首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study is to determine whether radiation heat transfer is responsible for the position dependence of heat transfer known as the edge vial effect. Freeze drying was performed on a laboratory-scale freeze dryer using pure water with vials that were fully stoppered but had precision cut metal tubes inserted in them to ensure uniformity in resistance to vapor flow. Sublimation rates were determined gravimetrically. Vials were sputter-coated with gold and placed at selected positions on the shelf. Average sublimation rates were determined for vials located at the front, side, and center of an array of vials. Sublimation rates were also determined with and without the use of aluminum foil as a radiation shield. The effect of the guardrail material and its contribution to the edge vial effect by conduction heat transfer was studied by replacing the stainless steel band with a low-thermal conductivity material (styrofoam). The emissivities (ε) of relevant surfaces were measured using an infrared thermometer. Sublimation rate experiments were also conducted with vials suspended off the shelf to study the role of convection heat transfer. It was found that sublimation rates were significantly higher for vials located in the front compared to vials in the center. Additional radiation shields in the form of aluminum foil on the inside door resulted in a decrease in sublimation rates for the front vials and to a lesser extent, the center vials. There was a significant decrease in sublimation rate for goldcoated vials (ε≈0.4) placed at the front of an array when compared to that of clear vials (ε≈0.9). In the case of experiments with vials suspended off the shelf, the heat transfer coefficient was found to be independent of chamber pressure, indicating that pure convection plays no significant role in heat transfer. Higher sublimation rates were observed when the steel band was used instead of Styrofoam while the highest sublimation rates were obtained in the absence of the guardrail, indicating that the metal band can act as a thermal shield but also transmits some heat from the shelf via conduction and radiation. Atypical radiation heat transfer is responsible for higher sublimation rates for vials located at the front and side of an array. However, the guardrail contributes a little to heat transfer by conduction.  相似文献   

2.
Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was ?1°C. The solubility of ibuprofen in this eutectic was 282.11?±?6.67 mg mL?1 and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.  相似文献   

3.
In this study the oxidative behavior of carbons derived from cellulose and lignin were compared using thermogravimetric analysis (TGA). Specific surface area and chemical composition of the two types of carbon were analyzed using nitrogen adsorption at 77 K and infrared spectroscopy respectively. The results demonstrate that cellulose carbon has a higher reaction order and lower activation energy than lignin carbon under identical experimental conditions when they were prepared at temperatures lower than 500 °C. However, such differences were considerably reduced for the carbon samples prepared at temperatures greater than 700 °C. It was verified that lignin carbon is more stable than cellulose carbon due to its higher content of aromatic structures when they are prepared at lower temperature. The specific surface area and porosity have a more limited contribution to the differential oxidative behaviors of the two types of carbon. This research has significance related to the formation of carbon nanotubes from plant materials during low temperature carbonization.  相似文献   

4.
New experimental results concerning molecular interactions between the nitrogen bases of nucleic acids in the crystalline phase and in vacuo are reported. The temperature dependence of the evaporation rate is measured for solid species. The sensitivity of conventional methods of sublimation heat measurements was improved essentially using a quartz resonator serving as a precise sensor of evaporation rate. Sublimation heats were found for both canonical bases and a number of their derivatives. The in vacuo formation of base associates interacting through hydrogen bonds was observed with a field mass spectrometer. The dimer formation enthalpies, which are indicative of a stronger attraction in complementary pairs compared with noncomplementary ones, were derived from the temperature dependence of ionic currents. Hydrogen-bound complexes of more intricate associates (base trimers and aqueous molecules associates) were studied. The energy gain in the formation of trimers of identical molecules was shown to be larger (per base molecule) than that for dimers.  相似文献   

5.
A simple method for evaluating a range of molecular movements in crystals has been developed. This estimate is needed to calculate the entropy of binding, in particular in protein–ligand complexes. The estimate is based on experimental data concerning the enthalpy of sublimation and saturated vapor pressure obtained for 15 organic crystals with melting temperatures of 25–80°С. For this set, we calculated the values of the average range and the corresponding average amplitude of molecular movements in crystals that constituted 0.75 ± 0.14 Å and 0.18 ± 0.03 Å, respectively. The entropy of sublimation calculated based on the average range of molecular movements in crystals was well consistent with the experimental data.  相似文献   

6.
In developing compositional models for biomass-based diesel fuel extenders, volatility properties of medium- and long-chain saturated triglycerides are essential to predict the impact of low levels of these compounds in mixtures with short-chain triglycerides. A thermogravimetric analysis (TGA) method for rapid measurement of boiling points and vapor pressure was used to obtain data for four pure medium- and long-chain triglycerides. Normal boiling points at 1 atm and the temperature dependence of vapor pressure from 760 mm down to 25 mm Hg were obtained for trilaurin (C12:0), trimyristin (C14:0), tripalmitin (C16:0), and tristearin (C18:0). The data showed good agreement with the Clausius-Clapeyron model for temperature dependence of vapor pressure up to 1 atm pressure. The results of this study were consistent with those obtained using differential scanning calorimetry (DSC) and with data previously reported for reduced pressure.  相似文献   

7.
We report on the gel-state microaggregation in binary mixtures of diacylphosphatidylcholines over temperatures ranging from -19 degrees C to near the gel-to-liquid crystal transition. Microaggregates with lateral dimensions in the range 1-100 chains were detected and measured with an isotope infrared method that relates the splitting or the shape of the methylene scissors band to aggregate size. Measurements were made on fully hydrated dispersions of diC18DPC/diC20HPC, diC18DPC/diC22HPC, and diC18DPC/diC24HPC at molar ratios of 4:1. Low levels of aggregation were determined with reference to the spectrum of the random mixture diC18DPC/diC18HPC. For diC18DPC/diC20HPC at -19 degrees C, which previous calorimetric measurements have indicated is a nearly ideal, we found about 4% of the minority component chains to be involved in aggregates. For diC18DPC/diC22HPC, the value increased to about 11%. DiC18DPC/diC24HPC was found to be highly fractionated, in agreement with the earlier studies. The unit subcell, which defines the type of acyl-chain packing, was determined for the components of the mixtures. The temperature behavior of the phases and the temperatures at which the minority component domains undergo dissolution were determined.  相似文献   

8.
Three new solvates [mono-dimethyl sulfoxide (mono-DMSO), mono-dimethyl acetamide (mono-DMA) and mono-dimethyl formamide (mono-DMF)] of 10-Deacetyl baccatin III, were generated by slow evaporation in DMSO, DMF, and DMSO/DMA (1:1) solvent systems respectively. Two concomitant forms mono-DMSO(a new form) and di-DMSO (a known form) were obtained in the DMSO solvent system. Yet two other concomitant forms mono-DMA (a new form) and di-DMSO (a known form) were obtained in DMSO/DMA (1:1) solvent system. A fourth solvate mono-DMF (a new form) was crystallized in unimolar ratio using DMF as a solvent. These solvates were characterized using powder X-ray diffraction, differential scanning calorimeter, thermogravimetric analysis (TGA), and spectroscopic [13C solid-state nuclear magnetic spectroscopy, solution 1H NMR, and Fourier transform infrared] techniques. The interactions between host and guest molecules were elucitated by single-crystal X-ray diffraction data. In all the cases, guest molecules are connected to the host molecules by O–H···O hydrogen bonds. A remarkable difference in the desolvation onset temperatures of di- and mono-DMSO solvates was observed which was also featured by a corresponding weight loss during TGA analysis.  相似文献   

9.
Tris‐(8‐hydroxyquionoline)aluminum (Alq3) was synthesized and coated on to a glass substrate using the dip coating method. The structural and optical properties of the Alq3 film after thermal annealing from 50°C to 300°C in 50° steps was studied. The films have been prepared with 2 to 16 layers (42–324 nm). The thickness and thermal annealing of Alq3 films were optimized for maximum luminescence yield. The Fourier transform infrared spectrum confirms the formation of quinoline with absorption in the region 700 ? 500/cm. Partial sublimation and decomposition of quinoline ion was observed with the Alq3 films annealed at 300°C. The X‐ray diffraction pattern of the Alq3 film annealed at 50°C to 150°C reveals the amorphous nature of the films. The Alq3 film annealed above 150°C were crystalline nature. Film annealed at 150°C exhibits a photoluminescence intensity maximum at 512 nm when excited at 390 nm. The Alq3 thin film deposited with 10 layers (220 nm) at 150°C exhibited maximum luminescence yield. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The effect of temperature on evaporation and biodegradation rates during soil bioventing (SBV) was studied for a mixture of toluene and decane in bench-scale soil columns at a continuous air flow and consecutively at two different flow rates. The effect of temperature on SBV was monitored by GC headspace analysis of contaminant, CO2 and O2 concentrations in the soil gas over time. Separation of evaporation and biodegradation processes into three different phases based on their rates was used together with Q10 and E10 (values that give the factor by which biodegradation and evaporation rates increase when the temperature is raised by 10 degrees) to compare quantitatively the removal kinetics at 10 and 20°C. Adsorption of toluene and decane onto soil (a phase partitioning process) at 20 and 10°C was described with linear Freundlich isotherms. A temperature decrease from 20 to 10°C resulted in an increase of soil-air partitioning coefficients by a factor of 1.8 and of 2.1 for toluene and decane, respectively. The mean Q10 value for the biodegradation of toluene was found to be 2.2 for a temperature rise from 10 to 20°C. A toluene content in the soil gas above 75% of the saturation concentration inhibited biodegradation at both temperatures. The SBV efficiency was dependent on temperature with respect to remediation time. SBV at 20°C resulted in a 99.8% and a 98.7% reduction of toluene and decane initial concentrations, respectively. To reach similar results at 10°C, about 1.6 times as much time and 1.4 times as much air were required; however, at both temperatures the total amounts of biodegraded hydrocarbons were approximately the same. The evaporation-to-biodegradation ratios at 20°C were 82.5:17.5 for toluene and 16:84 for decane, whereas at 10 °C they were 71:29 and 2:98, respectively. A comparison of Q10 values showed that, except during the initial phase of SBV, only a modest decrease in biodegradation rates should be expected after a decrease in temperature from 20 to 10°C. Flow rate reduction had a significant impact on the toluene evaporation rate at a higher temperature, whereas for decane this rate was only slightly affected by temperature. In contrast to decane, the ratio between toluene vapor pressures at 20 and 10°C may be used to predict the removal of toluene by evaporation during the above-mentioned phases of SBV, when evaporation is important.  相似文献   

11.
Temperature preference behaviour of gammarid crustaceans from depths between 600–2000 m in Lake Baikal was studied in a system which provided a stable temperature gradient at pressures ranging from 50–150 atm. At the pressure of their habitat, these animals show well-defined modal distributions of sojourn temperatures around mean values from 3.0–5.5°C, av. 3.9 ± 0.3°C; mean modal Tp is estimated at 3.5°C. Year-round habitat temperatures are 3.0–3.6°C. The effect of changing pressure upon sojourn temperatures was explored over the range 50–150 atm. The slope of the mean sojourn temperature/pressure curves was 2.1°C/100 atm, significantly greater than 0. Mean nodal temperature estimates indicate that the corresponding slope in the range of 50–100 atm is 3°C/100 atm, and in the range of 100–150 atm, is likely to exceed 5°C/100 atm.  相似文献   

12.
Chemical modification of sugarcane bagasse fiber was achieved by mercerization reaction and esterification reaction with anhydride acetic vapor. This is a new acetylation procedure. The results show that the fiber length and diameter are reduced after the reactions. Fourier transform infrared spectroscopy (FT-IR) studies produced clear evidence of the partial acetylation reaction. Optical microscopy revealed fibrillation in the acetylated fiber attributed to hemicellulose dissolution. The thermal stability measured by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) increased after acetylation and decreased after mercerization. The higher thermal stability of the acetylated fiber as compared with modified fibers in liquid medium was attributed to the small quantity of water and acetic acid present for the reaction in vapor phase. The lesser tensile strength of the acetylated fiber was due to fibrillation. The porous structure obtained favors migration of the polymer chains into the fiber acetylated, and thus it should enhance the polymer–fiber adhesion in polymer composites.  相似文献   

13.

In this present work, we synthesized poly (lactic acid) (PLA)/curcumin composite films using a twin-screw extruder and evaluated their mechanical, optical, thermal, and barrier properties. The composite films were characterized using Fourier transform infrared spectroscopy (FTIR), Universal testing machine (UTM), thermogravimetric analysis (TGA), ultraviolet-visible spectrometry (UV-visible), colorimetry, goniometry, and oxygen permeation analysis. The results confirmed that, the composite films exhibited better ultraviolet radiation-blocking properties and hydrophobicities than did the reference PLA film. The oxygen and water vapor permeabilities of the composite films were also lower than those of the reference PLA film.

  相似文献   

14.
The objective of this research was to estimate differences in heat and mass transfer between freeze dryers due to inherent design characteristics using data obtained from sublimation tests. This study also aimed to provide guidelines for convenient scale-up of the freeze-drying process. Data obtained from sublimation tests performed on laboratory-scale, pilot, and production freeze dryers were used to evaluate various heat and mass transfer parameters: nonuniformity in shelf surface temperatures, resistance of pipe, refrigeration system, and condenser. Emissivity measurements of relevant surfaces such as the chamber wall and the freeze dryer door were taken to evaluate the impact of atypical radiation heat transfer during scale-up. “Hot” and “cold” spots were identified on the shelf surface of different freeze dryers, and the impact of variation in shelf surface temperatures on the primary drying time and the product temperature during primary drying was studied. Calculations performed using emissivity measurements on different freeze dryers suggest that a front vial in the laboratory lyophilizer received 1.8 times more heat than a front vial in a manufacturing freeze dryer operating at a shelf temperature of −25°C and a chamber pressure of 150 mTorr during primary drying. Therefore, front vials in the laboratory are much more atypical than front vials in manufacturing. Steady-state heat and mass transfer equations were used to study a combination of different scaleup issues pertinent during lyophilization cycles commonly used for the freeze-drying of pharmaceuticals.  相似文献   

15.
The purpose of this work was to study the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to determine product dry-layer resistance to vapor flow. Product temperature and dry-layer resistance were obtained using MTM software installed on a laboratory freeze-dryer. The MTM resistance values were compared with the resistance values obtained using the “vial method.” The product dry-layer resistances obtained by MTM, assuming fixed temperature difference (ΔT; 2°C), were lower than the actual values, especially when the product temperatures and sublimation rates were low, but with ΔT determined from the pressure rise data, more accurate results were obtained. MTM resistance values were generally lower than the values obtained with the vial method, particularly whenever freeze-drying was conducted under conditions that produced large variations in product temperature (ie, low shelf temperature, low chamber pressure, and without thermal shields). In an experiment designed to magnify temperature heterogeneity, MTM resistance values were much lower than the simple average of the product resistances. However, in experiments where product temperatures were homogenous, good agreement between MTM and “vial-method” resistances was obtained. The reason for the low MTM resistance problem is the fast vapor pressure rise from a few “warm” edge vials or vials with low resistance. With proper use of thermal shields, and the evaluation of ΔT from the data, MTM resistance data are accurate. Thus, the MTM method for determining dry-layer resistance is a useful tool for freeze-drying process analytical technology.  相似文献   

16.
In this paper, a series of nano-hydroxyapatite(n-HA)/chitosan cross-linking composite membranes (n-HA; 0, 5, 10, 15, 20 and 30 wt%) were successfully developed by a simple casting/solvent evaporation method. n-HA with size about 20 nm in vertical diameter and about 100 nm in horizontal diameter was successfully synthesized by a hydro-thermal precipitation method, and then dispersed into chitosan/genipin solution with the aid of continuous ultrasound to develop n-HA/chitosan cross-linking composite membranes. The detailed characterizations including Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), water adsorption and tensile test were performed. With the analysis of FTIR spectra and TGA spectra, it suggested that there was existence of possible interactions between polymer and n-HA. Meanwhile, the n-HA content was greatly effected on the morphology as well as the tensile property of composite membrane. In vitro cytotoxicity test suggested that the developed n-HA/chitosan cross-linking composite membrane was non-cytotoxicity against L929 cells after 24 h's incubation might be suitable for further in vivo application.  相似文献   

17.
The influence of temperature on total glycoalkaloid (TGA) synthesis in tubers exposed to light (250 jumol m“2 s”2 PAR, Photosynthetically Active Radiation) or dark environments for 96 h was examined in three potato cultivars. Following 96 h light or dark the tubers were stored without light at 5°C or 24°C and TGA concentrations monitored over the subsequent 30 and 90 days. Exposure to light and cultivar were found to be major factors influencing TGA concentrations; temperature had no significant effect. TGA content in illuminated tubers of cvs ‘Pentland Hawk’ and ‘Kerrs Pink’ were significantly higher (P < 0.01) compared with tubers placed in the dark. TGA concentrations in cv. ‘Desiree’ increased significantly only following exposure to light at low temperatures (P < 0.05). Removal of tubers from storage at 5°C and immediate illumination at 24°C altered the ratio of glycoalkaloids in cvs ‘Pentland Hawk’ and ‘Kerrs Pink’. Regardless of cultivar and storage temperature TGA concentrations were higher at the end of the storage period compared with initial TGA concentrations. During storage TGA concentrations fluctuated widely and gradual accumulation of glycoalkaloids with time was rarely demonstrated except in cv. ‘Desiree’. Tubers stored at 24°C accumulated higher TGA concentrations than those stored at 5°C in cv. ‘Kerrs Pink’ but not in cvs ‘Pentland Hawk’ and ‘Desiree’. Tubers of cv. ‘Kerrs Pink’ exposed to light prior to storage accumulated glycoalkaloids more rapidly than unexposed tubers during storage at 24°C and occasionally at 5°C. Light enhanced glycoalkaloids are not degraded over time.  相似文献   

18.
Mesophilic Lactobacillus spp. are the dominant organisms in mature Cheddar cheese. The heat resistance of broth grown cultures of Lactobacillus plantarum DPC1919 at temperatures between 50 and 57.5 degrees C, Lact. plantarum DPC2102 at temperatures between 48 and 56 degrees C and Lact. paracasei DPC2103 at temperatures between 50 and 67.5 degrees C was determined. The z-values for Lact. plantarum DPC1919, Lact. Plantarum DPC2102 and Lact. paracasei DPC2103 were 6.7 degrees C, 6.2 degrees C and 5.3 degrees C, respectively. Lactobacillus paracasei DPC2103 showed evidence of injury and recovery, especially at higher temperatures. Milk grown cultures of strains DPC2102 and DPC2103 showed greater heat resistance than broth grown cultures, tailing of the death curves and a nonlinear z-curve. Of the three strains, Lact. paracasei DPC2103 had the potential to survive pasteurization temperatures, whether grown in milk or broth.  相似文献   

19.
Understanding the self‐assembly of peptides into ordered nanostructures is recently getting much attention since it can provide an alternative route for fabricating novel bio‐inspired materials. In order to realize the potential of the peptide‐based nanofabrication technology, however, more information is needed regarding the integrity or stability of peptide nanostructures under the process conditions encountered in their applications. In this study, we investigated the stability of self‐assembled peptide nanowires (PNWs) and nanotubes (PNTs) against thermal, chemical, proteolytic attacks, and their conformational changes upon heat treatment. PNWs and PNTs were grown by the self‐assembly of diphenylalanine (Phe–Phe), a peptide building block, on solid substrates at different chemical atmospheres and temperatures. The incubation of diphenylalanine under aniline vapor at 150°C led to the formation of PNWs, while its incubation with water vapor at 25°C produced PNTs. We analyzed the stability of peptide nanostructures using multiple tools, such as electron microscopy, thermal analysis tools, circular dichroism, and Fourier‐transform infrared spectroscopy. Our results show that PNWs are highly stable up to 200°C and remain unchanged when incubated in aqueous solutions (from pH 1 to 14) or in various chemical solvents (from polar to non‐polar). In contrast, PNTs started to disintegrate even at 100°C and underwent a conformational change at an elevated temperature. When we further studied their resistance to a proteolytic environment, we discovered that PNWs kept their initial structure while PNTs fully disintegrated. We found that the high stability of PNWs originates from their predominant β‐sheet conformation and the conformational change of diphenylalanine nanostructures. Our study suggests that self‐assembled PNWs are suitable for future nano‐scale applications requiring harsh processing conditions. Biotechnol. Bioeng. 2010; 105: 221–230. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
The flow physics in the product chamber of a freeze dryer involves coupled heat and mass transfer at different length and time scales. The low-pressure environment and the relatively small flow velocities make it difficult to quantify the flow structure experimentally. The current work presents the three-dimensional computational fluid dynamics (CFD) modeling for vapor flow in a laboratory scale freeze dryer validated with experimental data and theory. The model accounts for the presence of a non-condensable gas such as nitrogen or air using a continuum multi-species model. The flow structure at different sublimation rates, chamber pressures, and shelf-gaps are systematically investigated. Emphasis has been placed on accurately predicting the pressure variation across the subliming front. At a chamber set pressure of 115 mtorr and a sublimation rate of 1.3 kg/h/m2, the pressure variation reaches about 9 mtorr. The pressure variation increased linearly with sublimation rate in the range of 0.5 to 1.3 kg/h/m2. The dependence of pressure variation on the shelf-gap was also studied both computationally and experimentally. The CFD modeling results are found to agree within 10% with the experimental measurements. The computational model was also compared to analytical solution valid for small shelf-gaps. Thus, the current work presents validation study motivating broader use of CFD in optimizing freeze-drying process and equipment design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号