首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because cow ovaries do not contain a dominant follicle before Day 3 of the estrous cycle, we hypothesized that gonadotropin treatment early in the estrous cycle would induce growth of multiple follicles and could be used to induce superovulation. In Experiment 1, when 16 cows were treated with FSH-P beginning on Day 2 of the estrous cycle and were slaughtered on Day 5, all cows responded to gonadotropin treatment by exhibiting a large number ( approximately 19) of estrogenactive follicles >/= 6 mm. In Experiment 2, in response to FSH-P treatment from Day 2 to Day 7, and fenprostalene treatment on Day 6, 11 of 15 cows exhibited estrus and had a mean ovulation rate of 23.7 +/- 1.5. In Experiment 3, an FSH-P treatment regimen identical to that used in Experiment 2 was administered to cows beginning either on Day 2 (Day-2 cows; n=14) or Day 10 (Day-10 cows; n=11) of the estrous cycle. Twelve of 14 Day-2 cows and all Day-10 cows exhibited estrus after fenprostalene treatment. Day-2 cows exhibited 34.3 +/- 7.0 ovulations, which was less (P < 0.05) than that exhibited by Day-10 cows (48.3 +/- 4.4). However, the proportion of embryos recovered per corpus luteum was about 2-fold greater (P < 0.05) for Day-2 cows than for Day-10 cows (0.49 +/- 0.08 vs 0.27 +/- 0.06). These data indicate that beginning gonadotropin treatment early in the estrous cycle, when a dominant follicle is not present, provides an efficacious means to induce growth of multiple follicles and superovulation in cows. However, when FSH was administered for 6 d, beginning the treatment on Day 10 also resulted in a consistent and efficacious response.  相似文献   

2.
Variability in the superovulation response is an important problem for the embryo transfer industry. The objective of this study was to determine whether FSH treatment at the beginning of the cycle would improve the ovulation rate and embryo yield in dairy cows. Twenty-eight postpartum cyclic dairy cows were allocated at random to 4 treatment groups (A, B, C and D). Group A cows (n = 10) received FSH (35 mg) at a decreasing dose, starting on Day 9 (Day 0 = day of estrus) for 5 days followed by PGF(2alpha) (35 mg) on Day 12. Cows assigned to Groups B, C and D (n = 6 cows each, respectively) were given 35 mg FSH at a decreasing dose from Days 2 to 6 followed by PGF(2alpha) on Day 7. Group C and D cows received PRID inserts from Day 3 to Day 7. Cows in Group D additionally received 1000 IU hCG 60 hours after PGF(2alpha) treatment. Ovaries were scanned daily using a real time ultrasound scanner from the beginning of FSH treatment until embryo recovery, to monitor follicular development, ovulation and the number of unovulated follicles. Embryos were recovered from the uterus by a nonsurgical flushing technique 7 days after breeding. There were no differences (P>0.01) in the number of follicles > 10 mm at 48 hours after PGF(2alpha) treatment among the 4 groups. The mean numbers of follicles were 10.6 +/- 1.2, 9.3 +/- 1.3, 12.2 +/- 1.3 and 15.0 +/- 2.9 for Groups A, B, C and D, respectively. A significantly (P<0.001) higher number of ovulations was observed and a larger number of embryos was recovered in Group A than in the other groups. The results of this study indicate that superovulation with FSH at the beginning of the cycle causes sufficient follicular development but results in very low ovulation and embryo recovery rates.  相似文献   

3.
To understand the causes for poor response to superovulation in mature cows of high genetic potential, endocrine and follicular events during and after superovulation were compared in heifers (<2 yr old) yielding large numbers of embryos and cows (9 to 13 yr old) known to be poor embryo donors. Follicular development was monitored by daily ultrasonography. Blood samples were taken 2 to 3 times a day for the measurements of P4, E2, FSH and LH by RIA. Intensive blood collections at 15-min intervals for 6 h were also performed during preovulatory and luteal phases. The number of embryos produced in the heifers (15.2 +/- 2; mean +/- SEM) and the cows (0.6 +/- 0.4), was similar to the number of ovulatory follicles derived from ultrasonographic observations in the heifers (16.2 +/- 3.7), but not in the cows (7.8 +/- 2.8). Contrary to that observations in heifers, there was no increase in the number of 4- to 5-mm follicles in cows during superovulation. The number of larger follicles (>5 mm) increased during superovulation in both cattle groups, but it was significantly lower in cows than in heifers. During superovulation, the maximal E2 concentration was greater (P < 0.0001) in heifers than in cows. One cow showed delayed luteolysis during superovulation, while another had abnormally high FSH (>10 ng/ml) and LH (>3 ng/ml) concentrations following superovulation. All the cows had a postovulatory FSH rise which was not detected in the heifers. The results showed that attempts to improve superovulatory response in mature genetically valuable cows are hampered by a number of reproductive disorders that are not predictable from the study of the unstimulated cycle.  相似文献   

4.
The effects of milk yield, body condition score (BCS) and lactation number on the number of oocytes recovered and blastocysts formed were studied following in vitro maturation, fertilization and culture of bovine oocytes collected from 48 high and 46 medium genetic merit dairy cows in their first and third lactation. The cows were slaughtered between 125 and 229 d post partum. Ovaries were recovered, and 2- to 10-mm follicles were aspirated. Cleavage rate and number of blastocysts were determined at 44 h and 7 d after insemination, respectively. Oocytes from high genetic merit cows formed fewer blastocysts and had lower cleavage and blastocyst formation rates than those from medium genetic merit cows (0.36 +/- 0.19, 70.4 and 6.8% vs 0.85 +/- 0.22, 77.4 and 11.4%, respectively). The effect of milk production was tested by grouping cows in their third lactation into high and low groups. There was no difference in number of oocytes recovered and subsequent development into blastocysts between the cows in the high milk production group (4559 to 5114 kg, n = 20) and cows in the low yield (3162 to 3972 kg, n = 20) group (6.9 +/- 1.34 vs 8.9 +/- 1.32, respectively). The effect of BCS was tested by grouping cows in their first or third lactation into high and low groups. Cleavage and blastocyst formation rates were greater for oocytes from cows with a high BCS (3.3 to 4.0, n = 20) than a low BCS (1.5 to 2.5, n = 20) (75.7 vs 61.9% and 9.9 vs 3.0%, respectively). Cows in the first lactation yielded fewer oocytes (5.7 +/- 1.24) than cows in the third lactation (7.8 +/- 0.79). Thus, the quality of oocytes probably contributes to reduced fertility, often evident in high genetic merit dairy cows.  相似文献   

5.
The objective of this study was to determine the effect of treatment with recombinant bovine somatotropin (rBST) on the response to superovulatory treatment in swamp buffalo. Estrous cycles of 16 buffalo cows were synchronized by intravaginal administration of progesterone and estradiol benzoate, and the cows were then randomly divided into 2 groups. The rBST-treated group received 250 mg of a sustained-release formula of rBST on Day 4 after progesterone implantation, whereas the control group did not receive rBST. Both groups were then given a superovulatory regimen of twice daily injections of FSH for 3.5 d (total dose of 260 mg, i.m.), between Days 9 and 11 after administration of progesterone. The cows were bred naturally 1 d after the last FSH injection, then 6 d after breeding they were slaughtered, and their reproductive tracts were removed. The numbers of corpora lutea (CL) and follicles were recorded, and embryos were flushed out of the uterine horns. There were no significant differences between the rBST-treated and control cows for the mean numbers (+/- SEM) of CL (6.0 +/- 2.2 vs 4.3 +/- 1.1), follicles (15.9 +/- 4.1 vs 19.8 +/- 2.9), or total embryos recovered per collection (4.5 +/- 1.6 vs 2.3 +/- 1.0). However, there were significant differences between rBST-treated and control cows for the numbers of transferable embryos per collection (3.0 +/- 1.0 vs 0.8 +/- 0.3; P < or = 0.05) and the overall proportion of transferable embryos (75 vs 33%; P < or = 0.01). The results of this study show that pretreatment of swamp buffalo with rBST significantly increases the production of transferable embryos in response to superovulation.  相似文献   

6.
We investigated whether Al-gel could adsorb and release FSH effectively in vitro and in vivo, and whether a single administration of FSH in Al-gel could successfully induce superovulation (SOV) in cattle. Porcine FSH (pFSH; 30 mg) was mixed with 5 mL of Al-gel; 99.98+/-0.01% of pFSH was adsorbed by the gel and 71.6+/-1.1% of the adsorbed pFSH was subsequently released in the presence of BSA. In cattle given a single i.m. treatment of 30 mg of pFSH in 5 mL of Al-gel, the numbers of CL, total ova recovered, and transferable embryos per cow were not significantly different from conventional (twice daily for 4 d) pFSH treatment (12.3+/-1.7 versus 11.7+/-1.8, 10.0+/-2.5 versus 9.3+/-1.7, and 8.6+/-2.3 versus 8.0+/-1.8, respectively, mean+/-S.E.M.); plasma pFSH concentrations were increased for 4 d, indicating sustained release from the Al-gel. Five cows were given 30 mg pFSH in 5 mL of Al-gel i.m. on five occasions (once every 2-3 months); there was no significant difference among treatments for the number of CL (12.4+/-3.8, 13.8+/-4.8, 9.0+/-1.9, 9.8+/-3.0, 12.0+/-2.1), total ova recovered (12.0+/-3.8, 12.6+/-5.1, 6.8+/-1.9, 7.6+/-1.8, 11.4+/-2.5), and transferable embryos (11.4+/-3.9, 10.4+/-5.8, 6.6+/-2.1, 4.8+/-1.4, 10.4+/-2.6). In conclusion, a single i.m. treatment of 30 mg pFSH in 5 mL Al-gel effectively induced SOV in cattle.  相似文献   

7.
Pregnant Holstein-Friesian (HF) heifers were transported from central Europe (defined as temperate conditions) to north-eastern Brazil (defined as tropical, semiarid conditions). They were kept in open-sided pens with a hard floor, a roof for shade and sprinkled with water for 10 min every hour if ambient temperature exceeded 30 degrees C. Their diet was balanced to meet nutritional requirements and they were fed twice daily. Control animals were randomly chosen first and second lactation animals located on a farm 25 km away and receiving similar management. Imported animals were superovulated in 1996 (n=63) and 1997 (n=96), compared to 38 and 45 cows in the control herd. The variates recorded were: the interval post-partum to first oestrus; changes in ovarian size and activity; responses to superovulation; and, embryo quality.The average daily milk yields of the imported cows were 20.0 and 23.3 l in 1996 and 1997, respectively compared to 22.1 l throughout the experiment for cows in the control herd.The post-partum anoestrus interval in the imported cows were 112.1+/-30.5 days in 1996 compared to 55.0+/-18.0, 48.2+/-12.0 and 42.6+/-10.7 days in 1997 for control cows. The size and functionality of the ovaries was lowest for the imported animals in 1996 but did not differ between other group-year combinations. These animals also had a lower superovulatory response in 1996 than control cows in terms of the number of ovulations (6.4+/-4.3 versus 13.6+/-5.9, P<0.05) and good quality embryos (1.2+/-0.9 versus 4.4+/-2.1, P<0.05). The two groups of cows did not differ in respect of these characters in the second year of the study.The imported cows had lower reproductive efficiency and responses to superovulation in their first year in their new environment. A period of approximately 1.5 years is required for full adaptation.  相似文献   

8.
To determine whether follicular development, superovulation and embryo production were affected by the absence or presence of a dominant follicle, cows were administered injections of FSH twice daily in the early (Days 2 to 6, estrus = Day 0) or middle stage (beginning on Day 10 or 11) of the estrous cycle. Treatment with FSH early in the cycle stimulated follicular development in 83 to 100% of all cows from 4 groups evaluated at different times after PGF2alpha treatment on Days 6 and 7. However, the proportion of cows with > 2 ovulations varied from 31 to 62.5%, indicating that induction of follicular development may occur in the absence of superovulation. When compared with cows treated in the middle of the cycle, no differences were observed in the proportion of cows with > 2 ovulations (31 vs 20%), ovulation rate. (26.0 +/- 6.3 vs 49.6 +/- 25.8), production of ova/embryos (13.3 +/- 3.2 vs 14.4 +/- 3.4), or the number of transferable embryos (8.0 +/- 3.6 vs 5.4 +/- 1.5; early vs middle, respectively). The proportion of the total number of embryos collected that were suitable for transfer was greater (P<0.01) in cows treated early in the cycle (60%) than at midcycle (37.5%). The diameter of the largest follicle observed by ultra-sound prior to initiation of FSH treatment in the early stage of the cycle (10.0 +/- 2.0 mm) was smaller (P<0.05) than at midcyle (16.8 +/- 1.3 mm). These results demonstrate that superinduction of follicular development is highly consistent after FSH treatment at Days 2 to 6 of the cycle and that superovulation and embryo production are not less variable than when FSH is administered during the middle of the cycle. However, superovulation in the early stage of the cycle may increase the proportion of embryos suitable for transfer.  相似文献   

9.
Fertilization of ova, number of sperm per fertilized ovum and serum and myometrial Se concentrations were determined in Charolais cows treated with selenium and vitamin E (Se+E). Cows were considered low in Se status prior to allotment to either a control (n=20) or a Se+E-treated (n=21) group. Se+E-treated cows received 40 mg of Se as selenite and 544 IU of alpha-tocopherol acetate by IM injection at 14-day intervals throughout the study, whereas control cows received saline. Starting on day 75 of treatment, cows were checked for estrus and inseminated. Reproductive tracts were removed at slaughter with ova collected and examined for fertilization and number of adhered sperm. The proportion of recovered ova that were fertilized for control and Se+E-treated cows was 8 of 11 and 12 of 15, respectively (P > .05). For spermatozoal data, a few extreme values accounted for a non-significant trend in which a greater number of sperm were adhered to fertilized ova collected from Se+E-treated than control cows (35.6 +/- 7.2 and 24.8 +/- 7.7, respectively). When analyzing only ova with spermatozoal numbers within one S.D. of the mean number of sperm per fertilized ovum, mean (+/- S.E.M.) spermatozoal numbers for control and Se+E-treated cows were 13.5 +/- 3.1 and 36.4 +/- 5.3, respectively (P <. 005). Spermatozoal number was correlated (P <. 01) with serum and myometrial Se concentrations (r=.67 and .78, respectively) and these concentrations were greater (P <. 001) in treated animals. Low Se status was not associated with ova fertilization in this study; however, greater spermatozoal numbers for fertilized ova collected from Se+E-treated cows suggests increased sperm transport.  相似文献   

10.
To identify a predictor to forecast superovulation response on the basis of associations between superovulation performance and gene polymorphism, the PCR–RFLP method was applied to detect an A>G transition determining an MspI polymorphism at position 192 in the exon I of the bovine inhibin alpha (INHA) gene and evaluate its associations with superovulatory response in 118 Chinese Holstein cows treated for superovulation. Association analysis showed that cows with the GG genotype resulted in a significant increase in the number of ova (TNO) than AG and AA genotypes in the first (P = 0.023), second (P = 0.004) and third (P = 0.002) superovulation treatments and produced more transferable embryos (NTE) than that of AG and AA genotypes in the third (P = 0.045) superovulation treatment. Moreover, individuals with GG genotype produced more transferable embryos than AA (P < 0.05) genotype in the second superovulation treatment and all cows without superovulation response were mutations with genotypes of AA and AG. These results indicate that INHA gene can be used as a predictor for superovulation in Chinese Holstein cows, and imply that cows with AA genotype should be excluded for superovulation practices.  相似文献   

11.
A total of 226 out of 245 postpartum lactating dairy cows in a commercial dairy farm were allocated to two groups of oestrous synchronisation protocols in order to evaluate reproductive performance. One group was treated with oestradiol benzoate (ODB) and PGF2alpha on day 10 of the oestrous cycle with insemination at the detected oestrus, the second group underwent the Ovsynch (OVS) protocol (GnRH + PGF2alpha + GnRH) with timed AI. Pregnancy was diagnosed by ultrasonography on day 28 after AI and confirmed by rectal palpation on day 45. A higher (P < 0.001) proportion of cows in OVS (100%) were inseminated within (19.2 +/- 3.8 h) following the second GnRH injection than those of cows in EPE (ODB + PGF2alpha + ODB) (70.6%) inseminated at the detected oestrus within (35.6 +/- 5.2 h) following the second ODB injection. Pregnancy rates for the first AI at day 28 (64.0 +/- 4.6, 62.4 +/- 5.5%) and at day 45 post-insemination (40.4 +/- 4.7, 40.0 +/- 5.6%) for OVS and EPE cows respectively, did not differ between the two treatments, whereas, the overall pregnancy rates tended to be higher (P < 0.08) for the OVS (85.1 +/- 3.8%) cows than the EPE cows (74.1 +/- 4.5%). No differences were observed in pregnancy rates for first AI and overall up to fourth AI between primiparous (34.7 +/- 5.8 and 85.3 +/- 4.7%) and multiparous cows (43.5 +/- 4.5 and 77.4 +/- 3.6%). Days open for pregnant cows tended to be lower (P < 0.08) for OVS (76.2 +/- 3) than for EPE cows (84.7 +/- 4), while days open were higher (P < 0.05) in primiparous cows (85.3 +/- 4) than in multiparous cows (75.6 +/- 3). The results indicate that pregnancy rates for first AI were similar, but overall pregnancy rates up to the fourth AI tended to be higher for OVS than EPE cows, while days open was tended to be lower for OVS than EPE cows.  相似文献   

12.
The effect of frequency of transvaginal follicular aspiration on oocyte yield and subsequent superovulatory response was studied in 2 experiments. In Experiment 1, 32 primiparous Hereford x Friesian cows were assigned to 4 treatments (n = 8 per treatment). Oocyte recovery was carried out once a week for 12, 8, 4 or 0 (control) wk. Embryo recovery for all animals was 7 wk after the completion of the aspiration schedules. In Experiment 2, the effects of oocyte recovery once or twice a week (n = 8 per treatment; control n = 18) for 12 wk and response to superovulation 4 wk after the last aspiration were compared using nulliparous purebred Simmental heifers. Increasing the period of once weekly aspirations from 4 to 12 wk (Experiment 1) did not affect the number of follicles observed per session (mean +/- SEM; 10.0 +/- 0.82) or aspirated (7.8 +/- 0.71), but the recovery rate of oocytes from follicles aspirated was greater for donors aspirated for either 4 or 8 wk than for 12 wk (32.3 +/- 3.73 vs 28.4 +/- 2.61 vs 20.1 +/- 2.13 %; P < 0.05). Following the last aspiration and prior to commencing superovulatory procedures, estrus or estrous activity was observed in 7 8 , 8 8 , 7 8 and 6 8 of the animals aspirated over 12, 8, 4 or 0 wk, respectively. Subsequent superovulatory responses and in vivo embryo recoveries were similar for all aspiration treatments and for control animals. Changing the frequency of oocyte recovery from once to twice weekly (Experiment 2) did not affect the numbers of follicles observed (9.1 +/- 0.63 vs 8.3 +/- 0.85), follicles aspirated (5.9 +/- 0.56 vs 6.2 +/- 0.69), oocytes recovered (1.7 +/- 0.27 vs 1.9 +/- 2.0) per session or the oocyte recovery rate (29.4 +/- 2.4 vs 30.4 +/- 2.4 %); nor was there any effect of frequency of aspiration on subsequent superovulatory response and embryo recovery. In conclusion, increasing the period of aspiration from 4 to 12 wk and the frequency from once to twice a week over 12 wk did not reduce the number of follicles observed or aspirated, or number of oocytes recovered per donor per session. Subsequent estrous cyclicity and responses to superovulation were unaffected by the periods or frequencies of oocyte recovery examined here.  相似文献   

13.
This study aimed to evaluate the in vitro and in vivo viability of vitrified and non-vitrified embryos derived from eCG and FSH treatments in rabbit does. Ninety-six nulliparous does were randomly subjected to consecutive superovulation treatments with eCG (20 IU/kg body weight intramuscularly (i.m.), eCG group), FSH (3 x 0.6 mg/doe at 24 h intervals i.m., FSH group), or without superovulation treatment (control group). Does were artificially inseminated 3 days later and ovulation was induced immediately by hCG (75 IU/doe intravenous). Seven experimental groups were differentiated: first FSH and eCG treatment, second FSH and eCG treatment, eCG-interchanged group (does with previous FSH treatment), FSH-interchanged group (does with previous eCG treatments) and control group. Embryos were collected in vivo by laparoscopy 76-80 h post-insemination in the first and second recovery cycles and post mortem in the third recovery cycles. The ovulation rate was significantly higher in does treated with the first-FSH than in those treated with eCG or in control does (25.2+/-2.0 versus 19.2+/-1.4 to 11.0+/-1.5, and 12.2+/-1.2, first-FSH, first-eCG to second-eCG and control groups, respectively, P < 0.05). Significant differences were observed in the total recovery influenced by ovulation rate in each group (20.3+/-2.2 to 9.4+/-1.2, first-FSH to control groups). Embryo donor rate (donor with at least one normal embryo) was similar among groups with an overall of 75.1%. The number of normal embryos recovered per doe with at least one normal embryo increased significantly in relation to ovulation rate (17.7+/-2.2 to 8.41+/-3, first-FSH and control groups). The vitrification of embryos negatively affected their in vitro development to hatched blastocyst in all groups (88.1% versus 48%, P > 0.05). However, after embryo transfer, this negative effect was only observed in superovulated vitrified embryos (16.8 and 12.8% versus 39.4% total born rate from eCG, FSH and control vitrified groups, P < 0.05). Results indicated that the primary treatments with eCG or FSH increased the number of normal embryos recovered per donor doe, but these embryos are more sensitive to vitrification protocols.  相似文献   

14.
A total of thirty-eight lactating water buffalo cows were treated in four experiments simultaneously either with FSH (first group) or PMSG(second group). To the first group (half of the animals), a total dose of 40 mg FSH-P at 12-hr intervals was given i.m. within a 4-day period. The second group was treated i.m. with 3000 IU PMSG (Gestyl). Forty-eight hours after initiation of the superovulatory treatment all buffaloes were given 500 ug Cloprostenol. Fi seen buffaloes from the FSH-treated group (78.9%) and 17 from the second group (89.5%) came into heat at average PGF 2 alpha/standing heat intervals of 42.8+/-1.48 and 44.8+/-2.31, respectively. Superovulatory treatment resulted in meath number of 4.3+/-0.87 and 1.9+/-0.50 CL and 0.5+/-0.24 and 2.2+/-0.82 follicles for the first and second group. Twenty-five eggs were recovered after non-surgical flushing from 8 of 13 flushes in the first group and all except one were fertilized and classified as good embryos. Twelve eggs were recovered from 4 of 11 flushes in the second group and 11 of the eggs were fertilized and 10 of them classified as good ones.  相似文献   

15.
The efficacy of a single intramuscular dose of 450 or 600 international units (IU) of human menopausal gonadotropin (hMG) or 30 mg of follicle stimulating hormone (FSH), each dissolved in 30% polyvinylpyrrolidone K-30 (PVP), for superovulation treatment was compared to that of superovulation induction by administration of a total dose of 600 IU hMG given in declining doses twice daily over a 3-day period. A total of 48 Japanese Black cows were used for the investigation. Oestrus was observed within 60 h after PGF2alpha administration in all cows in the hMG groups. In the hMG group that received a single dose of 600 IU hMG (n = 12), oestrus was observed less than 36 h after treatment in one cow. In contrast, oestrus was not observed in 3 of the 12 cows (25%) in the FSH group. Neither the average number of recovered ova/embryos nor the number of transferable embryos per collection differed significantly among the hMG groups. However, the average number of transferable embryos was not significantly higher in cows treated with a single dose of 600 IU of hMG than in cows treated with a single 30 mg dose of FSH (7.5+/-4.5 vs. 2.1+/-2.8). The number of cows from which more than three excellent grade embryos were collected was highest in the group that received a single dose of 600 IU hMG (9/12, 75%) and lowest in the group that received a single 30 mg dose of FSH (2/9, 22%). The differences between groups in the percentages of cows with three or more excellent embryos between treatments were not statistically significant. The proportion of recovered ova/embryos classified as excellent was highest in the group that received 600 IU hMG in declining doses and lowest in the group that received a single 30 mg dose of FSH (55.2% vs. 30.2%; P < 0.05). The recovery rate of unfertilized ova was lowest in the group that received a single dose of 600 IU hMG and highest in the group received a single 30 mg dose of FSH (18.3% vs. 48.8%; P < 0.05). Although the differences in recovery results between the groups were not statistically significant, the recovery rates in hMG groups were higher than that the FSH group. These findings suggest that superovulation can be induced adequately in Japanese Black cows using one injection of 450 to 600 IU hMG dissolved in PVP.  相似文献   

16.
Ovarian follicular dynamics and steroid secretion patterns were monitored in postpartum beef cows that were synchronized for estrus with melengestrol acetate (MGA) or prostaglandin F(2alpha) (PGF) prior to superovulation. Twenty-four muhiparous Angus cows were stratified by number of days postpartum to an MGA or PGF treatment prior to superovulation. Cows in the MGA group were fed 0.5 mg MGA/d for 14 d in a grain carrier. Superstitnulatory treatments began 14 d after withdrawal of MGA from feed or 11 d after administering a single injection of 500 microg cloprostenol (PGF). Supersthnulatory treatments (FSH) were administered twice daily in decreasing doses (7.5, 5, 5, 2.5 mg) over 4 d. Sixty and 72 h after initiating the superstimulatory treatments, all cows were treated with 750 microg and 500 microg PGF, respectively Cows were inseminated at 0, 12, and 24 h from the onset of standing estrus with semen from 2 proven sires. Cows within treatment were inseminated with 1, 2 and 1 (single) or 2, 4 and 2 units (double) of semen at the designated insemination times. Blood sampling and transrectal ultrasonography of ovaries were performed daily beginning 2 d prior to the initiation of FSH treatment and were continued through embryo recovery. Ovaries were examined daily to determine the number and size of follicles. Plasma samples were analyzed for progesterone and estradiol. Follicles were counted and categorized based on a 5 to 9 mm range or >/= 10 mm. At the end of superovulatory treatment there were more (P /= 10 mm among cows that were estrus synchronized with MGA (75 +/- 1.2) than with PGF (3.9 +/- 1.2) These differences were reflected in higher (P 相似文献   

17.
The aim of this study was two-fold: (1). to compare recovery of embryos/ova from superovulated Holstein heifers by flushing the uterine horns through insertion of the catheter very close to the tip of the horn (deep) or just after the uterine bifurcation (shallow) and (2). to evaluate the hormonal and superovulatory response to estradiol benzoate (EB) treatment prior to superovulation. Ten Holstein heifers (12-16 months) underwent two superovulatory treatments in a cross-over design. Heifers were treated with decreasing doses of FSH from Days 8 to 12.5 of a synchronized estrous cycle. At 4 days prior to superovulation, half of the heifers received EB (5mg, i.m.) or served as Controls, followed by the alternative treatment in the subsequent superovulation. At embryo recovery, one uterine horn was flushed with deep ( approximately 7 cm caudal to the tip of the horn) and the other with shallow ( approximately 5 cm cranial to the beginning of the uterine bifurcation) flushing techniques. Embryos/ova were recovered, counted, and scored. Number of ovulations was estimated by ultrasound. Pretreatment with EB reduced circulating FSH and regressed the first wave dominant follicle with no change in number of large follicles, number of ovulations, number of embryos/ova recovered, or number of transferable embryos. The shallow flushing technique was superior to the deep technique for number of embryos/ova recovered per horn (5.4+/-1.1 versus 3.9+/-0.8) or percentage of embryos/ova recovered per CL (63.9+/-8.6% versus 37.4+/-6.5%). Thus, flushing the entire uterine horn increased recovery of embryos/ova.  相似文献   

18.
Taneja M  Singh G  Totey SM  Ali A 《Theriogenology》1995,44(4):581-597
The ovaries of 12 buffalo were examined daily by ultrasound beginning at Day 3 of the estrous cycle, followed by superovulation between Days 10 and 13 of the cycle. The buffalo were divided into 2 groups on the basis of the presence (dominant, n = 7) or absence (nondominant, n = 5) of a dominant follicle at the start of superovulation. Daily ultrasonographic observations of the ovaries were recorded on a videotape and were used to assess the progression of both the large (dominant) follicle and the next-to-the-large (subdominant) follicle as well as the numbers of follicles in the small (4 to 6 mm), medium (7 to 10 mm), and large (>10 mm) size categories, before and during the superovulation treatment. A greater number of small size (P < 0.05) follicles was available before the start of the superovulatory treatment in the buffalo superovulated in the absence of a dominant follicle. The turnover of follicles from medium to large size classes also occurred sooner (P < 0.01), and was of higher magnitude (P < 0.01) during treatment in buffalo of the nondominant follicle group. The number of corpora lutea at palpation per rectum was higher (P < 0.05) in buffalo of the nondominant than the dominant group (4.6 +/- 0.6 vs 2.7 +/- 0.5). However, there was no significant difference among the groups in the means of serum progesterone concentration (3.6 +/- 1.3 vs 2.2 +/- 0.6 ng/ml), total number of embryos (2.0 +/- 0.6 vs 1.1 +/- 0.7), transferable embryos (1.6 +/- 0.5 vs 1.0 +/- 0.6) and unfertilized ova recovered (0.4 +/- 0.2 vs 0) on Day 6. It is concluded that in buffalo, the superovulatory response could possibly be improved by ultrasongraphic observation of the status of follicular dominance prior to treatment.  相似文献   

19.
Experiments were designed to test the hypotheses that ovarian follicular response to superstimulatory treatment initiated during Wave 1 is equivalent to that of Wave 2, and recovery rate and quality of ova embryos derived from follicles of Wave 1 are equivalent to those derived from follicles of Wave 2. In a preliminary experiment (Experiment 1), heifers were given Folltropin-V (20 mg NIH-FSH-P1, im, bid for 5 d) beginning the day after emergence of the first (n=10) or second (n=10) follicular wave of the estrous cycle, equivalent to approximately Day 1 and Day 10, respectively (Day 0=ovulation). Luteolysis was induced with cloprostenol (500 mug im, bid) on the fourth day of treatment. Fewer (P<0.05) ovulations per heifer were induced in the Wave 1 group than in the Wave 2 group (4.6+/-1.0 vs 9.1+/-1.3). However, the interval from wave emergence to initiation of treatment was found, in retrospect, to have been longer (P<0.05) in the Wave 1 group, i.e., treatment was initiated relatively later with respect to wave emergence. Experiment 2 was designed to correct this disparity and to initiate the same treatment protocol on the day of wave emergence rather than the day after (n=21 per Wave group). There was no difference between Wave 1 and Wave 2 groups in the interval from wave emergence to initiation of treatment (0.4+/-0.1 d), the number of ovulations detected by ultrasonography (6.6+/-1.0 vs 8.2+/-1.7), the number of CL detected at slaughter (6.5+/-0.9 vs 8.1+/-1.8), the total number of ova embryos recovered (5.2+/-0.7 vs 5.1+/-0.8), or the number of fertilized embryos collected (2.8+/-0.6 vs 3.0+/-0.6). In addition, there was no difference between groups in the proportion of heifers that ovulated in either experiment; collectively, luteolysis and ovulation was induced in 58 of 60 heifers. The results supported the general hypothesis that follicles and oocytes of the first and second follicular waves are equivalent in the response to superstimulatory treatment. Regardless of which follicular wave, initiation of treatment near the time of wave emergence appears critical for maximal superovulatory response. Because of the consistency in the time of emergence of Wave 1 (day of ovulation) and equivalence in superovulatory response, use of Wave 1 rather than subsequent follicular waves may be more convenient and time-sparing in superovulation programs; the day of estrus (day before ovulation) may be used as a consistent point of reference for the start of treatment.  相似文献   

20.
Three experiments evaluated the effects of estradiol valerate (EV) on ovarian follicular and CL dynamics, intervals to estrus and ovulation, and superovulatory response in cattle. Experiment 1 compared the efficacy of two norgestomet ear implants (Crestar and Syncro-Mate B; SMB) for 9 d (with PGF at implant removal), combined with either 5 mg estradiol-17beta and 100 mg progesterone (EP) or 5 mg EV and 3mg norgestomet (EN) im at the time of implant insertion on CL diameter and follicular wave dynamics. Ovaries were monitored by ultrasonography. There was no effect of norgestomet implant. Diameter of the CL decreased following EN treatment (P < 0.01). Mean (+/- S.D.) day of follicular wave emergence (FWE) was earlier (P < 0.0001) and less variable (P < 0.0001) in EP- (3.6 +/- 0.5 d) than in EN- (5.7 +/- 1.5 d) treated heifers. Intervals from implant removal to estrus (P < 0.001) and ovulation (P < 0.01) were shorter in EN- (45.7 +/- 11.7 and 74.3 +/- 12.6 h, respectively) than in EP- (56.4 +/- 14.1 and 83.3 +/- 17.0 h, respectively) treated heifers. Experiment 2 compared the efficacy of EP versus EN in synchronizing FWE for superovulation in SMB-implanted cows. At random stages of the estrous cycle, Holstein cows (n = 78) received two SMB implants (Day 0) and were randomly assigned to receive EN on Day 0 or EP on Day 1. Folltropin-V treatments were initiated on the evening of Day 5, with PGF in the morning and evening of Day 8, when SMB were removed. Cows were inseminated after the onset of estrus and embryos were recovered 7 d later. Non-lactating cows had more CL (16.7 +/- 11.3 versus 8.3 +/- 4.9) and total ova/embryos (14.7 +/- 9.5 versus 7.9 +/- 4.6) than lactating cows (P < 0.05). EP-treated cows tended (P = 0.09) to yield more transferable embryos (5.6 +/- 5.2) than EN-treated cows (4.0 +/- 3.7). Experiment 3 compared the effect of dose of EV on ovarian follicle and CL growth profiles and synchrony of estrus and ovulation in CIDR-treated beef cows (n = 43). At random stages of the estrous cycle (Day 0), cows received a CIDR and no further treatment (Control), or an injection of 1, 2, or 5 mg im of EV. On Day 7, CIDR were removed and cows received PGF. Follicular wave emergence occurred within 7 d in 7/10 Control cows and 31/32 EV-treated cows (P < 0.05). In responding cows, interval from treatment to FWE was longer (P < 0.05) in those treated with 5 mg EV (4.8 +/- 1.2 d) than in those treated with 1 mg (3.2 +/- 0.9 d) or 2 mg (3.4 +/- 0.8 d) EV, while Control cows were intermediate (3.8 +/- 2.0 d). Diameter of the dominant follicle was smaller (P < 0.05) at CIDR removal and tended (P = 0.08) to be smaller just prior to ovulation in the 5 mg EV group (8.5 +/- 2.2 and 13.2 +/- 0.6 mm, respectively) than in the Control (11.8 +/- 4.6 and 15.5 +/- 2.9 mm, respectively) or 1mg EV (11.7 +/- 2.5 and 15.1 +/- 2.2 mm, respectively) groups, with the 2mg EV group (10.7 +/- 1.5 and 14.3 +/- 1.7 mm, respectively) intermediate. Diameter of the dominant follicle at CIDR removal was less variable (P < 0.01) in the 2 and 5mg EV groups than in the Control group, and intermediate in the 1mg EV group. In summary, treatment with 5mg EV resulted in a longer and more variable interval to follicular wave emergence than treatment with 5mg estradiol-17beta, which affected preovulatory dominant follicle size following progestin removal, and may have also affected superstimulatory response in Holstein cows. Additionally, 5 mg EV appeared to induce luteolysis in heifers, reducing the interval to ovulation following norgestomet removal. Conversely, intervals to, and synchrony of, follicular wave emergence, estrus and ovulation following treatment with 1 or 2 mg EV suggested that reduced doses of EV may be more useful for the synchronization of follicular wave emergence in progestogen-treated cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号