首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gamma carbonic anhydrases in plant mitochondria   总被引:2,自引:0,他引:2  
Three genes from Arabidopsis thaliana with high sequence similarity to gamma carbonic anhydrase (γCA), a Zn containing enzyme from Methanosarcina thermophila(CAM), were identified and characterized. Evolutionary and structural analyses predict that these genes code for active forms of γCA. Phylogenetic analyses reveal that these Arabidopsis gene products cluster together with CAM and related sequences from α and γ proteobacteria, organisms proposed as the mitochondrial endosymbiont ancestor. Indeed, in vitro and in vivo experiments indicate that these gene products are transported into the mitochondria as occurs with several mitochondrial protein genes transferred, during evolution, from the endosymbiotic bacteria to the host genome. Moreover, putative CAM orthologous genes are detected in other plants and green algae and were predicted to be imported to mitochondria. Structural modeling and sequence analysis performed in more than a hundred homologous sequences show a high conservation of functionally important active site residues. Thus, the three histidine residues involved in Zn coordination (His 81, 117 and 122), Arg 59, Asp 61, Gin 75, and Asp 76 of CAM are conserved and properly arranged in the active site cavity of the models. Two other functionally important residues (Glu 62 and Glu 84 of CAM) are lacking, but alternative amino acids that might serve to their roles are postulated. Accordingly, we propose that photosynthetic eukaryotic organisms (green algae and plants) contain γCAs and that these enzymes codified by nuclear genes are imported into mitochondria to accomplish their biological function.  相似文献   

2.
We report the identification by two hybrid screens of two novel similar proteins, called Arabidopsis thaliana gamma carbonic anhydrase like1 and 2 (AtCAL1 and AtCAL2), that interact specifically with putative Arabidopsis thaliana gamma Carbonic Anhydrase (AtCA) proteins in plant mitochondria. The interaction region that was located in the N-terminal 150 amino acids of mature AtCA and AtCA like proteins represents a new interaction domain. In vitro experiments indicate that these proteins are imported into mitochondria and are associated with mitochondrial complex I as AtCAs. All plant species analyzed contain both AtCA and AtCAL sequences indicating that these genes were conserved throughout plant evolution. Structural modeling of AtCAL sequences show a deviation of functionally important active site residues with respect to CAs but could form active interfaces in the interaction with AtCAs. We postulate a CA complex tightly associated to plant mitochondrial complex.  相似文献   

3.
Supercomplexes are defined associations of protein complexes, which are important for several cellular functions. This "quintenary" organization level of protein structure recently was also described for the respiratory chain of plant mitochondria. Except succinate dehydrogenase (complex II), all complexes of the oxidative phosphorylation (OXPOS) system (complexes I, III, IV and V) were found to form part of supercomplexes. Compositions of these supramolecular structures were systematically investigated using digitonin solubilizations of mitochondrial fractions and two-dimensional Blue-native (BN) polyacrylamide gel electrophoresis. The most abundant supercomplex of plant mitochondria includes complexes I and III at a 1:2 ratio (I1 + III2 supercomplex). Furthermore, some supercomplexes of lower abundance could be described, which have I2 + III4, V2, III2 + IV(1-2), and I1 + III2 + IV(1-4) compositions. Supercomplexes consisting of complexes I plus III plus IV were proposed to be called "respirasome", because they autonomously can carry out respiration in the presence of ubiquinone and cytochrome c. Plant specific alternative oxidoreductases of the respiratory chain were not associated with supercomplexes under all experimental conditions tested. However, formation of supercomplexes possibly indirectly regulates alternative respiratory pathways in plant mitochondria on the basis of electron channeling. In this review, procedures to characterize the supermolecular organization of the plant respiratory chain and results concerning supercomplex structure and function are summarized and discussed.  相似文献   

4.
Respiratory oxidative phosphorylation represents a central functionality in plant metabolism, but the subunit composition of the respiratory complexes in plants is still being defined. Most notably, complex II (succinate dehydrogenase) and complex IV (cytochrome c oxidase) are the least defined in plant mitochondria. Using Arabidopsis mitochondrial samples and 2D Blue-native/SDS-PAGE, we have separated complex II and IV from each other and displayed their individual subunits for analysis by tandem mass spectrometry and Edman sequencing. Complex II can be discretely separated from other complexes on Blue-native gels and consists of eight protein bands. It contains the four classical SDH subunits as well as four subunits unknown in mitochondria from other eukaryotes. Five of these proteins have previously been identified, while three are newly identified in this study. Complex IV consists of 9–10 protein bands, however, it is more diffuse in Blue-native gels and co-migrates in part with the translocase of the outer membrane (TOM) complex. Differential analysis of TOM and complex IV reveals that complex IV probably contains eight subunits with similarity to known complex IV subunits from other eukaryotes and a further six putative subunits which all represent proteins of unknown function in Arabidopsis. Comparison of the Arabidopsis data with Blue-native/SDS-PAGE separation of potato and bean mitochondria confirmed the protein band complexity of these two respiratory complexes in plants. Two-dimensional Blue-native/Blue-native PAGE, using digitonin followed by dodecylmaltoside in successive dimensions, separated a diffusely staining complex containing both TOM and complex IV. This suggests that the very similar mass of these complexes will likely prevent high purity separations based on size. The documented roles of several of the putative complex IV subunits in hypoxia response and ozone stress, and similarity between new complex II subunits and recently identified plant specific subunits of complex I, suggest novel biological insights can be gained from respiratory complex composition analysis.  相似文献   

5.
Cytochromec reductase from potato has been extensively studied with respect to its catalytic activities, its subunit composition, and the biogenesis of individual subunits. Molecular characterization of all 10 subunits revealed that the high-molecular-weight subunits exhibit striking homologies with the components of the general mitochondrial processing peptidase (MPP) from fungi and mammals. Some of the other subunits show differences in the structure of their targeting signals or in their molecular composition when compared to their counterparts from heterotrophic organisms. The proteolytic activity of MPP was found in the cytochromec reductase complexes from potato, spinach, and wheat, suggesting that the integration of the protease into this respiratory complex is a general feature of higher plants.  相似文献   

6.
The Arabidopsis GIGANTEA (GI) gene has been shown to be involved in the regulation of the oxidative stress response; however, little is known about the mechanism by which GI gene regulates the oxidative stress response. We show here that enhanced tolerance of the gi-3 mutant to oxidative stress is associated, at least in part, with constitutive activation of superoxide dismutase (SOD) and ascorbate peroxidase (APX) genes. The gi-3 plants were more tolerant to parquart (PQ) or hydrogen peroxide (H2O2)-mediated oxidative stress than wild-type plants. Analyses of concentrations of endogenous H2O2 and superoxide anion radicals as well as lipid peroxidation revealed that enhanced tolerance of gi-3 plants to oxidative stress was not due to defects in the uptake of PQ or the sequestration of PQ from its site of action, and that the gi-3 mutation alleviated oxidative damage of plant cells from PQ stress. Moreover, the gi-3 mutant showed constitutive activation of cytosolic Cu/ZnSOD and plastidic FeSOD as well as cytosolic APX1 and stromal APX genes, which at least in part contributed to constitutive increases in activities of anti-oxidative enzymes SOD and APX, respectively. To our knowledge, we demonstrate, for the first time, that GI gene regulates the oxidative stress response, at least in part, through modulation of SOD and APX genes.  相似文献   

7.
8.
Hu Z  Zhao Z  Wu Z  Fan Z  Chen J  Wu J  Li J 《Mitochondrion》2011,11(5):716-721
The efficient expression of exogenous gene in mitochondria of photosynthetic organism has been an insurmountable problem. In this study, the pBsLPNCG was constructed by inserting the egfp gene into a site between TERMINVREP-Left repeats and the cob gene in a fragment of mitochondrial DNA of Chlamydomonas reinhardtii CC-124 and introduced into the mitochondria of respiratory deficient dum-1 mutation of C. reinhardtii CC-2654. Sequencing and DNA Southern analyses revealed that egfp gene had been integrated into the mitochondrial genome of transgenic algae as expected and no other copy of egfp existed in their nucleic genome. Both the fluorescence detection and Western blot analysis confirmed the presence of eGFP protein in the transgenic algae; it indicated that the egfp gene was successfully expressed in the mitochondria of C. reinhardtii.  相似文献   

9.
10.
11.
In diffuse growing cells the orientation of cellulose fibrils determines mechanical anisotropy in the cell wall and hence also the direction of plant and organ growth. This paper reports on the mean or net orientation of cellulose fibrils in the outer epidermal wall of the whole Arabidopsis plant. This outer epidermal wall is considered as the growth-limiting boundary between plant and environment. In the root a net transverse orientation of the cellulose fibrils occurs in the elongation zone, while net random and longitudinal orientations are found in subsequent older parts of the differentiation zone. The position and the size of the transverse zone is related with root growth rate. In the shoot the net orientation of cellulose fibrils is transverse in the elongating apical part of the hypocotyl, and longitudinal in the fully elongated basal part. Leaf primordia and very young leaves have a transverse orientation. Throughout further development the leaf epidermis builds a very complex pattern of cells with a random orientation and cells with a transverse or a longitudinal orientation of the cellulose fibrils. The patterns of net cellulose orientation correlate well with the cylindrical growth of roots and shoots and with the typical planar growth of the leaf blade. On both the shoot and the root surface very specific patterns of cellulose orientation occur at sites of specific cell differentiation: trichome-socket cells complexes on the shoot and root hairs on the root.  相似文献   

12.
HVA22 is an ABA- and stress-inducible gene first isolated from barley (Hordeum vulgare L.). Homologues of HVA22 have been found in plants, animals, fungi and protozoa, but not in prokaryotes, suggesting that HVA22 plays a unique role in eukaryotes. Five HVA22 homologues, designated AtHVA22a, b, c, d and e, have been identified in Arabidopsis. These five AtHVA22 homologues can be separated into two subfamilies, with AtHVA22a, b and c grouped in one subfamily and AtHVA22d and e in the other. Phylogenetic analyses show that AtHVA22d and e are closer to barley HVA22 than to AtHVA22a, bandc, suggesting that the two subfamilies had diverged before the divergence of monocots and dicots. The distribution and size of exons of AtHVA22 homologues and barley HVA22 are similar, suggesting that these genes are descendents of a common ancestor. AtHVA22 homologues are differentially regulated by ABA, cold, dehydration and salt stresses. These four treatments enhance AtHVA22a, d and e expression, but have little or even suppressive effect on AtHVA22c expression. ABA and salt stress induce AtHVA22b expression, but cold stress suppresses ABA induction of this gene. Expression of AtHVA22d is the most tightly regulated by these four treatments among the five homologues. In general, AtHVA22 homologues are expressed at a higher level in flower buds and inflorescence stems than in rosette and cauline leaves. The expression level of these homologues in immature siliques is the lowest among all tissues analyzed. It is suggested that some of these AtHVA22 family members may play a role in stress tolerance, and others are involved in plant reproductive development.  相似文献   

13.
Three new, unique cDNA sequences encoding isoforms of calmodulin (CaM) were isolated from an Arabidopsis cDNA library cloned in gt10. These sequences (ACaM-4, -5, and -6) represent members of the Arabidopsis CaM gene family distinct from the three DNA sequences previously reported. ACaM-4 and -6 encode full-length copies of CaM mRNAs of ca. 0.75 kb. The ACaM-5 sequence encodes a partial length copy of CaM mRNA that is lacking sequences encoding the amino-terminal 10 amino acids of mature CaM and the initiator methionine. The derived amino acid sequence of ACaM-5 is identical to the sequences encoded by two of the previously characterized ACaM cDNAs, and is identical to TCH-1 mRNA, whose accumulation was increased by touch stimulation. The polypeptides encoded by ACaM-4 and -6 differ from that encoded by ACaM-5 by six and two amino acid substititions, respectively. Most of the deduced amino acid sequence substitutions in the Arabidopsis CaM isoforms occurred in the fourth Ca2+-binding domain. Polymerase chain reaction amplification assays of ACaM-4, -5 and -6 mRNA sequences indicated that each accumulated in Arabidopsis leaf RNA fractions, but only ACaM-4 and -5 mRNAs were detected in silique total RNA. The six different CaM cDNA sequences each hybridize with unique Eco RI restriction fragments in genomic Southern blots of Arabidopsis DNA, indicating that these sequences were derived from distinct structural genes. Our results suggest that CaM isoforms in Arabidopsis may have evolved to optimize the interaction of this Ca2+-receptor protein with specific subsets of response elements.  相似文献   

14.
By comparing the expression patterns of selected genes from Arabidopsis thaliana (L.) Heynh. grown either at 1 g or on a clinostat (horizontally or vertically inverted, 1 rpm), and either used directly or after hypergravity stimulation, we have shown that the pattern of expression did not proceed in a stereotypical manner. Rather, the selected genes fell into different classes. These classes include (i) those insensitive to the gravitational conditions, (ii) those that are regulated in an opposite manner by hypergravity and clinostat conditions, (iii) those that are desensitised to hypergravity by long-term culture on a clinostat, and (iv) those enhanced by such a treatment. Our data suggest that rapid reorientation of gene expression is likely to occur in response to changes in the gravitational conditions.  相似文献   

15.
16.
The plant cell wall is of supermolecular architecture, and is composed of various types of heterogeneous polymers. A few thousand enzymes and structural proteins are directly involved in the construction processes, and in the functional aspects of the dynamic architecture in Arabidopsis thaliana. Most of these proteins are encoded by multigene families, and most members within each family share significant similarities in structural features, but often exhibit differing expression profiles and physiological functions. Thus, for the molecular dissection of cell wall dynamics, it is necessary to distinguish individual members within a family of proteins. As a first step towards characterizing the processes involved in cell wall dynamics, we have manufactured a gene-specific 70-mer oligo microarray that consists of 765 genes classified into 30 putative families of proteins that are implicated in the cell wall dynamics of Arabidopsis. By using this array system, we identified several sets of genes that exhibit organ preferential expression profiles. We also identified gene sets that are expressed differentially at certain specific growth stages of the Arabidopsis inflorescence stem. Our results indicate that there is a division of roles among family members within each of the putative cell wall-related gene families.  相似文献   

17.
We have characterized a second nuclear gene (tufM) in Arabidopsis thaliana that encodes a eubacterial-like protein synthesis elongation factor Tu (EF-Tu). This gene does not closely resemble the previously described Arabidopsis nuclear tufA gene, which encodes the plastid EF-Tu, and does not contain sequence elements found in all cyanobacterial and plastid tufA genes. However, the predicted amino acid sequence includes an N-terminal extension which resembles an organellar targeting sequence and shares three unique sequence elements with mitochondrial EF-Tu's, from Saccharomyces cerevisiae and Homo sapiens, suggesting that this gene encodes the Arabidopsis mitochondrial EF-Tu. Consistent with this interpretation, the gene is expressed at a higher level in flowers than in leaves. Phylogenetic analysis confirms the mitochondrial character of the sequence and indicates that the human, yeast, and Arabidopsis tufM genes have undergone considerably more sequence divergence than their cytoplasmic counterparts, perhaps reflecting a cross-compartmental acceleration of gene evolution for components of the mitochondrial translation apparatus. As previously observed for tufA, the tufM gene is present in one copy in Arabidopsis but in several copies in other species of crucifers.  相似文献   

18.
Gene duplication is considered to be a source of genetic information for the creation of new functions. The Arabidopsis thaliana genome sequence revealed that a majority of plant genes belong to gene families. Regarding the problem of genes involved in the genesis of novel organs or functions during evolution, the reconstitution of the evolutionary history of gene families is of critical importance. A comparison of the intron/exon gene structure may provide clues for the understanding of the evolutionary mechanisms underlying the genesis of gene families. An extensive study of A. thaliana genome showed that families of duplicated genes may be organized according to the number and/or density of intron and the diversity in gene structure. In this paper, we propose a genomic classification of several A. thaliana gene families based on introns in an evolutionary perspective. abbreviations BGAL, -galactosidases; PCMP, plant combinatorial and modular protein  相似文献   

19.
Mitochondrial complex I dysfunction has been implicated in a number of brain pathologies, putatively owing to an increased rate of reactive oxygen species (ROS) release. However, the mechanisms regulating the ROS burden are poorly understood. In this study we investigated the effect of Ca2+ loads on ROS release from rat brain mitochondria with complex I partially inhibited by rotenone. The addition of 20 nm rotenone to brain mitochondria increased ROS release. Ca2+ (100 microm) alone had no effect on ROS release, but greatly potentiated the effects of rotenone. The effect of Ca2+ was decreased by ruthenium red. Ca2+-challenged mitochondria lose about 88% of their glutathione and 46% of their cytochrome c under these conditions, although this depends only on Ca2+ loading and not complex I inhibition. ADP in combination with oligomycin decreased the loss of glutathione and cytochrome c and free radical generation. Cyclosporin A alone was ineffective in preventing these effects, but augmented the protection provided by ADP and oligomycin. Non-specific permeabilization of mitochondria with alamethicin also increased the ROS signal, but only when combined with partial inhibition of complex I. These results demonstrate that Ca2+ can greatly increase ROS release by brain mitochondria when complex I is impaired.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号