首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a typical product of microbial metabolism, the weak acid acetate is well known for its cytotoxic effects. In contrast to most other microbes, the so-called acetic acid bacteria can acquire significant resistance to high acetate concentrations when properly adapted to such hostile conditions. To characterize the molecular events that are associated with this adaptation, we analyzed global protein expression levels during adaptation of Acetobacter aceti by two-dimensional gel electrophoresis. Adaptation was achieved by using serial batch and continuous cultivations with increasing acetate supplementation. Computer-aided analysis revealed a complex proteome response with at least 50 proteins that are specifically induced by adaptation to acetate but not by other stress conditions, such as heat or oxidative or osmotic stress. Of these proteins, 19 were significantly induced in serial batch and continuous cultures and were thus noted as acetate adaptation proteins (Aaps). Here we present first microsequence information on such Aaps from A. aceti. Membrane-associated processes appear to be of major importance for adaptation, because some of the Aap bear N-terminal sequence homology to membrane proteins and 11 of about 40 resolved proteins from membrane protein-enriched fractions are significantly induced.  相似文献   

2.
Summary Production of acetic acid from ethanol byAcetobacter aceti attached to a variety of support materials has been examined in fixed-film packed bed fermenters. Overall batch acid productivities with triangular ceramic particles and nylon mesh were respectively 56% and 30% greater than that for woodshavings, with comparable high acid yields. The highest batch acid productivity attained was 0.75 g/l h with the ceramic support. Continuous operation with the same material resulted in an acid productivity of 4.0 to 4.5 g/l h at a yield of 80%. This was increased to 10.7 g/l h by feeding oxygen-enriched air to the fermenter.Stability of theAcetobacter populations, judged by reproducibility in batch operation and attainment, reproducibility and maintenance of steady operating conditions in continuous operation, was very high.  相似文献   

3.
4.
The amino acid composition of proteins and the fatty acid composition of the cell membranes were measured in Escherichia coli growing exponentially in batch culture on glucose, succinate, glycerol, pyruvate, and acetate, and growing under continuous culture conditions on glucose at dilutions rates equivalent to the growth rates of the batch cultures. Although the fatty acid composition of the membranes did change significantly with carbon source and dilution rate, the amino acid content of proteins did not change significantly under either condition. A previously developed stoichiometric model of metabolism was used to calculate the fluxes through the metabolic reactions and to determine their sensitivity to changes in fatty acid and amino acid composition.  相似文献   

5.
Ethanol grown Acetobacter aceti differed from acetate grown. In ethanol grown cells, acetate uptake, caused by the oxidation of acetate, was completely inhibited by ethanol, in acetate grown cells only to 20%. This was correlated with a 65-fold higher specific activity of the membrane bound NAD(P)-independent alcohol dehydrogenase in ethanol grown than in acetate grown cells. In comparison with ethanol grown cells, acetate grown cells showed a 3-fold higher acetate respiration rate and 3-fold higher specific activities of some tricarboxylic acid cycle enzymes tested. Both adaptations were due to induction by the homologous and not to repression by the heterologous growth substrate. A. aceti showed a membrane bound NAD(P)-independent malate dehydrogenase and no activity of a soluble NAD(P)-dependent one, as was known before from A. xylinum. A hypothesis was proposed explaining the observed inhibition of malate dehydrogenase and of functioning of the tricarboxylic acid cycle in the presence of ethanol or butanol or glucose by a competition of two electron currents for a common link in the convergent electron transport chains. The electrons coming from the quinoproteins, alcohol dehydrogenase and glucose dehydrogenase on the one side and those coming from the flavoproteins, malate dehydrogenase and succinate dehydrogenase via ubiquinonecytochrome c reductase on the other side are meeting at cytochrome c. Here the quinoproteins may be favoured by higher affinity and so inhibit the flavoproteins. Inhibition could be alleviated in the cell free system by increasing the oxygen supply.Dedicated to Professor Carl Martius on the occasion of his 80th birthday, March 1st 1986  相似文献   

6.
7.
Summary A comparison of volumetric production rates of acetic acid inAcetobacter aceti M23 was conducted for repeated batch (RB), cell-recycling repeated batch (CRB) and continuous (C) cultures. Best result was obtained with CRB culture. The magnification of productivity was 1.7 (to RB culture) and 3.3 (to C culture) for aiming final acetic acid concentration of 60 g/l and 42 g/l, respectively.  相似文献   

8.
Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding cassette (ABC) sequences and ABC signature sequences, belonged to the ABC transporter superfamily. The aatA mutation with an insertion of the neomycin resistance gene within the aatA coding region showed reduced resistance to acetic acid, formic acid, propionic acid, and lactic acid, whereas the aatA mutation exerted no effects on resistance to various drugs, growth at low pH (adjusted with HCl), assimilation of acetic acid, or resistance to citric acid. Introduction of plasmid pABC101 containing aatA under the control of the Escherichia coli lac promoter into the aatA mutant restored the defect in acetic acid resistance. In addition, pABC101 conferred acetic acid resistance on E. coli. These findings showed that AatA was a putative ABC transporter conferring acetic acid resistance on the host cell. Southern blot analysis and subsequent nucleotide sequencing predicted the presence of aatA orthologues in a variety of acetic acid bacteria belonging to the genera Acetobacter and Gluconacetobacter. The fermentation with A. aceti containing aatA on a multicopy plasmid resulted in an increase in the final yield of acetic acid.  相似文献   

9.
Interspecies hydrogen transfer was studied in Desulfovibrio vulgaris-Methanosarcina barkeri mixed cultures. Experiments were performed under batch and continuous growth culture conditions. Lactate or pyruvate was used as an energy source. In batch culture and after 30 days of simultaneous incubation, these organisms were found to yield 1.5 mol of methane and 1.5 mol of carbon dioxide per mol of lactate fermented. When M. barkeri served as the hydrogen acceptor, growth yields of D. vulgaris were higher compared with those obtained on pyruvate without any electron acceptor other than protons. In continuous culture, all of the carbon derived from the oxidation of lactate was recovered as methane and carbon dioxide, provided the dilution rate was minimal. Increasing the dilution rate induced a gradual accumulation of acetate, causing acetate metabolism to cease at above μ = 0.05 h−1. Under these conditions all of the methane produced originated from carbon dioxide. The growth yields of D. vulgaris were measured when sulfate or M. barkeri was the electron acceptor. Two key observations resulted from the present study. First, although sulfate was substituted by M. barkeri, metabolism of D. vulgaris was only slightly modified. The coculture-fermented lactate produced equimolar quantities of carbon dioxide and methane. Second, acetogenesis and methane formation from acetate were completely separable.  相似文献   

10.
Fermentation of dilute-acid-pretreated mixed hardwood and Avicel by Clostridium thermocellum was compared in batch and continuous cultures. Maximum specific growth rates per hour obtained on cellulosic substrates were 0.1 in batch culture and >0.13 in continuous culture. Cell yields (grams of cells per gram of substrate) in batch culture were 0.17 for pretreated wood and 0.15 for Avicel. Ethanol and acetate were the main products observed under all conditions. Ethanol:acetate ratios (in grams) were approximately 1.8:1 in batch culture and generally slightly less than 1:1 in continuous culture. Utilization of cellulosic substrates was essentially complete in batch culture. A prolonged lag phase was initially observed in batch culture on pretreated wood; the length of the lag phase could be shortened by addition of cell-free spent medium. In continuous culture with ~5 g of glucose equivalent per liter in the feed, substrate conversion relative to theoretical ranged from 0.86 at a dilution rate (D) of 0.05/h to 0.48 at a D of 0.167/h for Avicel and from 0.75 at a D of 0.05/h to 0.43 at a D of 0.11/h for pretreated wood. At feed concentrations of <4.5 g of glucose equivalent per liter, conversion of pretreated wood was 80 to 90% at D = 0.083/h. Lower conversion was obtained at higher feed substrate concentrations, consistent with a limiting factor other than cellulose. Free Avicelase activities of 12 to 84 mU/ml were observed, with activity increasing in this order: batch cellobiose, batch pretreated wood < batch Avicel, continuous pretreated wood < continuous Avicel. Free cellulase activity was higher at increasing extents of substrate utilization for both pretreated wood and Avicel under all conditions tested. The results indicate that fermentation parameters, with the exception of free cellulase activity, are essentially the same for pretreated mixed hardwood and Avicel under a variety of conditions. Hydrolysis yields obtained with C. thermocellum cellulase acting either in vitro or in vivo were comparable to those previously reported for Trichoderma reesei on the same substrates.  相似文献   

11.
Salinity is one of the major stress factors responsible for growth reduction of most of the higher plants. In this study, the effect of salt stress on protein pattern in shoots and roots of sugar beet (Beta vulgaris L.) was examined. Sugar beet plants were grown in hydroponics under control and 125 mM salt treatments. A significant growth reduction of shoots and roots was observed. The changes in protein expression, caused by salinity, were monitored using two-dimensional gel-electrophoresis. Most of the detected proteins in sugar beet showed stability under salt stress. The statistical analysis of detected proteins showed that the expression of only six proteins from shoots and three proteins from roots were significantly altered. At this stage, the significantly changed protein expressions we detected could not be attributed to sugar beet adaptation under salt stress. However, unchanged membrane bound proteins under salt stress did reveal the constitutive adaptation of sugar beet to salt stress at the plasma membrane level.  相似文献   

12.
A two-phase metabolism ofCandida utilis occurred during batch cultivation in a molasses mash. It was characterized by intensive accumulation of biomass without a lag, utilization of glucose, formation of acetate and ethanol and their conversion to ethyl acetate during the first phase. In the second phase the accumulation of biomass continued and was accompanied by simultaneous utilization of ethyl acetate or amino acids, contained in molasses or produced by the culture during the first phase. A content of betaine, ash, non-assimilable nitrogen and reducing compounds as well as osmotic pressure increased with increasing density in separated mashes. The culture adapted to this medium during a two-stage continuous cultivation divided according to the two-phase nature of the metabolism. In the course of the adaptation the culture developed the ability to utilize succinate, glutamate, citrate and other originally non-assimilable compounds. A specific growth rate and productivity of the system increased proportionally with the increased concentration of assimilable substrates during a transition from one steady state to another. The adaptation in batch culture was not successful.  相似文献   

13.
The difference in responses to osmotic stress between the laboratory and sake-brewing strains of Saccharomyces cerevisiae at the translational level was compared by two-dimensional polyacrylamide gel electrophoresis. Proteins, whose production was significantly changed by the osmotic stress, were identified by peptide mass fingerprinting. In the laboratory strain, translation of Hor2p, the protein responsible for glycerol biosynthesis, and Ald6p, related to acetate biosynthesis, was induced under high osmotic pressure conditions. In addition, production of proteins related to translation and stress response was also changed under this condition. On the other hand, in the sake-brewing strain, translation of Hor2p, Hsp26p, and some stress-related proteins was upregulated. The change in the production of enzymes related to glycolysis and ethanol formation was small; however, the production of enzymes related to glycerol formation increased in both strains. These results suggest that enhancement of glycerol formation due to enhancement of the translation of proteins, such as Hor2p, is required for growth of S. cerevisiae under high osmotic pressure condition. This is the first report on the analysis of responses of a sake-brewing strain to high osmotic pressure stress based on proteomics.  相似文献   

14.
Syngas fermentation is a promising route for resource recovery. Acetate is an important industrial chemical product and also an attractive precursor for liquid biofuels production. This study demonstrated high fraction acetate production from syngas (H2 and CO2) in a hollow-fiber membrane biofilm reactor, in which the hydrogen utilizing efficiency reached 100 % during the operational period. The maximum concentration of acetate in batch mode was 12.5 g/L, while the acetate concentration in continuous mode with a hydraulic retention time of 9 days was 3.6?±?0.1 g/L. Since butyrate concentration was rather low and below 0.1 g/L, the acetate fraction was higher than 99 % in both batch and continuous modes. Microbial community analysis showed that the biofilm was dominated by Clostridium spp., such as Clostridium ljungdahlii and Clostridium drakei, the percentage of which was 70.5 %. This study demonstrates a potential technology for the in situ utilization of syngas and valuable chemical production.  相似文献   

15.
Enterococcus faecalis is a commensal bacterium of the mammalian intestine that can persist in soil and aquatic systems and can be a nosocomial pathogen to humans. It employs multiple stress adaptation strategies in order to survive such a wide range of environments. Within this study, we sought to elucidate whether membrane fatty acid composition changes are an important component for stress adaptation. We noted that E. faecalis OG1RF was capable of changing its membrane composition depending upon growth phase and temperature. The organism also readily incorporated fatty acids from bile, serum, and medium supplemented with individual fatty acids, often dramatically changing the membrane composition such that a single fatty acid was predominant. Growth in either low levels of bile or specific individual fatty acids was found to protect the organism from membrane challenges such as high bile exposure. In particular, we observed that when grown in low levels of bile, serum, or the host-derived fatty acids oleic acid and linoleic acid, E. faecalis was better able to survive the antibiotic daptomycin. Interestingly, the degree of membrane saturation did not appear to be important for protection from the stressors examined here; instead, it appears that a specific fatty acid or combination of fatty acids is critical for stress resistance.  相似文献   

16.
17.
Using two types of genome-wide analysis to investigate yeast genes involved in response to lactic acid and acetic acid, we found that the acidic condition affects metal metabolism. The first type is an expression analysis using DNA microarrays to investigate 'acid shock response' as the first step to adapt to an acidic condition, and 'acid adaptation' by maintaining integrity in the acidic condition. The other is a functional screening using the nonessential genes deletion collection of Saccharomyces cerevisiae. The expression analysis showed that genes involved in stress response, such as YGP1, TPS1 and HSP150, were induced under the acid shock response. Genes such as FIT2, ARN1 and ARN2, involved in metal metabolism regulated by Aft1p, were induced under the acid adaptation. AFT1 was induced under acid shock response and under acid adaptation with lactic acid. Moreover, green fluorescent protein-fused Aft1p was localized to the nucleus in cells grown in media containing lactic acid, acetic acid, or hydrochloric acid. Both analyses suggested that the acidic condition affects cell wall architecture. The depletion of cell-wall components encoded by SED1, DSE2, CTS1, EGT2, SCW11, SUN4 and YNL300W and histone acetyltransferase complex proteins encoded by YID21, EAF3, EAF5, EAF6 and YAF9 increased resistance to lactic acid. Depletion of the cell-wall mannoprotein Sed1p provided resistance to lactic acid, although the expression of SED1 was induced by exposure to lactic acid. Depletion of vacuolar membrane H+-ATPase and high-osmolarity glycerol mitogen-activated protein kinase proteins caused acid sensitivity. Moreover, our quantitative PCR showed that expression of PDR12 increased under acid shock response with lactic acid and decreased under acid adaptation with hydrochloric acid.  相似文献   

18.
19.
20.
The nucleotide and amino acid sequences of the second subunit of alcohol dehydrogenase (ADH) in Gluconobacter suboxydans, Acetobacter aceti and Acetobacter polyoxogenes are quite similar and they have a high degree of bias in codon usage. In the GC content of the second ADH subunit gene, G. suboxydans and A. polyoxogenes have high values (63%), especially ca. 80% in the third codon position, but A. aceti does not. According to the codon usage of the second ADH subunit gene, A. polyoxogenes seems more similar to G. suboxydans than A. aceti. On the other hand, the phylogenetic positions of the second ADH subunits deduced from their amino acid sequences agree with their species' positions in the classification of acetic acid bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号