首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A histological study of the pulmonary vasculature in a young male high-altitude Aymara Indian revealed four aspects of interest. There was muscularization of the terminal portion of the pulmonary arterial tree to involve pulmonary arterioles as small as 15 m in diameter, thus forming a basis for the slightly increased pulmonary vascular resistance of native highlanders. Intimal longitudinal muscle was found in pulmonary arteries and arterioles and thought to be due to chronic alveolar hypoxia. Inner muscular tubes similar to those found in chronic obstructive lung disease were present. Pulmonary veins and venules also showed intimal muscularization suggesting that alveolar hypoxia affects vascular smooth muscle cells per se irrespective of their situation. The nature of the remodelling in a pulmonary blood vessel depends on a combination of hypoxia and haemodynamics.  相似文献   

2.
The muscularization of non-muscular pulmonary arterioles is an important pathological feature of hypoxic pulmonary vascular remodeling. However, the origin of the cells involved in this process is still not well understood. The present study was undertaken to test the hypothesis that transforming growth factor-β1 (TGF-β1) can induce transdifferentiation of fibroblasts into myofibroblasts, which might play a key role in the muscularization of non-muscular pulmonary arterioles. It was found that mean pulmonary arterial pressure increased significantly after 7 d of hypoxia. Pulmonary artery remodeling index and fight ventricular hypertrophy became evident after 14 d of hypoxia. The distribution of nonmuscular, partially muscular, and muscular vessels was significantly different after 7 d of hypoxia. Immunocytochemistry results demonstrated that the expression of α-smooth muscle actin was increased in intra-acinar pulmonary arteries with increasing hypoxic time. TGF-β1 mRNA expression in pulmonary arterial walls was increased significantly after 14 d of hypoxia, but showed no obvious changes after 3 or 7 d of hypoxia. In pulmonary tunica adventitia and tunica media, TGF-β1 protein staining was poorly positive in control rats, but was markedly enhanced after 3 d of hypoxia, reaching its peak after 7 d of hypoxia. The myofibroblast phenotype was confirmed by electron microscopy, which revealed microfilaments and a well-developed rough endoplasmic reticulum. Taken together, our results suggested that TGF-β1 induces transdifferentiation of fibroblasts into myofibroblasts, which is important in hypoxic pulmonary vascular remodeling.  相似文献   

3.
Progression of pulmonary hypertension is associated with increased serine elastase activity and the proteinase-dependent deposition of the extracellular matrix smooth muscle cell survival factor tenascin-C (refs. 1,2). Tenascin-C amplifies the response of smooth muscle cells to growth factors, which are also liberated through matrix proteolysis. Recent organ culture studies using hypertrophied rat pulmonary arteries have shown that elastase inhibitors suppress tenascin-C and induce smooth muscle cell apoptosis. This initiates complete regression of the hypertrophied vessel wall by a coordinated loss of cellularity and extracellular matrix. We now report that elastase inhibitors can reverse advanced pulmonary vascular disease produced in rats by injecting monocrotaline, an endothelial toxin. We began oral administration of the peptidyl trifluoromethylketone serine elastase inhibitors M249314 or ZD0892 21 days after injection of monocrotaline. A 1-week treatment resulted in 92% survival, compared with 39% survival in untreated or vehicle-treated rats. Pulmonary artery pressure and muscularization were reduced by myocyte apoptosis and loss of extracellular matrix, specifically elastin and tenascin-C. After 2 weeks, pulmonary artery pressure and structure normalized, and survival was 86%, compared with 0% in untreated or vehicle-treated rats. Although concomitant treatment with various agents can reduce pulmonary hypertension, we have documented complete regression after establishment of malignant monocrotaline-induced disease.  相似文献   

4.
Idiopathic pulmonary arterial hypertension (PAH) is characterized by proliferation of pulmonary vascular endothelial and smooth muscle cells causing increased vascular resistance and right heart failure. Mutations in the bone morphogenetic protein receptor type 2 (BMPR2) are believed to cause the familial form of the disease. Reduced expression of BMPR2 is also noted in secondary PAH. Recent advances in the therapy of PAH have improved quality of life and survival, but many patients continue to do poorly. The possibility of treating PAH via improving BMPR2 signaling is thus a rational consideration. Such an approach could be synergistic with or additive to current treatments. We developed adenoviral vectors containing the BMPR2 gene. Transfection of cells in vitro resulted in upregulation of SMAD signaling and reduced cell proliferation. Targeted delivery of vector to the pulmonary vascular endothelium of rats substantially reduced the pulmonary hypertensive response to chronic hypoxia, as reflected by reductions in pulmonary artery and right ventricular pressures, right ventricular hypertrophy, and muscularization of distal pulmonary arterioles. These data provide further evidence for a role for BMPR2 in PAH and provide a rationale for the development of therapies aimed at improving BMPR2 signaling.  相似文献   

5.
Activation of AMP-activated protein kinase (AMPK) plays an important role in cardiovascular protection. It can inhibit arterial smooth muscle cell proliferation and cardiac fibroblast collagen synthesis induced by anoxia. However, the role of AMPK-dependent signalling cascades in the pulmonary vascular system is currently unknown. This study aims to determine the effects of AMPK on pulmonary hypertension and pulmonary vessel remodelling induced by hypoxia in rats using in vivo and in vitro studies. In vivo study: pulmonary hypertension, right ventricular hypertrophy and pulmonary vascular remodelling were found in hypoxic rats. Meanwhile, AMPKα1 and phosphorylated AMPKα1 were increased markedly in pulmonary arterioles and lung tissues. Mean pulmonary arterial pressure, index of right ventricular hypertrophy and parameters of pulmonary vascular remodelling, including vessel wall area/total area, density of nuclei in medial smooth muscle cells, and thickness of the medial smooth muscle cell layer were markedly suppressed by AICAR, an AMPK agonist. In vitro study: the expression of AMPKα1 and phosphorylated AMPKα1 was increased in pulmonary artery smooth muscle cells (PASMCs) under hypoxic conditions. The effects of PASMC proliferation stimulated by hypoxia were reinforced by treatment with Compound C, an AMPK inhibitor. AICAR inhibited the proliferation of PASMCs stimulated by hypoxia. These findings suggest that AMPK is involved in the formation of hypoxia-induced pulmonary hypertension and pulmonary vessel remodelling. Up-regulating AMPK can contribute to decreasing pulmonary vessel remodelling and pulmonary hypertension induced by hypoxia.  相似文献   

6.
兔肺内小动脉平滑肌细胞培养   总被引:11,自引:2,他引:9  
肺内小动脉用低浓度胰蛋白酶从肺动脉灌洗后,分离并剪碎,反复用培养基清洗。将沉淀的组织块行肺内小动脉平滑肌细胞培养。培养的细胞经光镜、透射电镜及免疫组化验证为典型的平滑肌细胞。此法简单、方便,可推广应用于各种小血管平滑肌细胞培养,为阻力血管、容量血管疾病的研究提供了理想的实验材料。  相似文献   

7.
探讨血管内皮细胞的特异丝裂原-血管内皮生长因子(VEGF)基因阻止血管内膜损伤后形成再狭窄的组织变化过程。建立球囊拉伤血管内膜的兔髂动脉模型,将携带VEGF目的基因的真核表达载体pcDNA3/VEGF经多聚赖氨酸处理的PTCA球囊导管导入拉伤的血管内膜。VEGF基因组拉伤2周时血管内壁有VEGF mRNA和蛋白的高表达。血管内膜内皮化较快。2周时即有许多血管内皮细胞呈岛状分布。4周时内膜基本恢复光滑。内膜平滑肌细胞增生明显减少,而对照组2周时血管内膜粗糙,基底膜暴露,拉伤后4周仍无内皮细胞再生,最后形成虫蚀样改变。血管中膜平滑肌细胞穿过内弹性膜进入内膜并大量增生,内膜增厚。VEGF基因定位导入血管内壁后。VEGF mRNA和蛋白高表达且发挥其生物学效应,内皮细胞岛状增生,加快内膜内皮化,减轻内膜增厚。  相似文献   

8.
The present study utilized a novel transgenic mouse model that expresses an inducible dominant negative mutation of the transforming growth factor (TGF)-beta type II receptor (DnTGFbetaRII mouse) to test the hypothesis that TGF-beta signaling plays an important role in the pathogenesis of chronic hypoxia-induced increases in pulmonary arterial pressure and vascular and alveolar remodeling. Nine- to 10-wk-old male DnTGFbetaRII and control nontransgenic (NTG) mice were exposed to normobaric hypoxia (10% O2) or air for 6 wk. Expression of DnTGFbetaRII was induced by drinking 25 mM ZnSO4 water beginning 1 wk before hypoxic exposure. Hypoxia-induced increases in right ventricular pressure, right ventricular mass, pulmonary arterial remodeling, and muscularization were greatly attenuated in DnTGFbetaRII mice compared with NTG controls. Furthermore, the stimulatory effects of hypoxic exposure on pulmonary arterial and alveolar collagen content, appearance of alpha-smooth muscle actin-positive cells in alveolar parenchyma, and expression of extracellular matrix molecule (including collagen I and III, periostin, and osteopontin) mRNA in whole lung were abrogated in DnTGFbetaRII mice compared with NTG controls. Hypoxic exposure had no effect on systemic arterial pressure or heart rate in either strain. These data support the hypothesis that endogenous TGF-beta plays an important role in pulmonary vascular adaptation to chronic hypoxia and that disruption of TGF-beta signaling attenuates hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, pulmonary arterial hypertrophy and muscularization, alveolar remodeling, and expression of extracellular matrix mRNA in whole lung.  相似文献   

9.
The contractile function of vascular smooth muscle cells within the media of resistance arterioles is tightly connected to the role of these blood vessels in the maintenance of blood pressure homeostasis. Thus, much effort has been made to understand the intracellular signaling pathways that control vascular smooth muscle cell contractility with the aim that this knowledge will provide important clues for reducing the impact of uncontrolled blood pressure in our society. A key set of surface receptors, the G-protein coupled receptors, has been widely associated with the regulation of vascular smooth muscle cell contractility. Indeed, many of the current treatments for hypertension involve selective inhibition of these receptors. More recently, we have begun to understand the cellular mechanisms whereby G-protein coupled pathways are connected to the contractile machinery of the vascular smooth muscle cells. What has emerged is a view where there are multiple intracellular control points for G-protein signaling that coordinate and focus the extracellular stimuli into meaningful physiologic responses. This work will examine some of the recent advances in our understanding of G-protein signaling and its regulation of contractile function in vascular smooth muscle cells.  相似文献   

10.
11.
The unusually muscular pulmonary arteries normally present in cattle and swine residing at low altitude are associated with a rapid development of severe pulmonary hypertension when those animals are moved to high altitude. Because these species lack collateral ventilation, they appear to have an increased dependence on hypoxic vasoconstriction to maintain normal ventilation-perfusion balance, which, in turn, maintains thickened arterial walls. The only other species known to lack collateral ventilation is the coati, which, similarly, has thick-walled pulmonary arteries. We tested the hypothesis that coatis will develop severe high-altitude pulmonary hypertension by exposing six of these animals (Nasua narica) to a simulated altitude of 4,900 m for 6 wk. After the exposure, pulmonary arterial pressures were hardly elevated, right ventricular hypertrophy was minimal, there was no muscularization of pulmonary arterioles, and, most surprising of all, there was a decrease in medial thickness of muscular pulmonary arteries. These unexpected results break a consistent cross-species pattern in which animals with thick muscular pulmonary arteries at low altitude develop severe pulmonary hypertension at high altitude.  相似文献   

12.
A study of the numbers of pulmonary endocrine cells per cm2 of section of lung obtained at combined heart-lung transplantation in 25 cases of plexogenic pulmonary arteriopathy demonstrated that the peptide which may become unduly prominent in pulmonary arterial disease is bombesin. The type of vascular disease in which bombesin becomes prominent is plexogenic pulmonary arteriopathy, be this primary or secondary to congenital heart disease. The increased prominence of bombesin appears to be related to the stage reached in the arteriopathy. Increased numbers of pulmonary endocrine cells are found in association with classic cellular plexiform lesions with narrow vascular channels. Their numbers are within normal limits when the plexiform lesions are mature with wide vascular channels and narrow intervening septa. The pulmonary endocrine cells are most prominent in the pre-plexiform stage when smooth muscle cells in the inner half of the media of the pulmonary artery show increased electron density, and migrate through gaps in the inner elastic lamina to reach the intima. Here they are transformed into myofibroblasts and proliferate. The migration of muscle cells may be related in some way to long-acting trophic factors released from the pulmonary endocrine cells into the surrounding tissues from which they reach the blood and hence the pulmonary arteries.  相似文献   

13.
Severe pulmonary arterial hypertension (PAH) occurs in idiopathic form and in association with diverse diseases. The pathological hallmarks are distal smooth muscle hypertrophy, obliteration of small pulmonary arteriole lumens, and disorganized cellular proliferation in plexiform lesions. In situ thrombosis is also observed. A detailed understanding of the disease progression has been hampered by the absence of an animal model bearing all the pathological features of human disease. To create a model with these characteristics, we gave young (200-g) rats monocrotaline 1 wk following left pneumonectomy; controls with vehicle treatment or sham operation were also studied. In experimental rats, pulmonary arteries had distal smooth muscle hypertrophy and proliferative perivascular lesions. The lesions had a plexiform appearance, occurred early in disease development, and were composed of cells expressing endothelial antigens. Three-dimensional microangiography revealed severe vascular pruning and disorganized vascular networks. We found that expression of tissue factor (TF), the membrane glycoprotein that initiates coagulation, facilitates angiogenesis, and mediates arterial injury in the systemic circulation, was increased in the pulmonary arterioles and plexiform-like lesions of the rats. TF was also heavily expressed in the vessels and plexiform lesions of humans with pulmonary arterial hypertension. We conclude that plexiform-like lesions can be reproduced in rats, and this model will facilitate experiments to address controversies about the role of these lesions in PAH. Increased TF expression may contribute to the prothrombotic diathesis and vascular cell proliferation typical of human disease.  相似文献   

14.
15.
Thickening of blood vessel segment intima (aorta, carotid, femoral and renal arteries) excised from 9 patients during surgery for nonspecific aortoarteritis was studied, using electron microscopic autoradiography. A large number of vessels of capillary and precapillary type were found among cells and in the intracellular substance of thickened intima. Vascular endotheliocytes and pericytes were easily labelled with 3H-uridine. It is suggested that cells appear in the thickened intima due to growth of small vessels of the capillary type, covered with pericytes which turn into fibroblast-like cells producing intracellular substance, and not due to smooth muscle cell migration from the media. In addition, it was found that the lumens of some vessels were filled with fibrillar material and that the cells underlying the vessel stayed apart, not forming a continuous circle. It is suggested that the damage of normal vascular structure can also result in the appearance of free cells.  相似文献   

16.
A potent polypeptide inhibitor of mammalian collagenases was purified to homogeneity from medium conditioned by bovine aortic smooth muscle cells maintained in culture. This inhibitor was purified by a series of molecular sieve and heparin-Sepharose chromatographic procedures; it had an apparent Mr of 28,500 and was a major protein secreted by the smooth muscle cells. It was found to be active against several mammalian collagenases including those obtained from rabbit and human fibroblasts and a tumor-specific type IV collagenase. In contrast, it had minimal inhibitory activity for bacterial collagenase and was inactive against the serine proteases plasmin and trypsin. The inhibitor shared many characteristics with tissue inhibitor of metalloproteinases including the ability to irreversibly inhibit susceptible proteinases, heat and acid resistance, and sensitivity to trypsin degradation and reduction-alkylation. A polyclonal rabbit antiserum with blocking activity which recognized the Mr 28,500 protein was obtained. This inhibitor, which is likely produced by bovine vascular smooth muscle cells in vivo to protect the collagen matrix of blood vessels, may play an important role in pathological conditions associated with alteration of collagen metabolism in tissues.  相似文献   

17.
This report describes the morphology of the smooth muscle cells, pericytes, and the perivascular autonomic nerve plexus of blood vessels in the rat mammary gland as visualized by scanning electron microscopy after removal of connective-tissue components. From the differences in cellular morphology, eight vascular segments were identified: 1) terminal arterioles (10-30 microns in outer diameter), with a compact layer of spindle-shaped and circularly oriented smooth muscle cells; 2) precapillary arterioles (6-12 microns), with a less compact layer of branched smooth muscle cells having circular processes; 3) arterial capillaries (4-7 microns), with " spidery " pericytes having mostly circularly oriented processes; 4) true capillaries (3-5 microns), with widely scattered pericytes having longitudinal and several circular processes; 5) venous capillaries (5-8 microns), with spidery pericytes having ramifying processes; 6) postcapillary venules (10-40 microns), with clustered spidery pericytes; 7) collecting venules (30-60 microns), with a discontinuous layer of circularly oriented and elongated stellate or branched spindle-shaped cells which may represent primitive smooth muscle cells; and 8) muscular venules (over 60 microns), with a discontinuous layer of ribbon-like smooth muscle cells having a series of small lateral projections. No focal precapillary sphincters were found. The nerve plexus appears to innervate terminal arterioles densely and precapillary arterioles less densely. Fine nerve fibers are only occasionally associated with arterial capillaries. Venous microvessels in the rat mammary gland seemingly lack innervation.  相似文献   

18.
19.
Qi JG  Ding YG  Tang CS  Du JB 《Peptides》2007,28(4):910-919
Adrenomedullin (ADM) is a novel cardiovascular-active peptide involved in vasodilation, reducing blood pressure and inhibiting vascular smooth muscle cell migration and proliferation. Previous research showed that ADM might be involved in the development of pulmonary hypertension. In this study, we investigated the effect of ADM subcutaneously administered by mini-osmotic pump (300 ng/h) on pulmonary hemodynamics and pulmonary vascular structure in hypoxic rats, as well as the influence of ADM on the proadrenomedullin N-terminal 20-peptide (PAMP) protein and mRNA expressions and its plasma concentrations. The results showed that ADM obviously decreased mean pulmonary artery pressure and the ratio of right ventricular mass to left ventricular plus septal mass in hypoxic rats. Chronic infusion of ADM lessened the muscularization of small pulmonary vessels, attenuated relative medial thickness and relative medial area of pulmonary arteries, and alleviated the ultrastructural changes in pulmonary arteries of hypoxic rats. ADM inhibited the proliferation of pulmonary artery smooth muscle cells, represented by a decrease in the expression of proliferative cell nuclear antigen (PCNA) in the pulmonary artery. Meanwhile, plasma PAMP concentration and the expression of PAMP protein and mRNA by pulmonary arteries in rats of hypoxia with ADM group were markedly decreased compared with those in hypoxic group. The results suggest that ADM ameliorated the development of hypoxic pulmonary vascular structural remodeling. Intramolecular regulation of ADM may play an important role in the regulation of hypoxic pulmonary hypertension by ADM.  相似文献   

20.
Insulin-like growth factor I stimulates mitogenesis in smooth muscle cells, and upregulates elastin synthesis in embryonic aortic tissue. Increased smooth muscle elastin synthesis may play an important role in vascular remodeling in chronic pulmonary hypertension. Therefore, we studied the effect of IGF-I on elastin and total protein synthesis by pulmonary arterial smooth muscle cells in vitro. Tropoelastin synthesis was measured by enzyme immunoassay, and total protein synthesis was measured by [3H]-leucine incorporation. In addition, the steady-state levels of tropoelastin mRNA were determined by slot blot hybridization. Incubation of confluent cultures with various concentrations of IGF-I resulted in a dose-dependent stimulation of elastin synthesis, with a 2.4-fold increase over control levels at 1000 ng/ml of IGF. The increase in elastin synthesis was reflected by a stimulation of the steady-state levels of tropoelastin mRNA. We conclude that IGF-I has potent elastogenic effects on vascular smooth muscle cells, and speculate that it may contribute to vascular wall remodeling in chronic hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号