首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthesis of Ears and Flag Leaves of Wheat and Barley   总被引:3,自引:0,他引:3  
Immediately after anthesis ears of spring wheat absorbed lessthan 0.5 mg CO2, per hour in daylight and later evolved CO2,in the light and in the dark. The rate of apparent photosynthesisof the combined flag-leaf lamina and sheath and peduncle (collectivelycalled flag leaf) of two spring wheat varieties, Atle and JufyI, was 3–4 mg per hour; the rates of the flag leaf andthe ear of two spring barleys, Plumage Archer and Proctor, wereeach about 1 mg per hour. The gas exchange of ears and flag leaves between ear emergenceand maturity accounted for most of the final grain dry weight.The CO2, fixed by the wheat ear was equivalent to between 17and 30 per cent of the grain weight, but more than this waslost by respiration, so assimilation in the flag leaf was equivalentto 110–20 per cent of the final grain weight. In barley,photosynthesis in the flag leaf and the net CO2 uptake by theear each provided about half of the carbohydrate in the grain. Barley ears photosynthesized more than wheat ears because oftheir greater surface, and flag leaves of wheat photosynthesizedmore than those of barley because they had more surface anda slightly greater rate of photosynthesis per dm2.  相似文献   

2.
The role of ear photosynthesis in grain filling was studied in a number of durum wheat (Triticum turgidum var durum L.) landraces and varieties from the Middle East, North Africa, and from the collections of ‘Institut National de la Recherche Agronomique’ (INRA, France) and ‘Centro International de Mejora de Maiz y Trigo’ (CIMMYT, Mexico). Plants were grown in the field in a Mediterranean climate. Flag leaves (blade plus sheath) and ears were kept in the dark from 1 week after anthesis to maturity which reduced grain weight by 22.4% and 59.0%, respectively. In a further experiment, the carbon isotope discrimination ratio (Δ) of ear bracts, awns and flag leaves was measured on samples taken at anthesis and on mature kernels. The mean value of Δ for the water soluble fraction of bracts (17.0‰) and awns (17.7‰) were lower than those of leaves (19.5‰) and fairly similar to those of kernels (17.4‰) averaged across all genotypes. Data indicate that most of the photosynthates in the grain come from ear parts and not from flag leaves. In addition, a higher water use efficiency (WUE) of ear parts than of the flag leaf is suggested by their lower Δ values. Gas exchange in ears and flag leaves was measured during grain filling. Averaged over all genotypes, CO2 diffusive conductance was about five times higher in the flag leaf than in the spike (with distal portions of awns outside the photosynthetic chamber) 2 weeks after anthesis. In absolute terms, the dark respiration rate (Rd) was greater than the net photosynthesis rate (Pn) by a factor of 1.74 in the spike, whereas Rd was much smaller, only 22.1, 65.7 and 24.8% of Pn in blade, sheath and awns, respectively. Data indicate that photosynthesis, and hence the water use efficiency (photosynthesis/transpiration), is greatly underestimated in ears because of the high rates of respiration which diminish the measured rates of net CO2 exchange. Results of 13C discrimination and gas exchange show that genotypes from North Africa have higher WUE than those from the Middle East. The high Rd values of ears as well as their low diffusive conductance suggest that CO2 from respiration may be used as source of carbon for ear photosynthesis. In the same way, the anatomy of glumes, for example, supports the role of bracts using internal CO2 as source of photosynthesis. In the first experiment, the Δ in mature grains from culms with darkened ears compared with control culms provided further evidence in support of this hypothesis. Thus, the Δ from kernels of control plants was 0.40 higher than that from ear-darkened plants, probably because of some degree of refixation (recycling) of respired CO2 in the grains.  相似文献   

3.
Crop dry matter and its chemical composition, together withcanopy and mature tissue respiration rates were measure at equivalentgrowth stages and temperatures for spring and winter rye, triticaleand wheat crops grown under irrigated field conditions. Canopyrespiration was partitioned into growth and maintenance respirationusing information from the chemical composition analysis ofthe crop biomass. Rates of dry matter accumulation early inthe growing season were significantly greater for rye cropsin comparison to triticale and wheat. However, when dry matterwas measured at similar ontogenetic stages, the productivityadvantage of the rye crop was no longer evident. Nevertheless,canopy respiration rates per unit ground area were significantlylower for rye than wheat over all temperatures and growth stages.Intergeneric differences in the respiration rates of matureleaf and stem tissues were consistent with those measured atcanopy scales. Differences in the chemical composition of thebiomass among genera were minimal, and insufficient to accountfor differences in canopy respiration due to synthesis respirationrequirement. Estimates of biomass maintenance requirements appearto be significantly lower for rye than wheat when calculatedat similar temperatures and ontogenetic stages. The maintenancecoefficient (m) depended on stage of development, suggestingthat m will decline earlier chronologically for rye than wheat,which implies that greater carbon retention is another aspectcontributing to the higher early-season crop growth rates ofspring and winter rye. Considering the lower respiration ratesof mature stems relative to leaves, the dependence of m on stem:leafratio was suggested as a useful approach to modelling ontogeneticeffects on maintenance respiration.Copyright 1993, 1999 AcademicPress Rye, triticale, wheat, dry matter, growth and maintenance respiration  相似文献   

4.
OSMAN  A. M. 《Annals of botany》1971,35(5):1017-1035
In a wheat crop in the field, the relationship between leaf-areaindex and the transmission of visible, infra-red, and totalradiation was found to be close to Beer's law; however, therewas an indication of curvihneanty in the visible radiation profileat the bottom layers of a dense crop. The extinction coefficientfor visible, infra-red, and total radiation was found to varywith tune in a less dense crop. sv, the fraction of visibleradiation that passes through unit leaf layer without interception,was found to increase with increase in the leaf-area index ofthe two crops. The Monteith model was used to calculate the gross photosynthesisof leaves. The contribution by stems and ears and the respirationlosses of all organs of the plant were taken into account whencalculating the dry-weight increases and the importance of theirvariation was assessed. A satisfactory agreement between theestimated and measured increases was found. The significanceof variation in the extinction coefficients and sv on grossphotosynthesis of leaves was explored. The variation in thevisible radiation-response curves of different leaves was foundto have a large effect on the gross photosynthesis of leaves.The total respiration of the mass of leaves in the canopy wasfound to be of great significance in dry-weight increases. Ageneral dependence of the dry-matter production on the amountof total incoming visible radiation was found.  相似文献   

5.
Awn contribution to gas exchanges of barley ears   总被引:1,自引:0,他引:1  
The effects of awn removal on ear gas exchange in four barley lines (Morex, Harrington, Steptoe, and TR306) were studied under a controlled environment using a Before-After Control-Impact Paired (BACIP) experimental design. From ear emergence to grain maturity, plants were grown in pots at either 60 or 90 % of soil water holding capacity. Gas-exchange measurements of ears were made 9 and 10 d after anthesis (DAA). On 11 DAA, awn removal was performed on half of the ears in each pot, followed by measurements on both intact and de-awned ears on 12 and 13 DAA. Net photosynthetic (P N) and transpiration (E) rates decreased significantly with awn removal, but dark respiration (R D) rate was not affected. We estimated for each ear a temperature-adjusted respiration rate (R a) from R D. When we corrected P N with R a, we found that rates of spikelet photosynthesis were largely underestimated. Moderate water stress had minimal effect on gas exchange of bracts and awns of the barley ear. Barley lines did not differ for any individual gas-exchange parameter.  相似文献   

6.
To study the importance for final grain size in wheat (Triticum aestivum, L.) of assimilate supply and the storage capacity of the grain, two field experiments were done. In 1976 nitrogen was applied in the range from none to 180 kg ha-1, part of the crop was thinned, and the top halves of some ears of the short variety Hobbit and of the tall variety Maris Huntsman were removed soon after anthesis. In 1977 ears of Maris Huntsman were halved 5 days after anthesis or at 30 days after anthesis when grain volume was maximum. Thinning the crop from 360 to 180 ear-bearing shoots m-2 30 days before anthesis increased the number of grains per ear, except in the absence of nitrogen fertiliser, but did not increase grain size, grain dry weight per ear or total dry weight per culm. Removing the upper half of ears of Hobbit 5 days after anthesis increased dry weight per grain, but when this treatment was applied to Maris Huntsman either 5 days after anthesis in 1976 and 1977, or when grain volume was maximal in 1977, the grains failed to increase in dry weight. Non-grain dry weight of both varieties was increased by halving the ear. In both varieties the maximum volume of grains in halved ears was larger than in intact ears. Grain dry weight increased relatively less than volume after halving the ear of Hobbit, and the decrease in volume up to maturity was greater in halved than intact ears of both varieties. The larger grain volume in halved ears of Maris Huntsman in 1977 was associated with more endosperm cells.  相似文献   

7.
Physiological Factors Limiting Grain Size in Wheat   总被引:5,自引:0,他引:5  
The effects on grain size of changing the supply of assimilates,by thinning before anthesis or by shading the plants or by halvingthe ears either early or late in grain growth, were studiedin two glasshouse experiments with Kleiber spring wheat (Triticumaestivum L.), in 1976 and 1977. Late treatments had no effect,presumably because little grain growth occurred thereafter.Thinning the plants before anthesis increased, and shading theplants soon after anthesis decreased grain size. Halving theears soon after anthesis increased the size of the remaininggrains, but grain weight per ear decreased. The effect on grainsize of halving the ear tended to be smaller under conditionsmore favourable for photosynthesis, except when the plants werethinned before anthesis. Shading decreased the total amountof nitrogen per culm and the proportion of total nitrogen recoveredin the ear. Halving increased the retention of nitrogen in thestem of unshaded shoots and had no effect on nitrogen distributionwithin shaded shoots. In 1977 halving the ear increased the rate of dry matter accumulationin the grain throughout the grain filling period, but in 1976the increase in dry weight was faster in the grains of halvedears only during early grain growth. Later the grains in halvedand intact ears increased in dry weight at the same rate, eventhough the supply of photosynthate and the capacity of the grains(as measured by volume) were greater in the halved ears. Theseresults are discussed in relation to the influence on finalgrain weight of assimilate supply and the storage capacity ofthe grain.  相似文献   

8.
Instantaneous rates of (soil + root) respiration were measured periodically during grain filling in sunflower crops that were i) irrigated at weekly intervals and ii) subjected to water stress for the last 25 days of the 40-day grain filling period. Daily (soil + root) respiration was calculated using instantaneous respiration rates, an empirically determined temperature response function, and diurnal records of soil temperature. Daily soil respiration was estimated using empirically determined functions linking soil respiration to soil temperature and water content. Between anthesis and maturity, daily root respiration of the irrigated crop dropped by about one half from ca. 1.8 g C m-2 d-1, exhibiting a strong association with daily crop gross photosynthesis. Water stress brought about a rapid decrease in root respiration, which fell to about 0.1 g C m-2 d-1 at maturity. Root respiration during grain filling was 46 and 30 g C m-2 for irrigated and stressed crops, respectively.  相似文献   

9.
Effect of assimilate utilization on photosynthetic rate in wheat   总被引:7,自引:0,他引:7  
Summary Two weeks after anthesis, when the grain is filling rapidly, the rate of photosynthesis by flag leaves of wheat cv. Gabo was between 20 and 30 mg CO2 dm-2 leaf surface hour-1 under the conditions used. About 45% of flag-leaf assimilates were translocated to the ear, and only about 12% to the roots and young shoots.On removing the ear, net photosynthesis by the flag leaves was reduced by about 50% within 3–15 hours, and there was a marked reduction in the outflow of 14C-labelled assimilates from the flag leaves.Subsequent darkening of all other leaves on plants without ears led to recovery of flag-leaf photosynthesis, as measured by gas analysis and 14CO2 fixation, and to increased translocation of assimilates to the roots and young shoots. Minor changes in the rates of dark respiration accompanied these major, reversible changes in photosynthetic rate.After more than a week in continuous, high-intensity light, the rate of photosynthesis by flag leaves of intact plants had fallen considerably, but could be restored again by a period in darkness, or by inhibiting photosynthesis in the ears by spraying them with DCMU. The inhibition of ear photosynthesis increased translocation of labelled assimilates from the flag leaf to the ears, without affecting leaf sugar levels.The application of TIBA to the culm below the ear inhibited auxin movement throught the culm, but had no influence on flag-leaf photosynthesis.These results suggest that, at least in this system, photosynthesis by the flag leaf is regulated directly by the demand for assimilates from the flag leaf and not indirectly through action in the leaf of auxins produced by the sink organs.  相似文献   

10.
Rates of net photosynthesis, PN, and dark respiration of Viciafaba plants were measured in the laboratory in clean air andin air containing up to 175 parts 10–9 (500 µg m–3)SO2. At all SO2 concentrations exceeding 35 parts 10–9,PN was inhibited compared with clean air. At light saturation,the magnitude of inhibition depended on SO2 concentration butat low irradiances the inhibition was independent of concentration.Dark respiration rates increased substantially, independentof concentration. When exposures continued for up to 3 days,PN returned to clean air values about 1 h after fumigation ceased:dark respiration recovered after one photoperiod. There wereno visible injuries. Reviewing possible mechanisms responsible for the inhibitionof PN, it is suggested that SO2 competes with CO2 for bindingsites in RuBP carboxylase. Analysis of resistance analoguesdemonstrates that SO2 altered both stomatal and internal (residual)resistances. A model of crop photosynthesis shows the implications of theobserved responses for the growth of field crops in which plantsare assumed to respond like laboratory plants. Photosynthesisof the crop would be less sensitive than that of individualplants to SO2 concentration. Daily dry matter accumulation ofhypothetical ‘polluted crops’ would be substantiallyless than clean air values but would vary relatively littlewith SO2 concentration. It is concluded that physiological basesexist to account for observed reductions in growth of plantsat very low SO2 concentrations, and that thresholds for plantresponses to SO2 require reassessment.  相似文献   

11.
An experiment was carried out within a crop of spring wheat(cv. Condor) to examine dry matter partitioning between thedeveloping stem and ear, and to estimate the magnitude of carbonstored in the stem both before and after anthesis, and the subsequentutilization of these reserves during grain growth. The amount of reserve laid down and mobilized was estimatedfrom analysis of data for changes in masses of stem and leaffrom frequent harvests. The rate of change of the dry mass ofthe individual plant organs was expressed as a proportion ofthe rate of change of the total dry mass of the large culm.This value was called the Allocation Ratio (AR). It was assumedthat assimilate was transferred directly from the stem intothe growing ear, and not into other organs. This paper providesevidence for the idea that the stem intemodes of wheat are ableto accumulate and subsequently mobilize a dry matter reserve.The accumulation and subsequent mobilization of fructans inthe stem was demonstrated using ascending thinlayer chromatography.On a dry matter basis the large culms of the wheat crop accumulatedall of their stem reserves after anthesis (0–41 g perlarge culm; 98·4 g m–1). After adjusting the lossof mass by 33% to allow for respiration, it was concluded thatpost-anthesis stem reserves may have contributed at least 21%of the final grain yield of this crop. Triticum aestivum L., semi-dwarf spring wheat, dry matter partitioning, stem reserves, fructans  相似文献   

12.
A field experiment was carried out with a set of near-isogenicspring wheat lines (cv. Triple Dirk) to determine the influenceof the Rht1 and Rht2 alleles on the partitioning of dry matterbetween the developing stem and the ear. Each line was sampledtwice weekly and dissected into its component above-ground parts.The rate of change of the dry mass of the individual plant organswas expressed as a proportion of the rate of change of the totalplant dry mass. This ratio was used to assess the relative sinkstrengths of the stem and ear during crop growth. The Rht1 andRht2 alleles reduced plant height, but increased grain yield.The greater yield was achieved through a greater grain numberper ear in the Rhtl line, a greater ear number per plant inthe Rht2 line, and a greater allocation of assimilate to thedeveloping ear than to the developing stem in both Rht lines,particularly at the time of maximum stem growth (17 d beforeanthesis). From the earliest stages of detectable ear growthuntil anthesis, the ear masses per unit area of the Rht1 andRht2 lines exceeded that of Triple Dirk (Rht). It was not possibleto determine whether the Rht1 and Rht2 alleles were directlyresponsible for increasing grain number per ear and ear numberper plant, respectively, since the increase in these componentsof yield could equally be explained by a greater partitioningof assimilate to developing ears and tillers caused simply bya reduction in plant height. Triticum aestivum L., wheat Rht genes, stem and ear development, dry matter partitioning, allocation ratio  相似文献   

13.
A technique, using 14CO2, for measuring the rate of photosynthesis and the distribution of synthesized carbohydrate in the same plant, applied to wheat plants at intervals from 10 days before anthesis until the plants were no longer green, showed that the rate of photosynthesis by the leaves and ears decreased steadily; it was much less for ears than for leaves. The proportion of carbohydrate translocated to the grain was very small at and before anthesis, but increased rapidly afterwards. Integration of these data provided estimates of yield based on physiological components which showed good agreement with measured yields at harvest, though varietal differences in observed yield could not be explained. An experiment in which ears were removed from plants 7 days after anthesis showed that photosynthetic activity was not limited by the size of the ‘sink’ to which photosynthates were translocated.  相似文献   

14.
A model of light absorption and photosynthesis applicable toglasshouse row crops is constructed and applied to cucumber.Light absorption is calculated using a method suggested fordiscontinuous canopies; photosynthesis is modelled with a non-rectangularhyperbola. The predictions of this model are compared with experimentaldata in the preceding paper. Here the model is used to simulateresponses to light and CO2 concentration and especially to examinethe effects of varying the parameters of the crop that can becontrolled by the grower. These include the number of plantsin each row, the number and width of the rows, the gap betweenrows, and the height of the crop. For example, it is shown that,for high values of crop net photosynthesis, the number of rowsis more important at high light than at low light, whereas cropheight is more important at low light than at high light. Theimplications of these and other findings are discussed. Key words: Cucumis sativus L., glasshouse crops, cucumber, model, light absorption, photosynthesis, CO2, row crops, simulation  相似文献   

15.
Vegetative crops of chrysanthemum were grown for 5 or 6 weekperiods in daylit assimilation chambers. Crop responses to differentradiation levels and temperatures were analysed into effectson dry matter partitioning, specific leaf area, leaf photosynthesisand canopy light interception. The percentage of newly formed dry matter partitioned to theleaves was almost constant, although with increasing radiationor decreasing temperature, a greater percentage of dry matterwas partitioned to stem tissue at the expense of root tissue.There was a positive correlation between the percentage of drymatter in shoot material and the overall carbon: dry matterratio. Canopy photosynthesis was analysed assuming identical behaviourfor all leaves in the crop. Leaf photochemical efficiency wasonly slightly affected by crop environment. The rate of grossphotosynthesis per unit leaf area at light saturation, PA (max),increased with increasing radiation integral, but the same parameterexpressed per unit leaf dry matter, Pw (max) was almost unaffectedby growth radiation. In contrast, PA (max) was hardly affectedby temperature but Pw (max) increased with increasing growthtemperature. This was because specific leaf area decreased withdecreasing temperature and increased with decreasing radiation.There was a positive correlation between canopy respirationintegral and photosynthesis integral, and despite a four-foldchange in crop mass during the experiments, the maintenancecomponent of canopy respiration remained small and constant. Canopy extinction coefficient showed no consistent variationwith radiation integral but was negatively correlated with temperature.This decrease in the efficiency of the canopy at interceptingradiation exactly cancelled the increase in specific carbonassimilation rate that occurred with increasing growth temperature,giving a growth rate depending solely on the incident lightlevel. Chrysanthemum, dry matter partitioning, photosynthesis, specific leaf area  相似文献   

16.
The carbon economy of subterranean clover swards subjected tothree defoliation treatments (removal of 30, 70 and 80% of shootdry weight) was compared with that of uncut swards. Carbon dioxideexchange in shoots and roots was measured independently 0, 4,8 and 12 d after defoliation. The respiration linked to nitrogenaseactivity was estimated by comparing root respiration measuredin an atmosphere containing 3% oxygen with the respiration in21% oxygen. Net photosynthesis fell by up to 100% immediately after defoliation.There was a decline of over 60percnt; in root respiration bythe end of the first light period, composed of a rapid declineof 70% in nitrogenase-linked respiration in all treatments anda slower decline of nearly 40% in root plus nodule growth andmaintenance respiration in the more severe treatments. Recoveryof net photosynthesis to rates achieved by uncut swards occurredover 4 d in the 30% cut treatment and at least 12 d in moresevere treatments. Whilst recovery of photosynthesis was theprinciple determinant of recovery of net positive carbon balance,the early reduction in respiration facilitated this outcome.After the immediate decline in nitrogenase-linked respiration,recovery in this component of respiration appeared to be linkedwith the recovery in net photosynthesis (approximately 10% ofnet photosynthesis). Carbon budgets revealed priorities in allocation towards leafin the first 5 d and later also towards root growth in severelydefoliated swards. Root respiration comprised a large respiratorycost (up to 75% of net photosynthesis) during early regrowth. Carbon budget, defoliation, N2 fixation, photosynthesis, regrowth, respiration, subterranean clover, Trifolium subterraneum L  相似文献   

17.
The gas exchange of barley ears and awns was measured in the field using a gas analysis system and a diffusion porometer. Awn stomatal resistance decreased with increasing irradiance but to a smaller extent than leaf stomatal resistance. Measurements on ears immediately before and after successively removing awns showed that awn transpiration and photosynthesis were proportional to awn area and that awns accounted for 73% of transpiration by the ear. Although the maximum rates of photosynthesis of which awns were capable declined with age, awns accounted for 80–115% of the net CO2 uptake of complete ears because the ears-less-awns could respire more CO2 than they absorbed. Ear photosynthesis accounted for 52% of the weekly increment in ear dry weight after ear emergence, but 5 weeks later photosynthesis by the ear balanced respiration. Overall photosynthesis by the ear accounted for 35 % of its final weight. Differences in the light response curves of leaves and ears can be fully accounted for by the different relationships between stomatal resistance and irradiance of the two organs.  相似文献   

18.
Immature detached caryopses from barley (Hordeum vulgare L.var. distichum cv. Midas) were shown to be capable of light-dependentretrieval of internally-produced CO2. In the first set of experiments,caryopses were radioactively labelled by supplying (U-14C)-sucroseto detached ears in liquid culture. Caryopses were then removedfrom the ear and given a 12 h chase of non-radioactive sucrosein either the light or dark. More 14C was recovered in the caryopsesafter the chase in the light than in the dark but the differenceswere not significant. In the second set of experiments, 14C-labelledcaryopses obtained by a 15 min light incubation in 14CO2 weremaintained in either the light or dark for 3 h and any redistributionof label between the tissues recorded. The results show thatunder these conditions, photosynthesis in the Chl-containinggreen layer of the pericarp can prevent losses of internally-producedCO2, since 3 times as much radiocarbon remained in the caryopsesincubated in the light as in the dark. These differences weresignificant at P=0.001. Experiments with the mutant barley Albinolemma, which has no Chi in the pericarp, showed that there waslittle difference between light and dark treatments. This confirmsthe suggestion that photosynthesis in the pericarp of the normalcultivar Midas may be concerned in the refixation of CO2. Key words: Barley, pericarp, photosynthesis, carbon dioxide  相似文献   

19.
The rates of canopy and individual leaf photosynthesis, ratesof growth of shoots and roots, and the extinction coefficientfor light of eight temperate forage grasses were determinedin the field during early autumn. Canopy gross photosynthesiswas calculated as net photosynthesis plus dark respiration adjustedfor temperature using a Q10 = 2. The relationships between canopygross photosynthesis and light intensity were hyperbolic, andthe initial slopes of these curves indicated that light wasbeing utilized efficiently at low light intensities. The initialslope depended on the distribution of light in the canopy andthe quantum efficiency of the individual leaves. The maximumrate of canopy gross photosynthesis reflected the maximum rateof individual leaf photosynthesis. Although the maximum rateof canopy gross photosynthesis was correlated with crop growthrate, there was no significant relationship between daily grossphotosynthesis and crop growth rate. Indeed, daily gross photosynthesisvaried by only 22 per cent, whereas the daily growth of shootsand roots varied by 120 per cent. This poor correlation is influencedby a negative correlation (P < 0.01) between the maximumrate of canopy gross photosynthesis and the initial slope ofthe curve relating canopy gross photosynthesis and light intensity.Difficulties in the interpretation of measurements of dark respirationappeared to confound attempts to relate daily net photosynthesisto crop growth rate, individual leaf photosynthesis, and theextinction coefficient for light.  相似文献   

20.
Wang  Zhi-Min  Wei  Ai-Li  Zheng  Dan-Man 《Photosynthetica》2001,39(2):239-244
Chlorophyll content, photosystem 2 functioning (Fv/Fm, Fv/F0), activity of ribulose-1,5-bisphosphate carboxylase/oxygenase, and net photosynthetic rates (P N) of flag leaf blade, sheath, peduncle, and ear organs were assessed in large-ear type (Pin 7) and small-ear type (ND93) wheat cultivars. Some differences were found in photosynthetic properties between different green plant parts, the values of all studied parameters in ear parts being higher in Pin7 than in ND93. Furthermore, ear surface areas and ear P N in 26 wheat genotypes measured at anthesis showed highly significant positive correlation with grain mass per ear. Hence a greater capability of ear photosynthesis may result in a greater grain yield in large-ear type cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号