首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.  相似文献   

2.
Species of 7 of the 28 yeast genera in the National Collection of Yeast Cultures exhibited killing activity againstSaccharomyces cerevisiae. The highest incidence of killer yeasts was found in the genusHansenula (12 of the 29 strains examined).Saccharomyces, the best represented genus in the Collection, showed a low incidence of killer activity and many of the killer strains are hybrids with a commonS. cerevisiae parent. The activities of culture filtrates of the 59 killer yeast isolated responded differently to pH and four types of response were recognised.  相似文献   

3.
Strain differentiation of pathogenic yeasts by the killer system   总被引:9,自引:0,他引:9  
High sensitivity rates to the activity of killer toxins produced by 25 species of yeasts belonging to the genera Candida, Hansenula, Pichia, Rhodotorula, Saccharomyces and Trichosporon have been observed among 112 yeast isolates (25 Cryptococcus neoformans, 29 C. glabrata, 16 C. parapsilosis, 20 C. pseudotropicalis and 22 C. tropicalis). The highest sensitivity has been observed among the C. parapsilosis isolates, the lowest in C. glabrata strains. Genera Pichia and Hansenula proved to have the greatest killer activity. A killer system, formerly used for differentiating C. albicans isolates within the species, proved to be valid as epidemiological marker when applied to 112 strains of pathogenic yeasts.  相似文献   

4.
Yeast killer toxins coded by determined and undetermined killer plasmids or presumptive nuclear gene(s) in various genera (Saccharomyces, Kluyveromyces, Pichia and Candida) have been serologically investigated by a monoclonal antibody (KT4), produced against the yeast killer toxin of Pichia (Hansenula) anomala UCSC 25F. Double immunodiffusion with the killer toxins as antigens and indirect immunofluorescence on whole cells of the corresponding killer yeast have been used. In both the serological procedures, monoclonal antibody KT4 proved to be reacting only with the killer toxins and the whole cells of yeasts belonging to the genus Pichia.  相似文献   

5.
Some marine yeasts have recently been recognised as pathogenic agents in crab mariculture, but may be inhibited or killed by 'killer' yeast strains. We screened multiple yeast strains from seawater, sediments, mud of salterns, guts of marine fish, and marine algae for killer activity against the yeast Metchnikowia bicuspidata WCY (pathogenic to crab Portunus trituberculatus), and found 17 strains which could secrete toxin onto the medium and kill the pathogenic yeast. Of these, 5 strains had significantly higher killing activity than the others; routine identification and molecular methods showed that these were Williopsis saturnus WC91-2, Pichia guilliermondii GZ1, Pichia anomala YF07b, Debaryomyces hansenii hcx-1 and Aureobasidium pullulans HN2.3. We found that the optimal conditions for killer toxin production and action of killer toxin produced by the marine killer yeasts were not all in agreement with those of marine environments and for crab cultivation. We found that the killer toxins produced by the killer yeast strains could kill other yeasts in addition to the pathogenic yeast, and NaCl concentration in the medium could change killing activity spectra. All the crude killer toxins produced could hydrolyze laminarin and the hydrolysis end products were monosaccharides.  相似文献   

6.
Killer toxins secreted by some yeast strains are the proteins that kill sensitive cells of the same or related yeast genera. In recent years, many new yeast species have been found to be able to produce killer toxins against the pathogenic yeasts, especially Candida albicans. Some of the killer toxins have been purified and characterized, and the genes encoding the killer toxins have been cloned and characterized. Many new targets including different components of cell wall, plasma membrane, tRNA, DNA and others in the sensitive cells for the killer toxin action have been identified so that the new molecular mechanisms of action have been elucidated. However, it is still unknown how some of the newly discovered killer toxins kill the sensitive cells. Studies on the killer phenomenon in yeasts have provided valuable insights into a number of fundamental aspects of eukaryotic cell biology and interactions of different eukaryotic cells. Elucidation of the molecular mechanisms of their action will be helpful to develop the strategies to fight more and more harmful yeasts.  相似文献   

7.
A total of 13 killer toxin producing strains belonging to the genera Saccharomyces, Candida and Pichia were tested against each other and against a sensitive yeast strain. Based on the activity of the toxins 4 different toxins of Saccharomyces cerevisiae, 2 different toxins of Pichia and one toxin of Candida were recognized. The culture filtrate of Pichia and Candida showed a much smaller activity than the strains of Saccharomyces. Extracellular killer toxins of 3 types of Saccharomyces were concentrated and partially purified. The pH optimum and the isoelectric point were determined. The killer toxins of S. cerevisiae strain NCYC 738, strain 399 and strain 28 were glycoproteins and had a molecular weight of Mr=16,000. The amino acid composition of the toxin type K2 of S. cerevisiae strain 399 was determined and compared with the composition of two other toxins.  相似文献   

8.
The killing/immunity interactions among killer strains of the genera Kluyveromyces, Hansenula and Saccharomyces from the Czechoslovak Collection of Yeasts were studied with the aim to find the strains with broad specificity and killer activity targeted against a range of undesirable wild yeasts causing stuck fermentations. Among 49 tested Kluyveromyces strains, five strains were found, and among 55 Hansenula strains, ten yeast strains were found with activity against a sensitive strain of Saccharomyces. Hansenula mrakii CCY 38-7-1 and Hansenula saturnus var. subsufficiens CCY 38-4-2 showed exceptional activity against the wine contaminants, Zygosaccharomyces bailii, as well as against pathogenic Candida species within a broad range of pH 2.9–5.1. Their potential biotechnological application is discussed.  相似文献   

9.
Interactions between killer yeasts and pathogenic fungi   总被引:4,自引:0,他引:4  
Abstract A total of 17 presumptive killer yeast strains were tested in vitro for growth inhibitory and killing activity against a range of fungal pathogens of agronomic, environmental and clinical significance. Several yeasts were identified which displayed significant activity against important pathogenic fungi. For example, isolates of the opportunistic human pathogen, Candida albicans , were generally very sensitive to Williopsis mrakii killer yeast activity, whilst killer strains of Saccharomyces cerevisiae and Pichia anomala markedly inhibited the growth of certain wood decay basidiomycetes and plant pathogenic fungi. Results indicate that such yeasts, together with their killer toxins, may have potential as novel antimycotic biocontrol agents.  相似文献   

10.
Marine yeasts were collected from coastal and deep sea areas in the Pacific Ocean and the Sea of Japan around central and northern Japan to prepare a novel type of natural seasoning. It was found that one of the marine yeasts collected from the Pacific Ocean off Hachinohe showed a high concentration of γ-aminobutyric acid (GABA) in its extract, about 7–10 times higher than those of commercially available bread yeast and other marine yeasts. The marine yeast isolated and named Hachinohe No. 6 catalyzed the reaction from monosodium glutamate to GABA only in the presence of glucose. Subsequently, several marine yeasts belonging to the genera Pichia and Candida were found to have such catalytic activities, but not those belonging to the genus Saccharomyces. Isolate Hachinohe No. 6 was found to have the highest catalytic activity among the yeasts examined in this study.  相似文献   

11.
Killer yeasts secrete proteinaceous killer toxins lethal to susceptible yeast strains. These toxins have no activity against microorganisms other than yeasts, and the killer strains are insensitive to their own toxins. Killer toxins differ between species or strains, showing diverse characteristics in terms of structural genes, molecular size, mature structure and immunity. The mechanisms of recognizing and killing sensitive cells differ for each toxin. Killer yeasts and their toxins have many potential applications in environmental, medical and industrial biotechnology. They are also suitable to study the mechanisms of protein processing and secretion, and toxin interaction with sensitive cells. This review focuses on the biological diversity of the killer toxins described up to now and their potential biotechnological applications. Electronic Publication  相似文献   

12.
The ecological role of killer yeasts in natural communities of yeasts   总被引:12,自引:0,他引:12  
The killer phenomenon of yeasts was investigated in naturally occurring yeast communities. Yeast species from communities associated with the decaying stems and fruits of cactus and the slime fluxes of trees were studied for production of killer toxins and sensitivity to killer toxins produced by other yeasts. Yeasts found in decaying fruits showed the highest incidence of killing activity (30/112), while yeasts isolated from cactus necroses and tree fluxes showed lower activity (70/699 and 11/140, respectively). Cross-reaction studies indicated that few killer-sensitive interactions occur within the same habitat at a particular time and locality, but that killer-sensitive reactions occur more frequently among yeasts from different localities and habitats. The conditions that should be optimal for killer activity were found in fruits and young rots of Opuntia cladodes where the pH is low. The fruit habitat appears to favor the establishment of killer species. Killer toxin may affect the natural distribution of the killer yeast Pichia kluyveri and the sensitive yeast Cryptococcus cereanus. Their distributions indicate that the toxin produced by P. kluyveri limits the occurrence of Cr. cereanus in fruit and Opuntia pads. In general most communities have only one killer species. Sensitive strains are more widespread than killer strains and few species appear to be immune to all toxins. Genetic study of the killer yeast P. kluyveri indicates that the mode of inheritance of killer toxin production is nuclear and not cytoplasmic as is found in Saccharomyces cerevisiae and Kluyveromyces lactis.  相似文献   

13.
Yeast ecology, biogeography and biodiversity are important and interesting topics of research. The population dynamics of yeasts in several cellars of two Spanish wine-producing regions was analysed for three consecutive years (1996 to 1998). No yeast starter cultures had been used in these wineries which therefore provided an ideal winemaking environment to investigate the dynamics of grape-related indigenous yeast populations. Non-Saccharomyces yeast species were identified by RFLPs of their rDNA, while Saccharomyces species and strains were identified by RFLPs of their mtDNA. This study confirmed the findings of other reports that non-Saccharomyces species were limited to the early stages of fermentation whilst Saccharomyces dominated towards the end of the alcoholic fermentation. However, significant differences were found with previous studies, such as the survival of non-Saccharomyces species in stages with high alcohol content and a large variability of Saccharomyces strains (a total of 112, all of them identified as Saccharomyces cerevisiae) with no clear predominance of any strain throughout all the fermentation, probably related to the absence of killer phenotype and lack of previous inoculation with commercial strains.  相似文献   

14.
The aim of this research was to identify the Saccharomyces spp. associated with Žilavka grapes and to evaluate their enzymatic activities, H2S production and micro-fermentation performance. For this purpose, a total of 143 yeast strains isolated from three production areas of the Mostar wine region (Bosnia and Herzegovina) were studied and analysed. Firstly, yeasts were identified to genus level by growth on WL nutrient agar and the test of assimilation of lysine. Later, molecular identification at species level was carried out with RFLP analysis of 18S rDNA + ITS region, and at strain level with microsatellite-primed PCR (MSP-PCR). At physiological level yeast strains were grouped into different clusters by means of the Joining-Tree-Clustering-Method. All yeasts tested were identified as S. cerevisiae, resulting a total of 18 different strains. All of the investigated strains produced hydrogen sulphide, 89% were able to complete the fermentation, and none of them was able to synthesize killer toxins. Since enzymes play a very important role in wine aroma development, it was very encouraging that 33% of the strains were able to synthesize pectinolytic enzyme but only one produced β-glucosidase. In the second part of the selection process two indigenous strains were compared with commercial yeast in a microvinification and Žilavka wines with different profiles of volatiles were obtained. This research represents a first step in the selection of indigenous yeast strains from the Mostar region with the goal of maintaining the specific organoleptic characteristics of Žilavka wine.  相似文献   

15.
Fungi may carry cytoplasmic viruses that encode anticompetitor toxins. These so‐called killer viruses may provide competitive benefits to their host, but also incur metabolic costs associated with viral replication, toxin production and immunity. Mechanisms responsible for the stable maintenance of these endosymbionts are insufficiently understood. Here, we test whether co‐adaptation of host and killer virus underlies their stable maintenance in seven natural and one laboratory strain of the genus Saccharomyces. We employ cross‐transfection of killer viruses, all encoding the K1‐type toxin, to test predictions from host–virus co‐adaptation. These tests support local adaptation of hosts and/or their killer viruses. First, new host–virus combinations have strongly reduced killing ability against a standard sensitive strain when compared with re‐constructed native combinations. Second, viruses are more likely to be lost from new than from original hosts upon repeated bottlenecking or the application of stressful conditions. Third, host fitness is increased after the re‐introduction of native viruses, but decreased after the introduction of new viruses. Finally, rather than a trade‐off, original combinations show a positive correlation between killing ability and fitness. Together, these results suggest that natural yeast killer strains and their viruses have co‐adapted, allowing the transition from a parasitic to a mutualistic symbiosis.  相似文献   

16.
The occurrence of killer character in yeasts of various genera.   总被引:9,自引:0,他引:9  
Species of 7 of the 28 yeast genera in the National Collection of Yeast Cultures exhibited killing activity against Saccharomyces cerevisiae. The highest incidence of killer yeasts was found in the genus Hansenula (12 of the 29 strains examined). Saccharomyces, the best represented genus in the Collection, showed a low incidence of killer activity and many of the killer strains are hybrids with a common S. cerevisiae parent. The activities of culture filtrates of the 59 killer yeast isolated responded differently to pH and four types of response were recognised.  相似文献   

17.
The kinetics and metabolic behavior of Kloeckera apiculata mc1 and Saccharomyces cerevisiae mc2 in composite culture was investigated. K. apiculata showed a higher viability through the fermentation; however the maximum cell density of both yeasts decreased. This behavior was not due to ethanol concentration, killer toxins production or competition for assimilable nitrogenous compounds between both yeasts. Despite the consistent production of secondary products by single culture of K. apiculata, an increase of these compounds was not observed in mixed culture. These results contribute to a better understanding of the behavior of non-Saccharomyces yeasts and their potential application in the wine industry.  相似文献   

18.
In a related brewing study detailed characteristics of fermentations displaying effective yeastaminopterin interaction were presented.Fermentative yeast types (certain Saccharomyces species and Selenotila intestinalis) proved effective aminopterin reactors whereas oxidative yeasts (certain Candida, Cryptococcus, Pichia, Rhodotorula, Saccharomyces, and Trigonopsis species) proved ineffective reactors. In general effective reactors were polyploids characterized by the lack of film or pellicle formation and ineffective reactors the opposite. In stationary fermentations the Fleischmann 139 strain of S. cerevisiae proved a fair reactor. When aerated it proved an ineffective reactor and aminopterin or products there-of stimulated growth. Conversely aeration enhanced aminopterin activity of effective reactor yeasts.The positive effect of biotin on aminopterin activity and the negative effect of yeast extract, L-asparagine, adenine and thymine is shown and compared and contrasted with earlier reported studies.These findings supported by outside data suggest that oxidative yeasts (and bacteria) can readily elicit enzymes capable of inactivating aminopterin whereas fermentative types are lacking in this capability. Finally that past yeast-aminopterin studies were conducted with oxidative yeast types.Advantages of effective aminopterin reactor yeasts to be published elsewhere include improved ultrastructure using KMnO4–OsO4 fixation, a yeast bioassay procedure for detecting aminopterin in plasma and urine, and cell synchronization.Non-Standard Abbreviation apt aminopterin  相似文献   

19.
A new method for the quantitative determination of members of the genusSaccharomyces in mixtures with other yeasts is described. It is based on the higher resistance of theSaccharomyces species toward phenylhydrazine. The method is not applicable only toSaccharomyces fragilis and to some of the species grouped sometimes under the genus Zygosaccharomyces. The method described can be used for detecting Saccharomyces individuals in cannery or wine-making raw materials and products, for purity control of production and collection strains of yeasts and for detecting contamination withSaccharomyces species during fodder yeast production.  相似文献   

20.
Resistance to widely used fungistatic drugs, particularly to the ergosterol biosynthesis inhibitor fluconazole, threatens millions of immunocompromised patients susceptible to invasive fungal infections. The dense network structure of synthetic lethal genetic interactions in yeast suggests that combinatorial network inhibition may afford increased drug efficacy and specificity. We carried out systematic screens with a bioactive library enriched for off‐patent drugs to identify compounds that potentiate fluconazole action in pathogenic Candida and Cryptococcus strains and the model yeast Saccharomyces. Many compounds exhibited species‐ or genus‐specific synergism, and often improved fluconazole from fungistatic to fungicidal activity. Mode of action studies revealed two classes of synergistic compound, which either perturbed membrane permeability or inhibited sphingolipid biosynthesis. Synergistic drug interactions were rationalized by global genetic interaction networks and, notably, higher order drug combinations further potentiated the activity of fluconazole. Synergistic combinations were active against fluconazole‐resistant clinical isolates and an in vivo model of Cryptococcus infection. The systematic repurposing of approved drugs against a spectrum of pathogens thus identifies network vulnerabilities that may be exploited to increase the activity and repertoire of antifungal agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号