首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell volume regulation in Ehrlich ascites tumor cells   总被引:4,自引:0,他引:4  
Ehrlich cells subjected to anisoosmolar media show very rapid volume changes. In hypertonic media they shrink. In hypotonic media they swell but the rapid initial swelling is followed by a regulatory shrinkage lasting ca. 30 minutes. Cells suspended in media with identical ionic concentrations but different total osmolarity (adjusted by sucrose) were compared. These studies revealed that swollen cells adjust their volume by decreasing the amount of intracellular K+ and ninhydrin positive substances. Intracellular Na+ and ATP concentrations were unchanged. Accordingly 42K+ flux analysis showed that the (passive) cell membrane permeability for K+ is increased to a minor degree and the Na+ permeability unaffected. The increased K+ permeability could not be correlated to an increase in 45Ca2+ influx.  相似文献   

2.
Summary PGE2 and LTC4 syntheses in Ehrlich ascites cells were measured by radioimmunoassay. Hypotonic swelling results in stimulation of the leukotriene synthesis and a concomitant reduction in the prostaglandin synthesis. If the cells have access to sufficient arachidonic acid there is a parallel increase in the synthesis of both leukotrienes and prostaglandins following hypotonic exposure. PGE2 significantly inhibits regulatory volume decrease (RVD) following hypotonic swelling in Na-containing medium but not in Na-free media, supporting the hypothesis that the effect of PGE2 is on the Na permeability. PGE2 also had no effect on RVD in Na-free media in the presence of the cation ionophore gramicidin. Since the Cl permeability becomes rate limiting for RVD in the presence of gramicidin, whereas the K permeability is rate limiting in its absence, it is concluded that PGE2 neither affects Cl nor K permeability. Addition of LTD4 accelerates RVD and since the K permeability is rate limiting for RVD this shows that LTD4 stimulates the K permeability. Inhibition of the leukotriene synthesis by nordihydroguaiaretic acid inhibits RVD even when a high K conductance has been ensured by the presence of gramicidin. It is, therefore, proposed that an increase in leukotriene synthesis after hypotonic swelling is involved also in the activation of the Cl transport pathway.  相似文献   

3.
The Ehrlich ascites tumor cell has been used as a model of an unspecialized mammalian cell, in an attempt to disclose the mechanisms involved in the regulation of cellular water and salt content. In hypotonic medium Ehrlich cells initially swell as nearly perfect osmometers, but subsequently recover their volume within about 10 min with an associated net loss of KCl, amino acids, taurine and cell water. The net loss of KCl takes place mainly via separate, conductive K+ and Cl- transport pathways, and the net loss of taurine through a passive leak pathway. Ca2+ and calmodulin appear to be involved in the activation of the K+ and Cl- channels, as well as the taurine leak pathway. In hypertonic medium Ehrlich cells initially shrink as osmometers, but subsequently recover their volume with an associated net uptake of KCl and water. In this case, the net uptake of KCl is the result of the activation of an electroneutral, Na+- and Cl- -dependent cotransport system with subsequent replacement of cellular Na+ by extracellular K+ via the Na+/K+ pump. In the present review we describe the ion and taurine transporting systems which have been identified in the plasma membrane of the Ehrlich ascites tumor cell. We have emphasized the selectivity of these transport pathways and their activation mechanisms. Finally, we propose a model for the activation of the conductive K+ and Cl- transport pathways in Ehrlich cells which includes Ca2+, leukotrienes, and inositol phosphate as intracellular second messengers.  相似文献   

4.
Human erythrocytes overloaded with homogeneous human hexokinase (up to 15-times the activity of normal RBC) show almost unmodified rates of glucose metabolized in the HMP, however hexokinase-loaded RBC are able to metabolize 1.5 fold more glucose than controls through the HMP when an oxidizing agent like methylene blue (5 to 100 microM) is present. Similarly, RBC loaded with inactivating anti-hexokinase IgG (12 +/- 3% residual hexokinase activity) show HMP rates unchanged under resting conditions, but only 12% of the HMP rate found in normal controls under oxidative stress. These data provide clear evidence that the HMP rate under conditions of oxidative stress is controlled by hexokinase activity and suggest that RBC from patients with hexokinase deficiency are not able to increase the HMP rate under oxidative stress like erythrocytes from individuals with G6PD deficiency.  相似文献   

5.
pH i recovery in acid-loaded Ehrlich ascites tumor cells and pH i maintenance at steady-state were studied using the fluorescent probe BCECF.Both in nominally HCO 3 -free media and at 25 mm HCO 3 , the measured pH i (7.26 and 7.82, respectively) was significantly more alkaline than the pH i . value calculated assuming the transmembrane HCO 3 gradient to be equal to the Cl gradient. Thus, pH i in these cells is not determined by the Cl gradient and by Cl/HCO 3 exchange.pH i recovery following acid loading by propionate exposure, NH 4 + withdrawal, or CO2 exposure is mediated by amiloride-sensitive Na+/H+ exchange in HCO3 free media, and in the presence of HCO 3 (25 mm) by DIDS-sensitive, Na+-dependent Cl/HCO 3 exchange. A significant residual pH i recovery in the presence of both amiloride and DIDS suggests an additional role for a primary active H+ pump in pH i regulation. pH i maintenance at steady-state involves both Na+/H+ exchange and Na+-dependent Cl/HCO 3 exchange.Acute removal of external Cl induces a DIDS-sensitive, Na+-dependent alkalinization, taken to represent HCO 3 influx in exchange for cellular Cl. Measurements of 36Cl efflux into Cl-free gluconate media with and without Na+ and/or HCO 3 (10 mm) directly demonstrate a DIDS-sensitive, Na+ dependent Cl/HCO 3 exchange operating at slightly acidic pH i (pHo 6.8), and a DIDS-sensitive, Na+-independent Cl/HCO 3 exchange operating at alkaline pH i (pH o 8.2).The excellent technical assistance of Marianne Schiødt and Birgit B. Jørgensen is gratefully acknowledged. The work was supported by the Carlsberg Foundation (B.K.) and by a grant from the Danish Natural Science Foundation (E.K.H. and L.O.S.).  相似文献   

6.
7.
8.
Mannosephosphate isomerase (MPI) showed a higher activity than hexokinase (HKM) in its ability to phosphorylate mannose in the spleen, thymus, brain, liver, striated muscles, kidneys, and testes from BALB/c mice. This led to a HKM/MPI ratio of less than 1 in all the organs and tissues mentioned. In contrast, Ehrlich ascites tumor cells obtained from the peritoneum of BALB/c mice had low MPI activity (half of the HKM activity and, therefore, a ratio of 2). Mannose, which is nontoxic to nontumor cells at a concentration of 0.1 M, induced marked in vitro mortality of the tumor cells. Incubation of Ehrlich ascites tumor cells with mannose resulted in a high accumulation of mannose-6-phosphate and a marked depletion of ATP which did not appear when the cells were incubated with glucose. These facts may explain the selective mortality caused by mannose in the tumor cells studied.  相似文献   

9.
Nicotinamide deamidase in Ehrlich ascites tumor cells   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
12.
Concentrations of intracellular orthophosphate were determined in Ehrlich ascites tumor cells incubated with glucose, inosine, or uridine in media of different orthophosphate concentration. The effects of orthophosphate concentration on the accumulation of lactate and of phosphoribosyl pyrophosphate and on concentrations of ribose 1-phosphate and ribose 5-phosphate in tumor cells incubated with glucose were also determined. Both the phosphorolysis of inosine and the rate of catabolism of ATP in cells incubated with 2-deoxyglucose were also influenced by the orthophosphate concentration of the medium.  相似文献   

13.
A phosphate-incorporating protein has been highly purified from the cytosol of Ehrlich ascites tumor cells (EAT cells). The nitrocellulose membrane method was used to follow the progress of the purification by quantitation of the [32P]phosphorylated form of the protein. The purified protein was identified as an NDP-kinase since it exhibited NDP-kinase activity and had enzyme characteristics in common with other NDP-kinases from various mammalian cells. The purified NDP-kinase was found to have a molecular weight of approximately 76,000 daltons. Moreover, the enzyme appears to consist of two distinct polypeptides (18,000 and 20,000 daltons). This enzyme contained 19 amino acids, with high levels of glycine (9.8%) and lysine (9.0%). The enzyme rapidly formed a [32P]phosphoenzyme when incubated with [gamma-32P]ATP in the presence of Mg2+ (1 mM) at the optimum pH of 7.5 even at low temperature (below 4 degrees C). This phosphoenzyme is an enzyme-bound, high-energy-phosphate intermediate, because ATP was formed from it on incubation with ADP in the presence of Mg2+ (1 mM). This finding suggests that the phosphoenzyme functions as an intermediate in NDP-kinase action.  相似文献   

14.
15.
Calcium transport in intact Ehrlich ascites tumor cells   总被引:9,自引:0,他引:9  
  相似文献   

16.
17.
Previous studies have shown that mediated Cl- transport which occurs by at least two processes (Cl- -dependent cation cotransport and Cl- self-exchange) becomes progressively inhibited when extracellular Cl- exceeds about 60 mM (Hoffmann et al., 1979). To account for this type of kinetic behavior, that is, self-inhibition, an anion transport system possessing two sites, a high affinity transport site and a lower affinity modifier site is suggested (Dalmark, 1976). In the present experiments we have attempted to determine which of the mediated transport pathways is susceptible to self-inhibition by studying the dependence of the steady state Cl- flux on the extracellular Cl- concentration and how DIDS, an inhibitor of Cl- self-exchange, and H + affect this relationship. Addition of DIDS to Ehrlich cells results in inhibition of Cl- transport at every Cl- concentration tested (40-150 mM). Moreover, the Cl- flux/Cl- concentration relationship no longer exhibits self-inhibition, suggesting that this phenomenon is a characteristic of the Cl- self-exchanger rather than of the Cl- -dependent cation cotransport system. Lowering the extracellular pH (pHo) from 7.35 to 5.30 stimulates Cl- transport by a process that saturates with respect to [H +]. Half-maximal stimulation occurs at pHo 6.34. A comparison of the kinetic parameters, Ks and Jmax, calculated from the ascending limb of the Cl- flux/Cl- concentration curve at pHo 7.30 to those at pHo 5.50 show that the values for Ks are almost identical (23.6 mM and 21.3 mM, respectively), while the values for Jmax [22.2 mEq/Kg dry wt) X min] differ by only 15%. This finding along with the observation that DIDS completely blocks H + stimulation of Cl- transport is compatible with the suggestion that H + interact at the modifer site of the Cl- self-exchanger and thereby prevents self-inhibition.  相似文献   

18.
Summary Taurine influx is inhibited and taurine efflux accelerated when the cell membrane of Ehrlich ascites tumor cells is depolarized. Taurine influx is inhibited at acid pH partly due to the concomitant depolarization of the cell membrane partly due to a reduced availability of negatively charged free carrier. These results are in agreement with a 2Na, 1Cl, 1taurine cotransport system which is sensitive to the membrane potential due to a negatively charged empty carrier. Taurine efflux from Ehrlich cells is stimulated by addition of LTD4 and by swelling in hypotonic medium. Cell swelling in hypotonic medium is known to result in stimulation of the leukotriene synthesis and depolarization of the cell membrane. The taurine efflux, activated by cell swelling, is dramatically reduced when the phospholipase A2 is inhibited indirectly by addition of the anti-calmodulin drug pimozide, or directly by addition of RO 31-4639. The inhibition is in both cases lifted by addition of LTD4. The swelling-induced taurine efflux is also inhibited by addition of the 5-lipoxygenase inhibitors ETH 615-139 and NDGA. It is concluded that the swelling-induced activation of the taurine leak pathway involves a release of arachidonic acid from the membrane phospholipids and an increased oxidation of arachidonic acid into leukotrienes via the 5-lipoxygenase pathway. LTD4 seems to act as a second messenger for the swelling induced activation of the taurine leak pathway either directly or indirectly via its activation of the Cl channels, i.e., via a depolarization of the cell membrane.  相似文献   

19.
Summary Pretreatment with cytochalasin B, which is known to disrupt microfilaments, significantly inhibits regulatory volume decrease (RVD) in Ehrlich ascites tumor cells, suggesting that an intact microfilament network is a prerequisite for a normal RVD response. Colchicine, which is known to disrupt microtubules, has no significant effect on RVD. Ehrlich cells have a cortical three-dimensional, orthogonal F-actin filament network which makes the cells look completely black in light microscopy following immunogold/silver staining using anti-actin antibodies. After addition of cytochalasin B, the stained cells get lighter with black dots localized to the plasma membrane and appearance of multiple knobby protrusions at cell periphery. Also, a significant decrease in the staining of the cells is seen after 15 min of RVD in hypotonic medium. This microfilament reorganization appears during RVD in the presence of external Ca2+ or Ca2+-ionophore A23187. It is, however, abolished in the absence of extracellular calcium, with or without prior depletion of intracellular Ca2+ stores. An effect of increased calcium influx might therefore be considered. The microfilament reorganization during RVD is abolished by the calmodulin antagonists pimozide and trifluoperazine, suggesting the involvement of calmodulin in the process. The microfilament reorganization is also prevented by addition of quinine. This quinine inhibition is overcome by addition of the K+ ionophore valinomycin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号