首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the proteins secreted by choroid plexus of vertebrates, one protein is much more abundant than all others. In mammals, birds, and reptiles this protein is transthyretin, a tetramer of identical 15-kDa subunits. In this study choroid plexus from frogs, tadpoles, and toads incubated in vitro were found to synthesize and secrete one predominant protein. However, this consisted of one single 20-kDa polypeptide chain. It was expressed throughout amphibian metamorphosis. Part of its amino acid sequence was determined and used for construction of oligonucleotides for polymerase chain reaction. The amplified DNA was used to screen a toad choroid plexus cDNA library. Full-length cDNA clones were isolated and sequenced. The derived amino acid sequence for the encoded protein was 183 amino acids long, including a 20-amino acid presegment. The calculated molecular weight of the mature protein was 18,500. Sequence comparison with other proteins showed that the protein belonged to the lipocalin superfamily. Its expression was highest in choroid plexus, much lower in other brain areas, and absent from liver. Since no transthyretin was detected in proteins secreted from amphibian choroid plexus, abundant synthesis and secretion of transthyretin in choroid plexus must have evolved only after the stage of the amphibians.  相似文献   

2.
1. Chicken liver transthyretin cDNA hybridizes strongly with choroid plexus transthyretin mRNA from chickens, pigeons, quails and ducks. 2. In the chicken at hatching the choroid plexus has reached 70%, total brain 30%, and liver 5.8% of their organ masses in adults. 3. The proportion of transthyretin mRNA in total RNA is 0.45-times the adult value in the choroid plexus of the chicken at hatching. 4. In the liver at hatching, the proportion of transthyretin mRNA in total RNA is 1.1-times the value in adult chickens. 5. The pattern of maturation of transthyretin gene expression in chicken liver is comparable to that in precocial, but differs from that in altricial mammals.  相似文献   

3.
Synthesis of total protein and of transthyretin in rat choroid plexus was studied by measuring the incorporation of radioactive leucine into proteins in choroid plexus tissue incubated in vitro. About 20% of the protein newly synthesized in choroid plexus and about 50% of the newly synthesized protein secreted into the medium was transthyretin. Evidently, the choroid plexus is very active in the biosynthesis of this carrier protein for thyroid hormones and could be an important link in the chemical communication between the body and the central nervous system. Acute inflammation, which leads to a profound rearrangement of the pattern of plasma protein synthesis rates in the liver, produced distinct changes in the levels for plasma protein mRNAs in the liver. The levels of the mRNAs for alpha 1-acid glycoprotein and major acute phase alpha 1-protein increased more than 30-fold, those for transthyretin and albumin decreased to 27 and 57% of normal, respectively. The pattern of the observed changes in the levels of mRNAs for plasma proteins in the liver was independent of whether the acute inflammation was produced by subcutaneous injection of turpentine or intraperitoneal injection of a suspension of talcum. However, levels of transthyretin mRNA in choroid plexus were affected only very slightly, or not at all. Apparently, transthyretin synthesis in liver and choroid plexus is regulated independently during the acute phase response. No mRNA was detected in choroid plexus for albumin, alpha 1-acid glycoprotein, and major acute phase alpha 1-protein under any conditions.  相似文献   

4.
Transthyretin cDNA was isolated from a rat liver cDNA library. Analysis of the nucleotide sequence revealed a signal peptide-like sequence preceding a section coding for a full length subunit and an untranslated sequence at the 3' end. The deduced primary structure of rat transthyretin was compared with that of human transthyretin. It was highly conserved at the binding sites for thyroxine and the interfaces and core regions of the subunits. The cDNA for transthyretin was used to measure mRNA levels by hybridization. During acute inflammation, the amount of transthyretin mRNA in liver decreased (reaching a minimum of 25% of the normal level 36 h after inducing inflammation), suggesting regulation of transthyretin synthesis at the mRNA level. Transthyretin mRNA was found only in the liver and in the choroid plexus, but not in other parts of the central nervous system nor in the adrenal glands, kidney, spleen, testes, heart, lung, intestine, and ovaries. One gram of choroid plexus contained about 25 times larger amounts of transthyretin mRNA than 1 g of liver. By synthesizing an important hormone carrier protein, the choroid plexus may be an important link in the chemical communication between the central nervous system and the bloodstream.  相似文献   

5.
6.
We used a combination of immunohistochemical and molecular-biological techniques to investigate the localization of transthyretin (TTR) in the brains of adult and fetal rats. The immunohistochemical studies employed antibodies purified by immunosorbent affinity chromatography, permitting the specific staining and localization of TTR using the unlabeled peroxidase-antiperoxidase method. TTR mRNA levels were measured by Northern-blot analysis of poly (A+) RNA, followed by hybridization to 32P-labeled TTR cDNA; TTR mRNA was localized in brain tissue sections by in situ hybridization. Immunoreactive TTR was found to be specifically localized in the choroid plexus epithelial cells of adult rat brain. High levels of TTR mRNA were found in poly (A+) RNA samples obtained from the choroid plexus. In addition, the specific localization of TTR mRNA in the epithelial cells of the choroid plexus was demonstrated by in situ hybridization. Neither immunoreactive TTR nor TTR mRNA were found in other regions of adult rat brains. The levels of TTR mRNA in the choroid plexus were at least 30 times higher than those observed in the adult liver. Immunoreactive TTR was observed in the brains of fetal rats on as early as the 11th day of gestation. This immunoreactive TTR was localized in the tela choroidea, the developmental forerunner of the choroid plexus. Immunoreactive TTR was also observed in the fetal choroid plexus as it began to form (14th day of gestation) as well as in the more completely developed choroid plexus (18th day of gestation).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
1. Human APP cDNA hybridized to a 3.5 kb mRNA in liver and brain RNA from chickens, pigeons, quail and ducks as well as in RNA from choroid plexus of chicken and quail. In contrast to all other species hitherto examined a 1.6 kb mRNA hybridizing to APP cDNA was found in abundant amounts in RNA from chicken and quail livers. 2. In the chicken, before hatching, the levels of APP mRNA in total RNA from liver and choroid plexus were higher than those in RNA from liver and choroid plexus of adults. However, RNA from the rest of the brain of chicken embryos contained less APP mRNA than RNA from brain of adults. 3. In the chicken, between 10 and 40 days after hatching, APP mRNA levels in RNA from liver were higher than adult levels, APP mRNA levels in RNA from choroid plexus were similar to adult levels and APP mRNA levels in RNA from the rest of brain were below the adult levels.  相似文献   

8.
We have developed a primary culture system for fetal mouse choroid plexus epithelial cells which maintains their differentiated phenotype. When grown on a reconstituted basement membrane substrate (Matrigel) epithelial cells formed aggregates which became embedded in the matrix and developed into characteristic and highly reproducible multicellular vesicular structures. These vesicles consisted of a squamous layer of epithelial cells with extensive attachment to the matrix substrate, surrounding a fluid-filled lumen. Electron microscopy showed that cells comprising these vesicles had a high degree of membrane specialization and polarized morphology which in many respects mimicked the in vivo morphology. Biochemical analyses demonstrated that under these culture conditions the tissue-specific pattern of gene expression of fetal choroid plexus epithelium was maintained. After 6 days in culture these cells contained approximately the same amount of transthyretin mRNA as the 12.5-day choroid plexus in vivo, and the level of total RNA per cell, which is proportional to the protein synthetic capability of the cells, was also maintained. The pattern of protein secretion was also very similar to that generated by fetal mouse choroid plexus cells in vivo. In contrast choroid plexus epithelial cells attached poorly to collagen I gels. Heterogeneous aggregates were formed in which cell-cell interactions were more extensive than cell-substrate interactions, and in no cases was a central lumen observed. Cells on the surface of large aggregates showed some evidence of membrane polarization, while the majority of cells in the cultures exhibited little evidence of polarized morphology. Despite the striking difference in morphology and multicellular organization these cells still expressed high levels of transthyretin mRNA and maintained the same pattern of protein synthesis as cells cultured on Matrigel. These results indicate that the basement membrane is important for the organization of choroid plexus epithelial cells into a functional epithelium in vitro and thus presumably the maintenance of the integrity of the blood-brain barrier in vivo. In contrast to several other epithelial systems which have been studied, the type of extracellular matrix does not appear to directly influence tissue-specific gene expression by choroid plexus epithelial cells. Thus the level of gene expression is not dependent on the cytoarchitecture and multicellular organization of this cell type.  相似文献   

9.
The sites of synthesis of transthyretin in the brain were investigated using in situ hybridization with [35S]-labeled recombinant cDNA probes specific for transthyretin mRNA. Autoradiography of hybridized coronal sections of rat brain revealed specific cellular localization of transthyretin mRNA in choroid plexus epithelial cells of the lateral, third, and fourth ventricles. Transferrin mRNA was also investigated and, in contrast to transthyretin mRNA, was localized mainly in the lateral ventricles. Our results indicate that substantial synthesis of transthyretin and transferrin mRNA may occur in the choroid plexus.  相似文献   

10.
B Jacobsson 《Histochemistry》1989,91(4):299-304
In situ hybridization with 35S-labeled single stranded RNA probes was used on sections from formaldehyde-fixed and paraffin-embedded tissue specimens to provide semiquantitative data on the occurrence of transthyretin(TTR)-mRNA in human liver, choroid plexus and pancreatic islets as well as in 15 endocrine tumours of the pancreas and gut. A monoclonal antibody to TTR was used for immunocytochemical identification of the protein in consecutive sections. The amount of TTR-mRNA in hepatocytes was found to be much less than that in epithelial cells of the choroid plexus. Glucagon cells of the pancreatic islets were also specifically labeled and the level of TTR-mRNA in these cells was intermediate between that of hepatocytes and choroid plexus epithelial cells. Four glucagonomas, one malignant insulinoma and two midgut carcinoids were shown to contain TTR-mRNA. The 'in situ' labeled cells were also found to be TTR immunoreactive. These findings present the first conclusive evidence for TTR synthesis in pancreatic islets and in endocrine tumours. They also establish that the high serum concentration of TTR found in some patients with endocrine tumours (notably glucagonomas) is most likely due to tumour production of TTR.  相似文献   

11.
12.
Various plasma proteins, for example, transferrin, are synthesized not only in the liver, but also in the brain. The proportion of transferrin mRNA in total RNA from different regions of brains from various mammalian species was studied by Northern blot analysis. Absolute amounts of transferrin mRNA were determined in brain, choroid plexus, and liver from rats, sheep, and pigs by hybridization in solution followed by ribonuclease protection assay. Corrections for differences in yields of RNA were made using internal RNA standards. Large proportions of transferrin mRNA in total RNA and high absolute levels of transferrin mRNA in choroid plexus were found only in rats. Small proportions of transferrin mRNA were observed in RNA from choroid plexus from mice, dogs, and rabbits, while no transferrin mRNA at all was detected in choroid plexus from humans, sheep, pigs, cows, and guinea pigs. In further analysis of sheep and pigs, various amounts of transferrin mRNA were found in many parts of the brain, in contrast to the absence of transferrin mRNA from choroid plexus. In conclusion, a striking species specificity was observed for the pattern of cerebral expression of the transferrin gene.  相似文献   

13.
Thyroxine transport in choroid plexus   总被引:4,自引:0,他引:4  
The role of the choroid plexus in thyroid hormone transport between body and brain, suggested by strong synthesis and secretion of transthyretin in this tissue, was investigated in in vitro and in vivo systems. Rat choroid plexus pieces incubated in vitro were found to accumulate thyroid hormones from surrounding medium in a non-saturable process. At equilibrium, the ratio of thyroid hormone concentration in choroid plexus pieces to that in medium decreased upon increasing the concentration of transthyretin in the medium. Fluorescence quenching of fluorophores located at different depths in liposome membranes showed maximal hormone accumulation in the middle of the phospholipid bilayer. Partition coefficients of thyroxine and triiodothyronine between lipid and aqueous phase were about 20,000. After intravenous injection of 125I-labeled thyroid hormones, choroid plexus and parts of the brain steadily accumulated 125I-thyroxine, but not [125I]triiodothyronine, for many hours. The accumulation of 125I-thyroxine in choroid plexus preceded that in brain. The amount of 125I-thyroxine in non-brain tissues and the [125I]triiodothyronine content of all tissues decreased steadily beginning immediately after injection. A model is proposed for thyroxine transport from the bloodstream into cerebrospinal fluid based on partitioning of thyroxine between choroid plexus and surrounding fluids and binding of thyroxine to transthyretin newly synthesized and secreted by choroid plexus.  相似文献   

14.
Expression of plasma protein genes in various parts of the rat brain was studied by hybridizing radioactive cDNA to RNA in cytoplasmic extracts. No mRNA could be detected in brain for the beta subunit of fibrinogen, major acute phase alpha 1-protein, alpha 1-acid glycoprotein and albumin. However, per g tissue, the choroid plexus contained at least 100 times larger amounts of prealbumin mRNA than the liver and about the same amount of transferrin mRNA as liver. No prealbumin mRNA was found in other areas of the brain. The results obtained suggest very active synthesis of prealbumin in choroid plexus, which would be an important link in the transport of thyroid hormones from the blood to the brain via the cerebrospinal fluid.  相似文献   

15.
Tissue patterns of gene expression were analyzed by measuring mRNA levels and incorporation of radioactive amino acids for cystatin C and beta 2-microglobulin, the two extracellular proteins in the brain with the highest ratio of concentration in cerebrospinal fluid over that in blood plasma. The primary structure of rat cystatin C mRNA from choroid plexus was determined by nucleotide sequencing of cloned cDNA and the tissue patterns of gene expression were analysed by RNA blot analysis and in situ hybridization. Cystatin C was found to be composed of 120 amino acids and to contain a potential site for N-linked glycosylation. The tissue with the highest cystatin C mRNA level was the choroid plexus of the brain. Cystatin C mRNA was also detected in lower levels in other areas of the brain, testis, epididymis, seminal vesicles, prostate, ovary, submandibular gland, and, in trace amounts, in liver. Choroid plexus pieces in culture secreted radioactive cystatin C when incubated with radioactive leucine. Rat beta 2-microglobulin cDNA was cloned and identified by nucleotide sequencing and comparison of the obtained sequence with that of mouse and human beta 2-microglobulin cDNA. Tissue levels of beta 2-microglobulin mRNA in the rat were measured by hybridization to rat beta 2-microglobulin cDNA. The highest levels of beta 2-microglobulin mRNA were observed in liver and choroid plexus. Other parts of the brain and testis contained lower levels of beta 2-microglobulin mRNA.  相似文献   

16.
17.
During neurosurgery the freshly secreted extracellular fluid (ECF) from the choroid plexus was sampled with small pieces of application paper in three patients with intractable epilepsy. The samples were analyzed for free amino acids and for soluble proteins. The results were compared with corresponding data on extracellular fluid from the brain surface obtained with dialysis-perfusion as well as with the cerebrospinal fluid (CSF) acquired by lumbar punction. The dialysis data were calibrated against the paper results. The choroid plexus secretion had a high concentration of transthyretin as well as of an unidentified protein with an isoelectric point of 7.4. The cortical ECF exhibited high concentrations of tau-globulin and gamma-trace protein. Among the amino acids, glutamine had lower concentration in the choroid plexus secretion and higher concentrations in the ECF of the brain compared to the CSF. The amino acid derivative ethanolamine exhibited a similar pattern. This was interpreted to demonstrate that these compounds enter the CSF from the brain tissue. In contrast, alanine, serine, and taurine had a lower concentration in the CSF than in the plexus secretion which suggests that they are removed from the CSF by brain tissue.  相似文献   

18.
Thyroid hormones are involved in the regulation of growth and metabolism in all vertebrates. Transthyretin is one of the extracellular proteins with high affinity for thyroid hormones which determine the partitioning of these hormones between extracellular compartments and intracellular lipids. During vertebrate evolution, both the tissue pattern of expression and the structure of the gene for transthyretin underwent characteristic changes. The purpose of this study was to characterize the position of Insectivora in the evolution of transthyretin in eutherians, a subclass of Mammalia. Transthyretin was identified by thyroxine binding and Western analysis in the blood of adult shrews, hedgehogs, and moles. Transthyretin is synthesized in the liver and secreted into the bloodstream, similar to the situation for other adult eutherians, birds, and diprotodont marsupials, but different from that for adult fish, amphibians, reptiles, monotremes, and Australian polyprotodont marsupials. For the characterization of the structure of the gene and the processing of mRNA for transthyretin, cDNA libraries were prepared from RNA from hedgehog and shrew livers, and full-length cDNA clones were isolated and sequenced. Sections of genomic DNA in the regions coding for the splice sites between exons 1 and 2 were synthesized by polymerase chain reaction and sequenced. The location of splicing was deduced from comparison of genomic with cDNA nucleotide sequences. Changes in the nucleotide sequence of the transthyretin gene during evolution are most pronounced in the region coding for the N-terminal region of the protein. Both the derived overall amino sequences and the N-terminal regions of the transthyretins in Insectivora were found to be very similar to those in other eutherians but differed from those found in marsupials, birds, reptiles, amphibians, and fish. Also, the pattern of transthyretin precursor mRNA splicing in Insectivora was more similar to that in other eutherians than to that in marsupials, reptiles, and birds. Thus, in contrast to the marsupials, with a different pattern of transthyretin gene expression in the evolutionarily "older" polyprotodonts compared with the evolutionarily "younger" diprotodonts, no separate lineages of transthyretin evolution could be identified in eutherians. We conclude that transthyretin gene expression in the liver of adult eutherians probably appeared before the branching of the lineages leading to modern eutherian species.  相似文献   

19.
Summary In situ hybridization with 35S-labeled single stranded RNA probes was used on sections from formaldehyde-fixed and paraffin-embedded tissue specimens to provide semiquantitative data on the occurrence of transthyretin(TTR)-mRNA in human liver, choroid plexus and pancreatic islets as well as in 15 endocrine tumours of the pancreas and gut. A monoclonal antibody to TTR was used for immunocytochemical identification of the protein in consecutive sections.The amount of TTR-mRNA in hepatocytes was found to be much less than that in epithelial cells of the choroid plexus. Glucagon cells of the pancreatic islets were also specifically labeled and the level of TTR-mRNA in these cells was intermediate between that of hepatocytes and choroid plexus epithelial cells. Four glucagonomas, one malignant insulinoma and two midgut carcinoids were shown to contain TTR-mRNA. The in situ labeled cells were also found to be TTR immunoreactive. These findings present the first conclusive evidence for TTR synthesis in pancreatic islets and in endocrine tumours. They also establish that the high serum concentration of TTR found in some patients with endocrine tumours (notably glucagonomas) is most likely due to tumour production of TTR.  相似文献   

20.
Studies were conducted to ascertain if transthyretin mRNA was present in extrahepatic tissues of the rat. A trnasthyretin cDNA clone was isolated from a lambda gt11 human liver cDNA library by antibody screening and its identity was confirmed by nucleotide sequence analysis. This transthyretin cDNA clone was used to survey poly(A+) RNA isolated from 12 different rat tissues for transthyretin mRNA by Northern blot analysis. The liver contained the highest level of transthyretin mRNA and this level was not altered by the vitamin A status of the rat. A significant amount of transthyretin mRNA was found in the brain (30% of the level of the liver) which was localized in specific regions of the brain. In addition, detectable levels of transthyretin mRNA (1% to 2% of that of the liver) were observed in the stomach, heart, skeletal muscle, and spleen. Translation of brain poly(A+) RNA in rabbit reticulocyte lysates and immunoprecipitation of the translation products with anti-transthyretin antiserum resulted in a protein band of the same size as liver pre-transthyretin. Liver pre-transthyretin was processed by the cotranslational addition of dog pancreas microsomal membranes to a protein that migrated coincidentally with monomeric serum transthyretin. These data suggest that transthyretin in the brain and the cerebrospinal fluid results from de novo synthesis and that transthyretin may play a significant physiological function, as yet unknown, within the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号