首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated the effect of different timing variations of an applied heat shock on parthenogenetically activated (PA) porcine embryos. PA embryos were heat shocked for 9 hr at 42 degrees C from either 0-9 hr post activation (hpa; 09HS), 13-22 hpa (1322HS), or 22-31 hpa (2231HS). Analysis of 24-hr cleavage rates (P < 0.0001), day 5 cell numbers (P < 0.005), day 7 blastocyst rates (P < 0.0001), and day 7 cell numbers (P < 0.05) showed that 09HS embryos developed more successfully in vitro than did all other treated and control embryos. In vitro fertilized (IVF) embryos were exposed to similar heat treatments as described for PA embryos, and embryos derived from somatic cell nuclear transfer (SCNT) were exposed only to the control and 09HS treatments to assess the effects of the different heat treatments on the timing of first cleavage and development to blastocyst. Embryos derived from both IVF and SCNT showed higher proportions of cleaved embryos on day 1 of development when heat shocked immediately after fertilization or fusion/activation as compared to NHS controls (P < 0.05). Blastocyst rates however, showed only modest (IVF; P = 0.089) or no (SCNT; P > 0.1) improvement as compared with control embryos. In summary, exposing PA embryos to elevated temperatures immediately after oocyte activation results in dramatically enhanced developmental potential. A thorough characterization of this phenomenon may yield findings that can serve to increase the efficiency with which PA, IVF, and SCNT embryos are produced in vitro.  相似文献   

2.
A series of experiments were designed to study the effect of elevated temperatures on developmental competence of bovine oocytes and embryos produced in vitro. In experiment 1, the effect of heat shock (HS) by a mild elevated temperature (40.5°C) for 0, 30, or 60 min on the viability of in vitro matured (IVM) oocytes was tested following in vitro fertilization (IVF) and culture. No significant difference was observed between the control (39°C) and the heat‐treated groups in cleavage, blastocyst formation, or hatching (P > 0.05). In experiment 2, when the HS temperature was increased to 41.5°C, neither the cleavage rate nor blastocyst development was affected by treatment. However, the rate of blastocyst hatching appeared lower in the HS groups (13% in control group vs. 3.9% and 5.6% in 30 min and 60 min, respectively; P < 0.05). When IVM oocytes were treated at 43°C prior to IVF (experiment 3), no difference was detected in blastocyst and expanded blastocyst development following heat treatment for 0, 15, or 30 min, but heat treatment of oocytes for 45 or 60 min significantly reduced blastocyst and expanded blastocyst formation (P < 0.05). In experiment 4, the thermotolerance of day 3 and day 4 bovine IVF embryos were compared. When embryos were pre‐treated with a mild elevated temperature (40.5°C) for 1 hr, and then with a higher temperature (43°C) for 1 hr, no improvement in thermotolerance of the embryos was observed as compared to those treated at 43°C alone. However, a higher thermotolerance was observed in day 4 than day 3 embryos. In conclusion, treatment at 43°C, but not 40.5°C or 41.5°C significantly reduced oocyte developmental competence. An increase in thermotolerance was observed from day 3 to day 4 of in vitro embryonic development, which corresponds to the maternal to zygotic transition of gene expression in bovine embryos. Mol. Reprod. Dev. 53:336–340, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
Apoptosis in parthenogenetic preimplantation porcine embryos   总被引:2,自引:0,他引:2  
Parthenogenesis (PA) of the oocyte is essential to a number of oocyte- or embryo-related technologies such as intracytoplasmic sperm injection and cloning by nuclear transfer. This study investigated the onset and frequency of apoptosis in PA- porcine embryos and the morphological changes that conform to the general criteria of apoptotic cell death by using a terminal deoxynucleatidyl transferase-mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. PA embryos had a higher degree of apoptotic cell death during in vitro culture, a lower cleavage rate (45% vs. 71%), and a lower development rate to the blastocyst stage (16% vs. 29%), relative to in vitro fertilization (IVF). The earliest positive TUNEL signal in the PA embryos was detected on Day 6, 1 day later than that in IVF embryos. Apoptosis in PA embryos increased from 15% of the embryos on Day 6 to 29% on Day 8. The mean level of apoptosis of the PA embryos was statistically higher than that of IVF embryos, except on Day 5. In particular, apoptosis in PA embryos was twice that of IVF embryos on Day 6 (15% vs. 6.7%) and Day 8 (29% vs. 13%). The mean cell number in PA blastocysts was significantly lower than that of IVF blastocysts, whereas the percentage of apoptosis in PA blastocysts was significantly higher than that of IVF blastocysts. There was a high percentage of haploid (62.5%) PA blastocysts. The ploidy may contribute to a high level of apoptosis. These results may help to explain the mechanism of parthenogenetic developmental failure and may lead to methods that will improve parthenogenetic development.  相似文献   

4.
We investigated the in vitro developmental competence of porcine embryos produced from in vitro matured (IVM) oocytes by improved HMC and parthenogenetic activation (PA). Embryos were cultured in a modified North Carolina State University (NCSU37) medium. Firstly, we compared the developmental competence between oocytes from sows and gilts by zona-intact (ZI) and zona-free (ZF) PA. Significantly higher (p < 0.05) blastocyst rates were obtained from sow oocytes (42 +/- 4% for ZF and 55 +/- 6% for ZI) than gilt oocytes (20 +/- 2% for ZF and 26 +/- 5% for ZI). Secondly, sow oocytes were used to establish the modified HMC that was based on a modified enucleation with partial zona digestion and trisection of porcine oocytes and the use of three cytoplasts and one somatic cell for embryo reconstruction. In vitro fertilization (IVF) and in parallel ZF PA were used as the control systems. After oocyte trisection, >90% of oocyte fragments were recovered, resulting in an average of 37 reconstructed embryos from 100 oocytes. Blastocyst rates of HMC, IVF, and ZF PA embryos were 17 +/- 4%, 30 +/- 6%, and 47 +/- 4%, respectively. Our results prove that HMC in pigs may result in high in vitro efficiency up until the blastocyst stage. In vivo developmental competence will be confirmed in embryo transfer experiments.  相似文献   

5.
Apoptosis occurs during preimplantation development in both in vivo- and in vitro-produced embryos, and it may contribute to embryonic loss. The present study investigated the development of porcine nuclear transfer (NT) embryos reconstructed by using fetal fibroblasts as compared to embryos produced by in vitro fertilization (IVF). The onset and the frequency of apoptosis in NT and IVF embryos were examined via morphological and nuclear changes and TUNEL assay. The NT blastocysts had a similar number of nuclei as compared to IVF blastocysts and appeared to be morphologically similar. Relative to IVF embryos, the NT embryos had a lower cleavage rate (42.7% vs. 71.0%) and a lower developmental rate (11.1% vs. 28.6%) to the blastocyst stage. The earliest positive TUNEL signals were detected in the NT embryos on Day 5 of culture. The percentage of cells undergoing apoptosis in the NT embryos was higher than that of the IVF embryos and increased with time in vitro. Some of the abnormal morphological changes observed during early development related to apoptosis. Cytoplasmic fragmentation, developmental arrest, and nuclear condensation were typical characteristics of embryos undergoing apoptosis. Some mechanisms of the apoptotic pathway were triggered by changes in the NT embryos. The developmental rates of NT embryos might be improved by identifying specific apoptotic pathways and then intervening in these pathways to improve development.  相似文献   

6.
We examined the expression patterns of porcine sirtuin 1 to 3 (Sirt1-3) genes in preimplantation embryos derived from parthenogenetic activation (PA), in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). We also investigated the effects of sirtuin inhibitors (5 mM nicotinamide [NAM] and 100 μM sirtinol) on embryonic development of PA and IVF embryos under in vitro culture (IVC). The expression patterns of Sirt1-3 mRNA in preimplantation embryos of PA, IVF, and SCNT were significantly (P < 0.05) decreased from metaphase stage of oocyte to blastocyst stage. Especially, the expressions of Sirt1-3 in SCNT blastocysts were significantly (P < 0.05) lower and Sirt2 in PA blastocyst was significantly higher compared with the IVF blastocysts. Treatment with sirtuin inhibitors during IVC resulted in significantly (P < 0.05) decreased blastocyst formation and total cell number of blastocyst derived from PA (NAM: 29.4% and 29.6, sirtinol: 31.0% and 30.3, and control: 40.9% and 41.7, respectively) and IVF embryos (NAM: 10.4% and 30.9, sirtinol: 6.3% and 30.5, and control: 16.7% and 42.8, respectively). There was no significant difference in cleavage rate in both PA and IVF embryos. The early and expanded blastocyst formations at Day 7 were significantly lower in the sirtuin inhibitors-treated groups than the control. It was demonstrated that sirtuin inhibitor (NAM) influenced the percentage of blastocyst formation and total cell number of PA derived blastocyst when NAM was added during Day 4 to 7 (22.1% and 32.4) or Day 0 to 7 (23.1% and 31.6) of IVC compared with the control (41.8% and 41.5). No significant difference in cleavage rates appeared among the groups. The blastocysts derived from PA embryos treated with sirtuin inhibitors showed lower (P < 0.05) expressions of POU5F1 and Cdx2 genes. Also, Sirt2 mRNA expression was significantly decreased in sirtinol treated group and Sirt3 mRNA expression was also significantly decreased in both NAM and sirtinol treated groups compared with the control. In conclusion, these results suggest that sirtuins may have a physiological and important role in embryonic development of porcine preimplantation embryos by regulating essential gene expressions of developing embryos. These findings could have implications for understanding the role of sirtuins during embryo development and for improving SCNT and related techniques.  相似文献   

7.
8.
Preimplantation embryos exposed to elevated temperatures have reduced developmental competence. The involvement of reactive oxygen species in these effects has been controversial. Here we tested hypotheses that (1) heat shock effects on development and apoptosis would be greater when embryos were cultured in a high oxygen environment (air; oxygen concentration = approximately 20.95%, v/v) than in a low oxygen environment (5% oxygen) and (2) that these effects would be reversed by addition of the antioxidant dithiothreitol (DTT). Heat shock of 41 degrees C for 9 hr reduced development of two-cell embryos and Day 5 embryos to the blastocyst stage embryos when in high oxygen. There was no effect of heat shock on development when embryos were in low oxygen. Furthermore, induction of TUNEL-positive cells in Day 5 embryos by heat shock only occurred when embryos were in high oxygen. Addition of DTT to two-cell embryos either did not reduce effects of a heat shock of 41 degrees C for 15 hr on development or caused slight protection only. In contrast, treatment of Day 5 embryos with DTT reduced effects of heat shock on development and apoptosis. In summary, oxygen tension was shown to be a major determinant of the effects of heat shock on development and apoptosis in preimplantation bovine embryos. Protective effects of the antioxidant DTT were stage specific and more pronounced at later stages of development.  相似文献   

9.
10.
Roth Z  Aroyo A  Yavin S  Arav A 《Theriogenology》2008,70(6):887-897
Hyperthermia-induced oxidative stress is one of the mechanisms suggested to underlie loss of developmental competence in mouse embryos. In this study, we examined whether pretreatment with the antioxidant epigallocatechin gallate (EGCG) can alleviate the negative effects of hyperthermia on developmental competence of the ovarian pool of oocytes and improve embryonic development. Female mice (CB6F1) were synchronized (eCG+hCG) and injected with 0.4ml EGCG (100mg/kg body weight) or with saline. Both EGCG- and saline-treated mice were exposed to heat stress (HS; 40 degrees C, 65% RH) or kept under normothermal conditions (Control; 22 degrees C, 45% RH). In vivo-derived zygotes were recovered 20h after hCG administration and cultured in vitro. Maternal hyperthermia attenuated embryonic cleavage rate in association with further disruption in embryonic early cleavage and subsequently, with embryonic development. While pretreatment with EGCG did not affect the proportion of zygotes that cleaved to the two-cell stage, it appeared to moderate the effect of hyperthermia on both cleavage timing and developmental rate, as reflected by an increased rate of early cleaved embryos and blastocyst formation. Blastocyst developmental competence was also improved, as indicated by the increased total cell number and percentage of embryos that underwent hatching, in association with reduced apoptotic status, as reflected by the percentage of TUNEL-positive cells and intensity of caspase activity for the HS-EGCG embryos vs. HS-saline ones. In summary, while hyperthermia disrupts the competence of the follicle-enclosed oocyte, in vivo administration of the antioxidant EGCG improves developmental competence and the quality of the embryos that develop from these oocytes.  相似文献   

11.
12.
Parthenogenetically activated (PA) embryos exhibit delayed development, a lower blastocyst rate, and less successful development in vitro compared to in vitro fertilized (IVF) embryos. To investigate the possible mechanisms for unsuccessful parthenogenetic development, this study analyzed the chromosome abnormalities and developmental potential of porcine PA embryos. Mature oocytes were electrically activated and cultured in Porcine Zygote Medium-3 (PZM3) supplemented with 3 mg/ml BSA for 6, 7, or 8 days. The percentage of PA blastocysts was lower than that of IVF embryos on days 6 and 7 (16.4 +/- 7.4 vs. 28.7 +/- 3.7; 10.9 +/- 2.8 vs. 21.5 +/- 4.7, P < 0.05; respectively), and the PA blastocysts had significantly fewer nuclei than IVF blastocysts (23.2 +/- 1.8 vs. 29.7 +/- 0.8; 29.7 +/- 3.3 vs. 32.0 +/- 2.4, P < 0.05). The percentage of abnormal PA embryos (including embryos with condensed nuclei, arrested embryos and fragmented embryos) was higher than that of IVF embryos (PA: 52.9 +/- 12.8 vs. 16.4 +/- 7.4 on day 6), and increased with culture time (71.9 +/- 12.1 vs. 10.9 +/- 2.8. on day 7,and 75.0 +/- 22.6 vs. 12.1 +/- 2.3 on day 8, P < 0.05). The Day-6 PA blastocysts (n = 147) were divided into three classes according to the total number of nuclei (<20, 20-39, >40) and into three groups according to the morphological diameter (<150, 150-180, >180 microm). Of the haploid blastocysts, 56.1% had less than 20 nuclei, and 71.5% were less than 150 microm in diameter. Of all (114) blastocysts suitable for analysis, 55.5% displayed chromosomal abnormalities. Among chromosomal abnormalities in PA blastocysts, haploid blastocysts were most prevalent (43.6%), while polyploidy (4.4%) and mixoploidy (7.7%) embryos were less prevalent. Chromosomal abnormalities of porcine PA embryos might contribute to a higher rate of abnormal embryonic development. We suggest that a careful consideration should be given when using the blastocysts with smaller size, and establishing the optimum culture condition for PA embryos development in vitro.  相似文献   

13.
Interferon tau (IFNT) is the cytokine responsible for the maternal recognition of pregnancy in ruminants and plays a role modulating embryo–maternal communication in the oviduct inducing a local response from immune cells. We aimed to investigate IFNT production, reactive oxygen species, and oxidative stress under the influence of heat stress (HS) during different stages of bovine in vitro embryo production. HS was established when the temperature was gradually raised from 38.5°C to 40.5°C in laboratory incubator, sustained for 6 hr, and decreased back to 38.5°C. To address the HS effects on IFNT production, reactive oxygen species, and oxidative stress, ovaries from a slaughterhouse were used according to treatments: control group (38.5°C); oocytes matured under HS; oocytes fertilized under HS; zygotes cultured in the first day under HS; and cells submitted to HS at oocyte maturation, fertilization, and the first day of zygote culture. The HS negatively affected cleavage and blastocyst rates, in all HS groups. On Day 7, all HS‐treated embryos showed decrease IFNT gene and protein expressions, whereas reactive oxygen species were increased in comparison to the control. In conclusion, the compromised early embryo development due to higher temperatures during in vitro oocyte maturation, fertilization, and/or zygote stage have diminished IFNT expression and increased reactive oxygen species in bovine.  相似文献   

14.
The authors sought to determine whether developmental differences in the magnitude of embryonic mortality caused by heat stress in vivo are caused by changes in resistance of embryos to elevated temperature. In this regard, responses of oocytes, two-cell embryos, four- to eight-cell embryos, and compacted morulae to heat shock were compared. An additional goal was to define further the role of cumulus cells and glutathione in thermoprotection of oocytes. In experiment 1, heat shock (41°C for 12 hr) decreased the number of embryos developing to the blastocyst stage for two-cell (26% vs. 0%) and four- to eight-cell (25% vs. 10%) embryos but did not affect morulae (37% vs. 42%). In experiment 2, exposure of two-cell embryos to 41°C for 12 hr reduced the number of four- to eight-cell embryos present 24 hr after the end of heat shock (88% vs. 62%). In experiment 3, heat shock reduced the number of two-cell embryos developing to blastocyst (49% vs. 8%) but did not affect subsequent development of oocytes when heat shock occurred during the first 12 hr of maturation (46% vs. 41% development to blastocyst); membrane integrity was not altered. In experiment 4, oocytes were cultured with an inhibitor of glutathione synthesis, DL-buthionine-[S,R]-sulfoximine (BSO), for 24 hr and exposed to 41°C for the first 12 hr of maturation. Percentages of blastocysts were 35% (39°C), 18% (41°C), 17% (39°C+BSO), and 11% (41°C+BSO). For experiment 5, oocytes were either denuded or left with cumulus intact and were then radiolabeled with [35S]methionine and [35S]cysteine at 39°C or 41°C for 12 hr. Exposure of oocytes to 41°C for 12 hr reduced overall synthesis of 35S-labeled TCA-precipitable intracellular proteins (18,160 vs. 14,594 dpm/oocyte), whereas presence of cumulus increased synthesis (9,509 vs. 23,246). Analysis by two-dimensional SDS PAGE and fluorography revealed that heat shock protein 68 (HSP68) and two other putative heat shock proteins, P71 and P70, were synthesized by all oocytes regardless of treatment. Heat shock did not alter the synthesis of HSP68 or P71 but decreased amounts of newly synthesized P70. Cumulus cells increased synthesis of P71 and P70. Results indicate there is a biphasic change in resistance to elevations in temperature as oocytes mature, become fertilized, and develop. Resistance declines from the oocyte to the two-cell stage and then increases. Evidence suggests a role for cumulus cells in increasing HSP70 molecules and protein synthesis. Data also indicate a role for glutathione in oocyte function. Mol Reprod Dev 46:138–145, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
The objective was to determine optimal concentrations of alpha-tocopherol and l-ascorbic acid for development of porcine embryos derived from in vitro-fertilization (IVF) or somatic cell nuclear transfer (SCNT). The frequency of blastocyst formation in IVF embryos was 17.6, 28.6, 32.4 and 21.4% for control, 50, 100 and 200microM alpha-tocopherol, respectively, whereas in SCNT embryos, the frequency was 12.8, 19.0, 24.8 and 17.7% for corresponding concentrations of alpha-tocopherol. For both IVF and SCNT embryos, there were significantly more cells in blastocysts and the embryos had greater developmental competence when the embryo culture medium was supplemented with 100microM alpha-tocopherol. Although either alpha-tocopherol or l-ascorbic acid reduced the proportion of apoptotic cells in blastocysts, in combination they resulted in rates of apoptosis that were similar to the control group. For IVF embryos, the apoptotic index was 0.09 and 0.11 for alpha-tocopherol or l-ascorbic acid at a concentration of 100microM, respectively. Conversely, when these antioxidants were supplemented together, the apoptotic index increased significantly and was similar to the control group (i.e., 0.17 and 0.21 for combined and control group). For SCNT embryos, the apoptotic index was 0.10 for 100microM for both alpha-tocopherol and l-ascorbic acid, whereas the index was 0.23 and 0.17 for control and combined group. In conclusion, we recommend supplementing porcine embryo culture medium with 100microM alpha-tocopherol or 100microM l-ascorbic (as a second choice).  相似文献   

16.
DNA fragmentation and its relationship with dead cells were examined in bovine blastocysts produced in vitro and stored at 4 degrees C for 1-5 days. Survival and development to the hatching and hatched blastocyst stage decreased with increasing storage time. Both were significantly lower at 72 hr than at 48 hr. None of the embryos stored for 120 hr developed to the hatching or hatched blastocyst stage. The proportion of dead cells per embryo increased progressively as the time of storage increased, until 69% of embryonic cells were dead after 120 hr of storage. There was no significant difference between the proportions of DNA fragmentation per embryo stored for 0 and 24 hr (12% vs 16%). However, the proportion of DNA fragmentation in embryos stored for longer than 48 hr was significantly greater than that in embryos stored for less than 24 hr. There were no significant differences among those stored for longer than 48 hr (28-33%). These results suggest that the reduced developmental competence of bovine embryos stored at 4 degrees C is characterized by necrotic change rather than apoptotic change.  相似文献   

17.
The present study aimed to determine the influence of exogenous epidermal growth factor (EGF) on in vitro preimplantation porcine embryo development and its mRNA expression for EGF receptor (EGFR). Oocytes were aspirated from abattoir ovaries, selected and cultured in defined, protein-free media for 44 hr before in vitro fertilization (IVF). Thirty-six hours after IVF, two-cell stage embryos were selected and treated or cultured until embryo treatment. In experiment 1, compact morulae were selected on day 4 after IVF and randomly allocated into 5 groups: NCSU 23 with PVA as group 1; NCSU 23 with PVA and 0.1 ng/ml, 1.0 ng/ml, 10.0 ng/ml EGF as group 2, 3, 4, respectively; NSCU 23 with 0.4% BSA as group 5. In experiment 2, treatment groups were the same as in experiment 1 except that 0.1% crystallized BSA was added to both washing media and all treatment groups instead of PVA. In experiments 3 and 4, two-cell stage embryos were treated and cultured in the same experimental design as experiments 1 and 2, respectively. RT-PCR was used to detect the mRNA expression of EGF receptor in compact morulae and blastocysts. The PCR products were subjected to direct DNA sequencing. There was no significant improvement in the development rate of embryos from compact morulae to blastocysts in the presence of various EGF concentrations (0.1, 1.0, 10.0 ng/ml) versus without EGF addition. They were all significantly lower than those embryos cultured in the continuous presence of 0.4% BSA. However, when a reduced concentration (0.1%) of crystallized BSA was added to all the treatment groups, a significantly lower rate of embryo development was observed in control media (NCSU23 with 0.1% crystallized BSA) compared with those developed in culture media with 0.4% BSA. With the addition of EGF at 10 ng/ml (with 0.1% BSA), embryo development rates were significantly improved over the control group (P < 0.05) and were as good as those rates in 0.4% BSA culture group. When embryos were selected and treated from the 2-cell stage, they did not develop to blastocyst stages after five more days' culture without any protein (BSA) or growth factor addition. When 0.1% BSA was included in the media, blastocyst formation rates were significantly improved by EGF addition at the concentration of both 1.0 or 10 ng/ml (P < 0.05) as compared to 0.0 or 0.1 ng/ml. EGFR mRNA was detected in both compact morulae and blastocyst stages of porcine embryos and confirmed by direct DNA sequencing. Our results indicate that IVM-IVF porcine embryo developmental rates could be improved by the addition of EGF in the culture media with the presence of a reduced amount of defined BSA (>97% albumin). However, EGF alone was not able to elicit any stimulatory effects on embryo development in the absence of protein supplementation. Further studies are needed to investigate the potential synergistic factors in embryo culture media to eventually define the porcine embryo culture media.  相似文献   

18.
The objective of this study was to examine the effect of paternal heat stress on the in vivo development of preimplantation embryos in the mouse. Synchronised B6CBF1 female mice were mated either to a control male mouse or to one that had been exposed at 7, 21 or 35 days previously, for 24 h to an ambient temperature of 36+/-0.3 degrees C and 66+/-5.6% relative humidity. Embryos were collected from the oviducts of mice at 14-16 h, 34-39 h or 61-65 h after mating or from the uterus at 85-90 h after mating and their developmental status was evaluated morphologically. The number of cells within blastocysts was also determined using bisbenzimide-propidium iodide staining. Paternal heat stress 7 days before mating reduced the proportion of embryos developing from 4-cell (4-C) to morulae (M), hatched blastocysts, total blastocysts and the number of inner cell mass (ICM) and trophectoderm (TE) cells in the blastocyst. Paternal heat stress 21 days prior to mating reduced the proportion of 2-C and 4-C to M embryos with no embryos developing to blastocysts. There were also increases in the number of 1-C and abnormal embryos recorded at this time. Paternal heat stress 35 days before mating decreased the proportion of 2-C embryos, expanded blastocysts and ICM and TE cells in the blastocyst. These results support previous work demonstrating that both the sperm in the epididymis and germ cells in the testis are susceptible to damage by environmental heat stress, with spermatocytes being the most vulnerable. This study also demonstrates that subtle effects on the male such as a short exposure to elevated environmental temperatures can translate to quite profound paternal impacts on early embryo development.  相似文献   

19.
Androgenetic embryos are useful model for investigating the contribution of the paternal genome to embryonic development. Little work has been done with androgenetic embryo production in domestic animals. The aim of this study was the production of diploid androgenetic sheep embryos. In vitro matured sheep oocytes were enucleated and fertilized in vitro; parthenogenetic and normally fertilized embryos were also produced as a control. Fifteen hours after in vitro fertilization (IVF), presumptive zygotes were centrifuged and scored for the number of pronucleus. IVF, parthenogenetic, and androgenetic embryos (haploid, diploid, and triploid) were cultured in SOFaa medium with bovine serum albumin (BSA). The proportion of oocytes with polyspermic fertilization increased linearly with increasing sperm concentration. After IVF, there was no significant difference in early cleavage and morula formation rates between the groups, while there was a significant difference on blastocyst development between IVF, parthenogenetic, and androgenetic embryos, the last ones displaying poor developmental potential (IVF, parthenogenetic, and haploid, diploid, and triploid androgenetic embryos: 43%, 38%, 0%, 2%, and 2%, respectively). In order to boost androgenetic embryonic development, we produced diploid androgenetic embryos through pronuclear transfer. Single pronuclei were aspirated with a bevelled pipette from haploid or diploid embryos and transferred into the perivitelline space of other haploid embryos, and the zygotes were reconstructed by electrofusion. Fusion rates approached 100%. Pronuclear transfer significantly increased blastocyst development (IVF, parthenogenetic, androgenetic: Diploid into Haploid, and Haploid into Haploid: 42%, 42%, 19%, and 3%, respectively); intriguingly, the Haploid + Diploid group showed the highest development to blastocyst stage. The main findings of our study are: (1) sheep androgenetic embryos display poor developmental ability compared with IVF and parthenogenetic embryos; (2) diploid androgenetic embryos produced by pronuclear exchange developed in higher proportion to blastocyst stage, particularly in the Diploid-Haploid group. In conclusion, pronuclear transfer is an effective method to produce sheep androgenetic blastocysts.  相似文献   

20.
Germinal vesicle (GV) oocytes matured in vitro are an alternative source for cytoplasmic recipients of nuclear transfer (NT). However, the developmental potential of oocytes matured in vitro is limited. In this study, we developed a protein-free maturation medium for mouse GV oocytes. Following parthenogenetic activation, the oocytes matured in the protein-free medium develop to blastocyst stage with a high efficiency, even up to the rate obtained from in vivo MII-oocytes (90.6% vs. 92.8%). Using the oocytes matured in the protein-free medium as the recipient, NT embryos develop to the blastocyst stage (17.6%). To further improve the developmental potential of NT embryos, we performed serial NT and compared the effect of three different activated cytoplasm samples derived from in vitro matured oocytes as the second recipient, that is, the effect of in vitro fertilized (IVF) zygote, the preactivated cytoplast and the IVF cytoplast, on the development of NT embryos. We found that when the pronucleus of NT zygote was transferred into the cytoplasm of the IVF zygote, the blastocyst formation increased to 39.4%. This is the first report to demonstrate the IVF zygote from oocytes matured in protein-free medium can be used successfully as the recipient for serial NT to enhance the developmental potential of mouse NT embryos from oocytes matured in the protein-free medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号