) and caspase-7 (appearance of the 19 kDa subunit, p19) in day 9 mouse embryos. In vitro studies showed that both caspase-6 and caspase-7 could be activated by the addition of cytochrome c to a lysate prepared from untreated embryos. In addition, caspase-6 could be activated by the addition of either recombinant caspase-3 or caspase-9 to a lysate prepared from untreated embryos. In contrast, caspase-7 could be activated by addition of recombinant caspase-3 but only minimally by recombinant caspase-9. Like caspase-9/caspase-3, caspase-6 and caspase-7 were not activated in hearts isolated from embryos exposed to these three teratogens. CONCLUSIONS: HS, 4CP and ST induce the cleavage-dependent activation of caspase-6 and caspase-7 in day 9 mouse embryos. Results using DEVD-CHO, a caspase-3 inhibitor, suggest that teratogen-induced activation of caspase-6 is mediated by caspase-3. In addition, our data suggest that caspase-7 is activated primarily by caspase-3; however, we cannot rule out the possibility that this caspase is also activated by caspase-9. Finally, we also show that teratogen-induced activation of caspase-6 and caspase-7 are blocked in the heart, a tissue resistant to teratogen-induced cell death.  相似文献   

16.
Glutamate receptor overactivation contributes to neuron death after stroke, trauma, and epileptic seizures. Exposure of cultured rat hippocampal neurons to the selective glutamate receptor agonist N-methyl-d-aspartate (300 microm, 5 min) or to the apoptosis-inducing protein kinase inhibitor staurosporine (300 nm) induced a delayed neuron death. In both cases, neuron death was preceded by the mitochondrial release of the pro-apoptotic factor cytochrome c. Unlike staurosporine, the N-methyl-d-aspartate-induced release of cytochrome c did not lead to significant activation of caspase-3, the main caspase involved in the execution of neuronal apoptosis. In contrast, activation of the Ca(2+)-activated neutral protease calpain I was readily detectable after the exposure to N-methyl-d-aspartate. In a neuronal cell-free apoptosis system, calpain I prevented the ability of cytochrome c to activate the caspase cascade by inhibiting the processing of procaspase-3 and -9 into their active subunits. In the hippocampal neuron cultures, the inhibition of calpain activity restored caspase-3-like protease activity after an exposure to N-methyl-d-aspartate. Our data demonstrate the existence of signal transduction pathways that prevent the entry of cells into a caspase-dependent cell death program after the mitochondrial release of cytochrome c.  相似文献   

17.
Cells respond to poliovirus infection by switching on the apoptotic program, implementation of which is usually suppressed by viral antiapoptotic functions. We show here that poliovirus infection of HeLa cells or derivatives of MCF-7 cells was accompanied by the efflux of cytochrome c from mitochondria. This efflux occurred during both abortive infection (e.g., interrupted by guanidine-HCl and ending with apoptosis) and productive infection (leading to cytopathic effect). The former type of infection, but not the latter, was accompanied by truncation of the proapoptotic protein Bid. The virus-triggered cytochrome c efflux was suppressed by overexpression of Bcl-2. Both abortive and productive infections also resulted in a decreased level of procaspase-9, as revealed by Western blotting. In the former case, this decrease was accompanied by the accumulation of a protein with the electrophoretic mobility of active caspase-9. In contrast, in the productively infected cells, the latter protein was absent but caspase-9-related polypeptides with altered mobility could be detected. Both caspase-9 and caspase-3 were shown to be essential for the development of such hallmarks of virus-induced apoptosis as chromatin condensation, DNA degradation, and nuclear fragmentation. These and some other results suggest the following scenario. Poliovirus infection activates the apoptotic pathway, involving mitochondrial damage, cytochrome c efflux, and consecutive activation of caspase-9 and caspase-3. The apoptotic signal appears to be amplified by a loop which includes secondary processing of Bid. The implementation of the apoptotic program in productively infected cells may be suppressed, however, by the viral antiapoptotic functions, which act at a step(s) downstream of the cytochrome c efflux. The suppression appears to be caused, at least in part, by aberrant processing and degradation of procaspase-9.  相似文献   

18.
The direct induction of apoptosis has emerged as a powerful anticancer strategy, and small molecules that either inhibit or activate certain proteins in the apoptotic pathway have great potential as novel chemotherapeutic agents. Central to apoptosis is the activation of the zymogen procaspase-3 to caspase-3. Caspase-3 is the key “executioner” caspase, catalyzing the hydrolysis of a multitude of protein substrates within the cell. Interestingly, procaspase-3 levels are often elevated in cancer cells, suggesting a compound that directly stimulates the activation of procaspase-3 to caspase-3 could selectively induce apoptosis in cancer cells. We recently reported the discovery of a compound, PAC-1, which enhances procaspase-3 activity in vitro and induces apoptotic death in cancer cells in culture and in mouse xenograft models. Described herein is the mechanism by which PAC-1 activates procaspase-3 in vitro. We show that zinc inhibits the enzymatic activity of procaspase-3 and that PAC-1 strongly activates procaspase-3 in buffers that contain zinc. PAC-1 and zinc form a tight complex with one another, with a dissociation constant of approximately 42 nM. The combined data indicate that PAC-1 activates procaspase-3 in vitro by sequestering inhibitory zinc ions, thus allowing procaspase-3 to autoactivate itself to caspase-3. The small-molecule-mediated activation of procaspases has great therapeutic potential and thus this discovery of the in vitro mechanism of action of PAC-1 is critical to the development and optimization of other procaspase-activating compounds.  相似文献   

19.
Katoh I  Sato S  Fukunishi N  Yoshida H  Imai T  Kurata S 《Cell research》2008,18(12):1210-1219
To explore how the intrinsic apoptosis pathway is controlled in the spontaneous fog (forebrain overgrowth) mutant mice with an Apaf1 splicing deficiency, we examined spleen and bone marrow cells from Apaf1(+/+) (+/+) and Apaf1(fog/fog) (fog/fog) mice for initiator caspase-9 activation by cellular stresses. When the mitochondrial inner membrane potential (Deltapsim) was disrupted by staurosporine, +/+ cells but not fog/fog cells activated caspase-9 to cause apoptosis, indicating the lack of apoptosome (apoptosis protease activating factor 1 (Apaf-1)/cytochrome c/(d)ATP/procaspase-9) function in fog/fog cells. However, when a marginal ( approximately 20%) decrease in Deltapsim was caused by hydrogen peroxide (0.1 mM), peroxynitritedonor 3-morpholinosydnonimine (0.1 mM) and UV-C irradiation (20 J/m(2)), both +/+ and fog/fog cells triggered procaspase-9 auto-processing and its downstream cascade activation. Supporting our previous results, procaspase-9 pre-existing in the mitochondria induced its auto-processing before the cytosolic caspase activation regardless of the genotypes. Cellular ATP concentration significantly decreased under the hypoactive Deltapsim condition. Furthermore, we detected accumulation of citrate, a kosmotrope known to facilitate procaspase-9 dimerization, probably due to a feedback control of the Krebs cycle by the electron transfer system. Thus, mitochondrial in situ caspase-9 activation may be caused by the major metabolic reactions in response to physiological stresses, which may represent a mode of Apaf-1-independent apoptosis hypothesized from recent genetic studies.  相似文献   

20.
MCF-7 human breast cancer cells are widely utilized to study apoptotic processes. Recent studies demonstrated that these cells lack procaspase-3. In the present study, caspase activation and activity were examined in this cell line after treatment with the microtubule poison paclitaxel. When cells were harvested 72 h after the start of a 24-h treatment with 100 nm paclitaxel, 37 +/- 5% of the cells were nonadherent and displayed apoptotic morphological changes. Although mitochondrial cytochrome c release and caspase-9 cleavage were detectable by immunoblotting, assays of cytosol and nuclei prepared from the apoptotic cells failed to demonstrate the presence of activity that cleaved the synthetic caspase substrates LEHD-7-amino-4-trifluoromethylcoumarin (LEHD-AFC), DEVD-AFC, and VEID-AFC. Likewise, the paclitaxel-treated MCF-7 cells failed to cleave a variety of caspase substrates, including lamin A, beta-catenin, gelsolin, protein kinase Cdelta, topoisomerase I, and procaspases-6, -8, and -10. Transfection of MCF-7 cells with wild type procaspase-3 partially restored cleavage of these polypeptides but did not result in detectable activities that could cleave the synthetic caspase substrates. Immunoblotting revealed that caspase-9, and -3, which were proteolytically cleaved in paclitaxel-treated MCF-7/caspase-3 cells, were sequestered in a salt-resistant sedimentable fraction rather than released to the cytosol. Immunofluorescence indicated large cytoplasmic aggregates containing cleaved caspase-3 in these apoptotic cells. These observations suggest that sequestration of caspases can occur in some model systems, causing tetrapeptide-based activity assays to underestimate the amount of caspase activation that has occurred in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号