首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyketides are a class of biologically active microbial and plant-derived metabolites that possess a high degree of structural and functional diversity and include many human therapeutics, among them anti-infective and anti-cancer drugs, growth promoters and anti-parasitic agents. The macrolide antibiotics, characterized by a glycoside-linked macrolactone, constitute an important class of polyketides, including erythromycin and the natural ketolide anti-infective agent pikromycin. Here we describe new mechanistic details of macrolactone ring formation catalyzed by the pikromycin polyketide synthase thioesterase domain from Streptomyces venezuelae. A pentaketide phosphonate mimic of the final pikromycin linear chain-elongation intermediate was synthesized and shown to be an active site affinity label. The crystal structures of the affinity-labeled enzyme and of a 12-membered-ring macrolactone product complex suggest a mechanism for cyclization in which a hydrophilic barrier in the enzyme and structural restraints of the substrate induce a curled conformation to direct macrolactone ring formation.  相似文献   

2.
Summary Production of a lipopeptide antibiotic surfactin was carried out using a recombinantBacillus subtilis. Surfactin yield of the recombinant strain was about one and half times as much as that ofBacillus subtilis RB 14, the strain in which the surfactin gene was originated. This system is especially noteworthy because a recombinant strain surpassed the original strain in the production of a bacterial antibiotic as a secondary metabolite of the bacterium.  相似文献   

3.
The C-terminal thioesterase domain of the nonribosomal peptide synthetase producing the lipopetide surfactin (Srf TE) retains autonomous ability to generate the cyclic peptidolactone skeleton of surfactin when provided with a soluble beta-hydroxy-butyryl-heptapeptidyl thioester substrate. Utilizing the recently solved crystal structure [Bruner, S. D., et al. (2002) Structure 10, 301-310], the active-site nucleophile, Ser80, was changed to Cys, and the other members of the catalytic triad, Asp107 and His207, were changed to Ala, with the resulting mutants lacking detectable activity. Two cationic side chains in the active site, Lys111 and Arg120, were changed to Ala, causing an increased partitioning of the product to hydrolysis, as did a P26G mutant, mimicking the behavior of lipases. To evaluate recognition elements in substrates used by Srf TE, alterations to the fatty acyl group, the heptapeptide, and the thioester leaving group were made, and the resulting substrates were characterized for kinetic competency and flux of product to cyclization or hydrolysis. Alterations that could be accepted for cyclization were identified in all three parts of the substrate, although tolerance limits for changes varied. In addition, cocrystal structures of Srf TE with dipeptidyl boronate inhibitors were solved, illustrating the critical binding determinants of the substrate. On the basis of the structures and biochemical data, the cyclizing conformation of the surfactin peptide was modeled into the enzyme active site.  相似文献   

4.
Production of a lipopeptide antibiotic, surfactin, in solid state fermentation (SSF) on soybean curd residue, Okara, as a solid substrate was carried out using Bacillus subtilis MI113 with a recombinant plasmid pC112, which contains lpa-14, a gene related to surfactin production cloned at our laboratory from a wild-type surfactin producer, B. subtilis RB14. The optimal moisture content and temperature for the production of surfactin were 82% and 37 degrees C, respectively. The amount of surfactin produced by MI113 (pC112) was as high as 2.0 g/kg wet weight, which was eight times as high as that of the original B. subtilis RB14 at the optimal temperature for surfactin production, 30 degrees C. Although the stability of the plasmid showed a similar pattern in both SSF and submerged fermentation (SMF), production of surfactin in SSF was 4-5 times more efficient than in SMF. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
6.
Surfactin is a lipopeptide produced by Bacillus subtilis which possesses antimicrobial activity. We have studied the leakage and lysis of POPC vesicles induced by surfactin using calcein fluorescence de-quenching, isothermal titration calorimetry and 31P solid state NMR. Membrane leakage starts at a surfactin-to-lipid ratio in the membrane, R b ≈ 0.05, and an aqueous surfactin concentration of C Sw ≈ 2 μM. The transient, graded nature of leakage and the apparent coupling with surfactin translocation to the inner leaflet of the vesicles, suggests that this low-concentration effect is due to a bilayer-couple mechanism. Different permeabilization behaviour is found at R b ≈ 0.15 and attributed to surfactin-rich clusters, which can induce leaks and stabilize them by covering their hydrophobic edges. Membrane lysis or solubilization to micellar structures starts at R bsat = 0.22 and C Sw = 9 μM and is completed at R msol = 0.43 and C Sw = 11 μM. The membrane–water partition coefficient of surfactin is obtained as K = 2 × 104 M−1. These data resolve inconsistencies in the literature and shed light on the variety of effects often referred to as detergent-like effects of antibiotic peptides on membranes. The results are compared with published parameters characterizing the hemolytic and antibacterial activity. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

7.
Many secondary metabolic peptides from bacteria and fungi are produced by non-ribosomal peptide synthetases (NRPS) where the final step of biosynthesis is often catalysed by designated thioesterase domains. Here, we report the 1.8A crystal structure of the fengycin thioesterase (FenTE) from Bacillus subtilis F29-3, which catalyses the regio- and stereoselective release and macrocyclization of the antibiotic fengycin from the NRPS template. A structure of the PMSF-inactivated FenTE domain suggests the location of the oxyanion hole and the binding site of the C-terminal residue l-Ile11 of the lipopeptide. Using a combination of docking, molecular dynamics simulations and in vitro activity assays, a model of the FenTE-fengycin complex was derived in which peptide cyclization requires strategic interactions with residues lining the active site canyon.  相似文献   

8.
Structural basis for endosomal targeting by the Bro1 domain   总被引:1,自引:0,他引:1  
Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs.  相似文献   

9.
10.
Monoubiquitination is a general mechanism for downregulating the activity of cell surface receptors by consigning these proteins for lysosome-mediated degradation through the endocytic pathway. The yeast Ede1 protein functions at the internalization step of endocytosis and binds monoubiquitinated proteins through a ubiquitin associated (UBA) domain. UBA domains are found in a broad range of cellular proteins but previous studies have suggested that the mode of ubiquitin recognition might not be universally conserved. Here we present the solution structure of the Ede1 UBA domain in complex with monoubiquitin. The Ede1 UBA domain forms a three-helix bundle structure and binds ubiquitin through a largely hydrophobic surface in a manner reminiscent of the Dsk2 UBA and the remotely homologous Cue2 CUE domains, for which high-resolution structures have been described. However, the interaction is dissimilar to the molecular models proposed for the hHR23A UBA domains bound to either monoubiquitin or Lys48-linked diubiquitin. Our mutational analyses of the Ede1 UBA domain-ubiquitin interaction reveal several key affinity determinants and, unexpectedly, a negative affinity determinant in the wild-type Ede1 protein, implying that high-affinity interactions may not be the sole criterion for optimal function of monoubiquitin-binding endocytic proteins.  相似文献   

11.
The neuronal protein FE65 functions in brain development and amyloid precursor protein (APP) signaling through its interaction with the mammalian enabled (Mena) protein and APP, respectively. The recognition of short polyproline sequences in Mena by the FE65 WW domain has a central role in axon guidance and neuronal positioning in the developing brain. We have determined the crystal structures of the human FE65 WW domain (residues 253-289) in the apo form and bound to the peptides PPPPPPLPP and PPPPPPPPPL, which correspond to human Mena residues 313-321 and 347-356, respectively. The FE65 WW domain contains two parallel ligand-binding grooves, XP (formed by residues Y269 and W280) and XP2 (formed by Y269 and W271). Both Mena peptides adopt a polyproline helical II conformation and bind to the WW domain in a forward (N-C) orientation through selection of the PPPPP motif by the XP and XP2 grooves. This mode of ligand recognition is strikingly similar to polyproline interaction with SH3 domains. Importantly, comparison of the FE65 WW structures in the apo and liganded forms shows that the XP2 groove is formed by an induced-fit mechanism that involves movements of the W271 and Y269 side-chains upon ligand binding. These structures elucidate the molecular determinants underlying polyproline ligand selection by the FE65 WW domain and provide a framework for the design of small molecules that would interfere with FE65 WW-ligand interaction and modulate neuronal development and APP signaling.  相似文献   

12.
Surfactin, a cyclic lipopeptide antibiotic and biosurfactant produced by Bacillus subtilis, is well-known for its interactions with artificial and biomembrane systems (e.g., bacterial protoplasts or enveloped viruses). To assess the applicability of this antiviral and antibacterial drug, we determined the cytotoxicity of surfactin with a 50% cytotoxic concentration of 30 to 64 microM for a variety of human and animal cell lines in vitro. Concomitantly, we observed an improvement in proliferation rates and changes in the morphology of mycoplasma-contaminated mammalian cells after treatment with this drug. A single treatment over one passage led to complete removal of viable Mycoplasma hyorhinis cells from various adherent cell lines, and Mycoplasma orale was removed from nonadherent human T-lymphoid cell lines by double treatment. This effect was monitored by a DNA fluorescence test, an enzyme-linked immunosorbent assay, and two different PCR methods. Disintegration of the mycoplasma membranes as observed by electron microscopy indicated the mode of action of surfactin. Disintegration is obviously due to a physicochemical interaction of the membrane-active surfactant with the outer part of the lipid membrane bilayer, which causes permeability changes and at higher concentrations leads finally to disintegration of the mycoplasma membrane system by a detergent effect. The low cytotoxicity of surfactin for mammalian cells permits specific inactivation of mycoplasmas without significant deleterious effects on cell metabolism and the proliferation rate in cell culture. These results were used to develop a fast and simple method for complete and permanent inactivation of mycoplasmas in mammalian monolayer and suspension cell cultures.  相似文献   

13.
C Ullrich  B Kluge  Z Palacz  J Vater 《Biochemistry》1991,30(26):6503-6508
The lipopeptide antibiotic surfactin is a potent extracellular biosurfactant produced by various Bacillus subtilis strains. Biosynthesis of surfactin was studied in a cell-free system prepared from B. subtilis ATCC 21332 and OKB 105, which is a transformant producing surfactin in high yield [Nakano, M. M., Marahiel, M. A., & Zuber, P. (1988) J. Bacteriol. 170, 5662-5668]. Cell material was disintegrated by treatment with lysozyme and French press. A cell-free extract was prepared by ammonium sulfate fractionation, which catalyzed the formation of surfactin at the expense of ATP. Lipopeptide biosynthesis required the L-amino acid components of surfactin and D-3-hydroxytetradecanoyl-coenzyme A thioester. D-Leucine which is present in surfactin was not utilized but inhibited the biosynthetic process. The structure of surfactin, synthesized enzymatically in vitro, was confirmed by chromatographic comparison with the authentic compound and by amino acid analyses. An enzyme fraction was prepared by gel permeation chromatography which catalyzed ATP/pyrophosphate exchange reactions dependent on the component amino acids of surfactin. This enzyme fraction was capable of binding substrate amino acids covalently, probably via thioester linkages. The formation of these intermediates was inhibited by various thiol blocking reagents and phenylmethanesulfonyl fluoride. De novo synthesis of the lipopeptide was not observed with this partially purified enzyme fraction most likely due to the lack of an acyltransferase activity required for linking the beta-hydroxy fatty acid to the peptide moiety.  相似文献   

14.
The antibiotic amiclenomycin blocks the biosynthesis of biotin by inhibiting the pyridoxal-phosphate-dependent enzyme diaminopelargonic acid synthase. Inactivation of the enzyme is stereoselective, i.e. the cis isomer of amiclenomycin is a potent inhibitor, whereas the trans isomer is much less reactive. The crystal structure of the complex of the holoenzyme and amiclenomycin at 1.8 A resolution reveals that the internal aldimine linkage between the cofactor and the side chain of the catalytic residue Lys-274 is broken. Instead, a covalent bond is formed between the 4-amino nitrogen of amiclenomycin and the C4' carbon atom of pyridoxal-phosphate. The electron density for the bound inhibitor suggests that aromatization of the cyclohexadiene ring has occurred upon formation of the covalent adduct. This process could be initiated by proton abstraction at the C4 carbon atom of the cyclohexadiene ring, possibly by the proximal side chain of Lys-274, leading to the tautomer Schiff base followed by the removal of the second allylic hydrogen. The carboxyl tail of the amiclenomycin moiety forms a salt link to the conserved residue Arg-391 in the substrate-binding site. Modeling suggests steric hindrance at the active site as the determinant of the weak inhibiting potency of the trans isomer.  相似文献   

15.
Antibody 4C6 efficiently catalyzes a cationic cyclization reaction. Crystal structures of the antibody 4C6 Fab in complex with benzoic acid and in complex with its eliciting hapten were determined to 1.30A and 2.45A resolution, respectively. These crystal structures, together with computational analysis, have elucidated a possible mechanism for the monocyclization reaction. The hapten complex revealed a combining site pocket with high shape complementarity to the hapten. This active site cleft is dominated by aromatic residues that shield the highly reactive carbocation intermediates from solvent and stabilize the carbocation intermediates through cation-pi interactions. Modeling of an acyclic olefinic sulfonate ester substrate and the transition state (TS) structures shows that the chair-like transition state is favored, and trapping by water directly produces trans-2-(dimethylphenylsilyl)-cyclohexanol, whereas the less favored boat-like transition state leads to cyclohexene. The only significant change observed upon hapten binding is a side-chain rotation of Trp(L89), which reorients to form the base of the combining site. Intriguingly, a benzoic acid molecule was sequestered in the combining site of the unliganded antibody. The 4C6 active site was compared to that observed in a previously reported tandem cyclization antibody 19A4 hapten complex. These cationic cyclization antibodies exhibit convergent structural features with terpenoid cyclases that appear to be important for catalysis.  相似文献   

16.
The adaptor proteins AP-1 and GGA regulate membrane traffic between the trans-Golgi network (TGN) and endosomes/lysosomes through ARF-regulated membrane association, recognition of sorting signals, and recruitment of clathrin and accessory proteins. The gamma 1-adaptin subunits of AP-1 and GGA possess homologous ear domains involved in the recruitment of accessory proteins, gamma-synergin and Rabaptin-5. The crystal structure of the human gamma 1-adaptin ear domain consists solely of an immunoglobulin-like fold, unlike the alpha-adaptin ear domain. Structure-based mutational analyses reveal a binding site for the accessory proteins that is composed of conserved basic residues, indicating that the recruitment mechanism in gamma 1-adaptin and GGA is distinct from that in alpha-adaptin.  相似文献   

17.
In isoleucyl-tRNA synthetase (IleRS), the "editing" domain contributes to accurate aminoacylation by hydrolyzing the mis-synthesized intermediate, valyl-adenylate, in the "pre-transfer" editing mode and the incorrect final product, valyl-tRNA(Ile), in the "post-transfer" editing mode. In the present study, we determined the crystal structures of the Thermus thermophilus IleRS editing domain complexed with the substrate analogues in the pre and post-transfer modes, both at 1.7 A resolution. The active site accommodates the two analogues differently, with the valine side-chain rotated by about 120 degrees and the adenosine moiety oriented upside down. The substrate-binding pocket adjusts to the adenosine-monophosphate and adenosine moieties in the pre and post-transfer modes, respectively, by flipping the Trp227 side-chain by about 180 degrees . The substrate recognition mechanisms of IleRS are characterized by the active-site rearrangement between the two editing modes, and therefore differ from those of the homologous valyl and leucyl-tRNA synthetases from T.thermophilus, in which the post-transfer mode is predominant. Both modes of editing activities were reduced by replacements of Trp227 with Ala, Val, Leu, and His, but not by those with Phe and Tyr, indicating that the aromatic ring of Trp227 is important for the substrate recognition. In both editing modes, Thr233 and His319 recognize the substrate valine side-chain, regardless of the valine side-chain rotation, and reject the isoleucine side-chain. The T233A and H319A mutants have detectable editing activities against the cognate isoleucine.  相似文献   

18.
19.
Structural basis for the antibiotic activity of ketolides and azalides   总被引:11,自引:0,他引:11  
The azalide azithromycin and the ketolide ABT-773, which were derived by chemical modifications of erythromycin, exhibit elevated activity against a number of penicillin- and macrolide-resistant pathogenic bacteria. Analysis of the crystal structures of the large ribosomal subunit from Deinococcus radiodurans complexed with azithromycin or ABT-773 indicates that, despite differences in the number and nature of their contacts with the ribosome, both compounds exert their antimicrobial activity by blocking the protein exit tunnel. In contrast to all macrolides studied so far, two molecules of azithromycin bind simultaneously to the tunnel. The additional molecule also interacts with two proteins, L4 and L22, implicated in macrolide resistance. These studies illuminated and rationalized the enhanced activity of the drugs against specific macrolide-resistant bacteria.  相似文献   

20.
Surfactin, an acidic lipopeptide produced by various strains of Bacillus subtilis, behaves as a very powerful biosurfactant and possesses several other interesting biological activities. This work deals with the molecular mechanism of membrane permeabilization by incorporation of surfactin. The surfactin-induced vesicle contents leakage was monitored by following release of carboxyfluorescein entrapped into unilamellar vesicles made of palmitoyloleoylphosphatidylcholine (POPC). The effect of the addition of cholesterol, dipalmitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylethanolamine (POPE) was also checked. It was observed that surfactin was able to induce content leakage at concentrations far below the onset surfactin/lipid ratio for membrane solubilization to occur, which in our system was around 0.92. Electron microscopy showed that vesicles were present after addition of surfactin at a ratio below this value, whereas no vesicles could be observed at ratios above it. Cholesterol and POPE attenuated the membrane-perturbing effect of surfactin, whereas the effect of DPPC was to promote surfactin-induced leakage, indicating that bilayer sensitivity to surfactin increases with the lipid tendency to form lamellar phases, which is in agreement with our previous observation that surfactin destabilizes the inverted-hexagonal structure. Fourier-transform infrared spectroscopy (FTIR) was used to specifically follow the effect of surfactin on different parts of the phospholipid bilayer. The effect on the C=O stretching mode of vibration of POPC indicated a strong dehydration induced by surfactin. On the other hand, the C-H stretching bands showed that the lipopeptide interacts with the phospholipid acyl chains, resulting in considerable membrane fluidization. The reported effects could be useful to explain surfactin-induced 'pore' formation underlying the antibiotic and other important biological actions of this bacterial lipopeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号