首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Without increasing cell number, ovine growth hormone was shown to stimulate the incorporation of 25SO4 by cultured chick embryo chondrocytes into chondroitin sulfate. Since the stimulation of sulfation by growth hormone was abolished when the amino acid concentrations in the medium were doubled, the relationship between amino acids and growth hormone in promoting the synthesis of acid mucopolysaccharides was investigated. Comparison of the incorporation of various labeled amino acids into trichloroacetic acid-soluble and insoluble material revealed that growth hormone promoted the incorporation of only valine into trichloroacetic acid-insoluble material. Furthermore, growth hormone stimulated valine incorporation into both extracellular and intracellular protein, rather than preferentially into extracellular chondromucoprotein. Growth hormone gave a 4-fold stimulation of valine incorporation into collagen without stimulating collagen synthesis. That growth hormone enhances sulfation by stimulating valine availability was further supported by the observations: (a) doubling only the valine concentration in the medium enhanced sulfation; (b) in medium with twice the normal valine concentration, sulfation failed to be further stimulated with the addition of growth hormone; and (c) in medium with all the other amino acids except valine at twice normal concentrations, growth hormone enhanced sulfation. In addition the temporal relationships and synthetic events occurring between growth hormonealtered valine availability and enhanced chondromucoprotein synthesis were studied. It was found that growth hormone-promoted valine incorporation into acid-insoluble material is a rapid effect that can be detected by 10 min after hormone addition and does not require RNA synthesis. Increased valine availability is rapidly reversed after growth hormone removal ( ). On the other hand, growth hormone- and valine-enhanced chondromucoprotein synthesis are slower responses, taking over 24 hr of treatment for a maximal stimulation, and are mediated by RNA synthesis, as indicated by actinomycin D sensitivity. Enhanced chondromucoprotein synthesis is also relatively stable after removal of growth hormone or valine ( ).The evidence suggests that the availability of a single amino acid, valine, plays a regulatory role in the synthesis of a specialized cellular product and that growth hormone acts at some level to alter the availability of this essential amino acid.  相似文献   

2.
1. The livers of rats were perfused in situ. When the amino acid concentration in the perfusing medium was that present in rat plasma, the addition of growth hormone to the medium stimulated the incorporation of labelled amino acids into liver protein only marginally and not to a statistically significant extent. When, however, the amino acid concentration was raised to three times that present in rat plasma, growth hormone significantly and substantially stimulated amino acid incorporation into protein within 30min. of perfusion of normal rat liver. 2. A significant effect of growth hormone on labelling of normal rat-liver protein was seen with concentrations not much greater than those reported to be present in rat plasma. 3. The labelling of nucleic acids of normal and hypophysectomized rat liver by [(3)H]orotic acid was enhanced by addition of growth hormone to the perfusing medium when normal concentrations of amino acids were used. 4. At elevated concentrations of amino acids, growth hormone stimulated labelling of nucleic acids of hypophysectomized rat liver at 30 and 60min. of perfusion. Under these conditions, nucleic acids of normal rats were labelled to about the same extent in control and hormone-treated livers at 30min. and, because of a fall in the radioactivity of the control livers, there was more labelled nucleic acids in growth-hormone-treated livers at 60min. than in the control livers. 5. Growth hormone, unlike insulin, had no inhibitory effect on the release of glucose by the perfused liver. 6. It is concluded that growth hormone can stimulate the incorporation of precursor into proteins and nucleic acids of liver directly and without the mediation of other organs or of insulin.  相似文献   

3.
1. Incorporation of [(14)C]leucine into protein in rat liver slices, incubated in vitro, increased as the concentration of unlabelled amino acids in the incubation medium was raised. A plateau of incorporation was reached when the amino acid concentration was 6 times that present in rat plasma. Labelling of RNA by [(3)H]orotic acid was not stimulated by increased amino acid concentration in the incubation medium. 2. When amino acids were absent from the medium, or present at the normal plasma concentrations, no effect of added growth hormone on labelling of protein or RNA by precursor was observed. 3. When amino acids were present in the medium at 6 times the normal plasma concentrations addition of growth hormone stimulated incorporation of the appropriate labelled precursor into protein of liver slices from normal rats by 31%, and into RNA by 22%. A significant effect was seen at a hormone concentration as low as 10ng/ml. 4. Under the same conditions addition of growth hormone also stimulated protein labelling in liver slices from hypophysectomized rats. Tissue from hypophysectomized rats previously treated with growth hormone did not respond to growth hormone in vitro. 5. No effect of the hormone on the rate or extent of uptake of radioactive precursors into acid-soluble pools was found. 6. Cycloheximide completely abolished the hormone-induced increment in labelling of both RNA and protein. 7. It was concluded that, in the presence of an abundant amino acid supply, growth hormone can stimulate the synthesis of protein in rat liver slices by a mechanism that is more sensitive to cycloheximide than is the basal protein synthesis. The stimulation of RNA labelling observed in the presence of growth hormone may be a secondary consequence of the hormonal effect on protein synthesis. 8. The mechanism of action of growth hormone on liver protein synthesis in vitro was concluded to be similar to its mechanism of action in vivo.  相似文献   

4.
The effects of insulin, cortisol and prolactin on amino acid uptake and protein biosynthesis were determined in mammary-gland explants from mid-pregnant mice. Insulin stimulated [3H]leucine incorporation into protein within 15 min of adding insulin to the incubation medium. Insulin also had a rapid stimulatory effect on the rate of aminoiso[14C]butyric acid uptake, but it had no effect on the intracellular accumulation of [3H]leucine. Cortisol inhibited the rate of [3H]leucine incorporation into protein during the initial 4h of incubation, but it had no effect at subsequent times. [3H]Leucine uptake was unaffected by cortisol, but amino[14C]isobutyric acid uptake was inhibited after a 4h exposure period to this hormone. Prolactin stimulated the rate of [3H]leucine incorporation into protein when tissues were exposed to this hormone for 4h or more; up to 4h, however, no effect of prolactin was detected. At all times tested, prolactin had no effect on the uptake of either amino[14C]isobutyric acid or [3H]leucine. Incubation with actinomycin D abolished the prolactin stimulation of protein biosynthesis, but this antibiotic did not affect the insulin response. A distinct difference in the mechanism of action of these hormones on protein biosynthesis in the mammary gland is thus apparent.  相似文献   

5.
A simple method is described for measuring rates of protein synthesis and degradation in isolated rat diaphragm. Muscles incubated in Krebs-Ringer bicarbonate buffer showed a linear rate of synthesis for 3 hours. At the same time, the muscle released tyrosine and ninhydrin-positive material, primarily amino acids, at a linear rate. This release was not a nonspecific leakage of material from the intracellular pools, but reflected net protein degradation. Tyrosine was chosen for studies of protein turnover, since it rapidly equilibrates between intracellular pools and the medium, it can be measured fluorometrically, and it is neither synthesized nor degraded by this tissue. To follow protein degradation independently of synthesis, muscles were incubated in the presence of cycloheximide. Under these conditions, the amount of tyrosine in the intracellular pools was constant, while the muscle released tyrosine at a linear rate. This tyrosine release was used as a measure of degradation. This preparation was used to study the influence of various factors known to be important for muscle growth on protein synthesis and degradation. Similar effects were obtained with diaphragms of normal and fasted rats although the latter showed decreased synthesis and increased protein degradation. Insulin by itself not only stimulated synthesis but also inhibited protein degradation (even in the presence of cycloheximide). These two effects served to reduce the net release of tyrosine from muscle protein to comparable extents. Effects of insulin on synthesis and degradation were greater when glucose was also present in the medium. Glucose by itself inhibited protein degradation but in the absence of insulin glucose had no significant effect on synthesis. Nevertheless, glucose stimulated incorporation of radioactivive tyrosine into protein, but this effect was due to an increased intracellular specific activity. Unlike glucose neither beta-hydroxybutyrate or octanoic acid had any demonstrable effects on protein degradion. The addition of amino acids at plasma concentrations both promoted protein synthesis and inhibited degradation in the diaphragm. Five times normal plasma concentrations of the amino acids had larger effects. The three branched chain amino acids together stimulated synthesis and reduced degradation, while the remaining plasma amino acids did not affect either process significantly. Thus leucine, isoleucine, and valine appear responsible for the effects of plasma amino or isoleucine and valine together, also were able to inhibit protein degradation and promote synthesis.  相似文献   

6.
Abstract— The effects of high circulating concentrations of several amino acids on the free amino acids of rat brain were measured, to see whether or not the results followed any consistent pattern. High circulating concentrations of large, neutral amino acids (phenylalanine, valine or isoleucine) caused significantly decreased values only of other large, neutral amino acids in the brains. High circulating concentrations of the basic amino acids lysine or arginine caused significantly decreased values only of each other. The data suggest that there are separate systems for the transport of neutral and basic amino acids across the blood-brain barrier. The effects of valine and lysine on the uptake by brain and the con-vulsant action of allylglycine (a neutral amino acid) were consistent with the concept of separate systems for the transport of amino acids across the blood-brain barrier. Valine inhibited the uptake by brain and the convulsant action of allylglycine in mice, but lysine did not. The data suggest that allylglycine and valine are transported into the brain by a common mechanism that does not transport lysine.  相似文献   

7.
The effects of growth hormone, administered in vivo or added in vitro, on amino acid transport and utilization have been studied in perfused livers of normal and hypophysectomized rats. A perfusion system employing a nonrecirculating medium was used in all of the studies. Two nonmetalbolizable amino acid analogues, alpha-aminoisobutyric acid (AIB) and 1-aminocyclopentane carboxylic acid (cycloleucine) were used to study transport. Accumulation of AIB increased linearly over a 60-min perfusion period, reaching distribution ratios of between 1 and 2 for both groups of animals. Treatment of both normal and hypophysectomized rats with growth hormone 60 min prior to the start of perfusion increased AIB distribution ratios by up to 84 and 108%, respectively. Accumulation of cycloleucine was linear for only about 20 min of perfusion and then plateaued. Steady state distribution ratios of this analogue ranged between 1 and 2 for both groups of animals. Growth hormone treatment had no apparent effect on the time necessary to reach these steady state levels, but significantly increased them in livers of both normal and hypophysectomized rats by 16 and 42%, respectively. Studies designed to analyze the kinetic properties of these hormone effects revealed that growth hormone treatment caused 2-fold i-crease in the maximum velocities of both the AIB and cycloleucine transport systems. The substrate concentration for half-maximal transport velocity was increased slightly for both systems by growth hormone. Direct effects of growth hormone were demonstrated in studies where livers of hypophysectomized rats were perfused under conditions simulationg those of experiments in which the hormone was administered in vivo. Following an initial 45-min period of perfusion the medium during the 20 min. Growth hormone added to the medium during the entire 65-min perfusion at a concentration of 1 mug per ml caused a 30% increase in the cycloleucine distribution ratio. Under similar experimental conditions growth hormone directly stimulated three hepatic pathways of amino acid utilization: (a) incorporation of [14C]valine into protein, (b) urea formation and (c) conversion of 14-C-amino-acids to labeled glucose. Intracellular concentrations of seven amino acids, including threonine, serine, proline, glycine, alanine, lysine, and arginine, were increased significantly in livers perfused with medium containing growth hormone...  相似文献   

8.
1. The preparation of cell suspensions by treatment of chick embryo hearts with collagenase at various stages of development is described. 2. Measurements of oxygen consumption, incorporation of labelled leucine into protein and accumulation of labelled alpha-aminoisobutyric acid against a concentration gradient indicated a long-lasting viability of the isolated heart cells in vitro; a satisfactory preservation of subcellular structures, including plasma membrane, was assessed by electron-microscopic examination. 3. The rate of alpha-aminoisobutyric acid accumulation by cardiac cells isolated from hearts at different stages of embryological development decreased with aging; insulin stimulated the intracellular accumulation of this amino acid analogue. 4. Insulin increased the uptake by isolated heart cells of several (14)C-labelled naturally occurring amino acids; however, the fraction of amino acid taken up by the cells that was recovered free intracellularly, and therefore the concentration ratio (between intracellular water and medium), was enhanced by the hormone only with glycine, proline, serine, threonine, histidine and methionine. When isolated heart cells were incubated in the presence of a mixture of labelled amino acids, the addition of insulin increased the disappearance of radioactivity from the medium. 5. The general pattern of amino acid transport (in the absence and in the presence of insulin) in isolated cardiac cells was similar to that found in intact hearts, suggesting that the biological preparation described in this paper might be useful for studies of cell permeability and insulin action.  相似文献   

9.
—The uptake of radioactive amino acid by incubated cerebral cortex slices is found to be a first order process. Incorporation of the radioactive amino acid into tissue protein is from a precursor pool that has first equilibrated with the intracellular endogenous free amino acids. Ways of calculating the amino acid incorporation in molar quantities from the observed incorporation of radioactivity are discussed, and it is concluded that the specific radioactivity of the intracellular acid-soluble fraction is the best basis for such estimates. The in vitro incorporation of leucine into tissue protein is estimated to be approximately 1±2 mμnol/mg protein/h, and of valine 0±4 mμmol/mg protein/h. Addition of free amino acids to the media had little or no effect on the calculated rates of incorporation. On incubation for 1 h the total free valine in tissue and medium increased by 0±43 μmol/g and leucine increased by 0±55 μmol/g. Estimates of amino acid incorporation based on the specific radioactivity of the media amino acids can give misleading results if this considerable release of amino acids into the medium is not taken into account. Electrical stimulation of neocortical slices with a variety of types of pulses was either without effect or decreased incorporation into portein. The decrease could not be directly correlated with changes in tissue K+ nor with the utilization of ATP. Mild, local stimulation of the lateral olfactory tract of piriform cortex slices was without effect on tissue phosphocreatine, K+ or amino acid incorporation.  相似文献   

10.
To determine the inducer(s) of the biodegradative threonine deaminase in Escherichia coli, the effects of various amino acids on the synthesis of this enzyme were investigated. The complex medium used hitherto for the enzyme induction can be completely replaced by a synthetic medium composed of 18 natural amino acids. In this synthetic medium, the omission of each of the seven amino acids threonine, serine, aspartic acid, methionine, valine, leucine, and arginine resulted in the greatest loss of enzyme formation. These seven amino acids did not significantly influence the uptake of other amino acids into the cells. Furthermore, they did not stimulate the conversion of inactive enzyme into an active form, since they did not affect the enzyme level in cells in which protein synthesis was inhibited by chloramphenicol. Threonine, serine, aspartic acid, and methionine failed to stimulate enzyme production in cells in which messenger ribonucleic acid synthesis was arrested by rifampin, whereas valine, leucine, and arginine stimulated enzyme synthesis under the same conditions. Therefore, the first four amino acids appear to act as inducers of the biodegradative threonine deaminase in E. coli and the last three amino acids appear to be amplifiers of enzyme production. The term "multivalent induction" has been proposed for this type of induction, i.e., enzyme induction only by the simultaneous presence of several amino acids.  相似文献   

11.
The effects of insulin on embryonic chicken cartilage in organ culture and the dependence of these effects on essential amino acids have been studied. In the presence of all essential amino acids, insulin: (1) increases 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake; (2) increases [5(-3H] uridine flux into uridine metabolites and the intracellular UTP pool; (3) expands the size of the intracellular UTP pool; (4) does not change the specific activity of the UTP pool; and (5) stimulates RNA, proteoglycan, and total protein synthesis. In lysine (or other essential amino acid)-deficient medium, the effects of insulin are different. While insulin stimulates incorporation of [5(-3)H] uridine into RNA, it does so by increasing the specific activity of the UTP pool without increasing RNA synthesis. Insulin stimulates 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake but no longer stimulates proteoglycan, total protein, or RNA synthesis or expands the size of the UTP pool. These data indicate that there are amino acid dependent and independent effects of insulin on cartilage. Transport processes are amino acid independent, while synthetic processes are amino acid dependent.  相似文献   

12.
Amino acid uptake systems in Bacteroides ruminicola   总被引:7,自引:0,他引:7  
Uptake of amino acids by Bacteroides ruminicola was observed in cells grown in a complete defined medium, containing ammonia as the nitrogen source. A high rate of uptake occurred only in fresh medium, as an inhibitory substance, possibly acetate, apparently accumulated during growth. All amino acids except proline were taken up and incorporated into cold trichloroacetic acid precipitable material. Different patterns of incorporation and different responses to 2,4-dinitrophenol and potassium ferricyanide indicated multiple uptake systems were involved. Kinetic inhibition patterns suggested six distinct systems were present for amino acid uptake, with specificities related to the chemical structures of the amino acids. Thus, the failure of free amino acids to act as sole nitrogen sources for growth of B. ruminicola is not due to the absence of transport systems for these compounds.  相似文献   

13.
14.
1. The accumulation of [1-(14)C]glycine and the uptake, accumulation, incorporation (into protein, lipid, glycogen) and oxidation of l-[1-(14)C]leucine in 5-day-old chick embryo hearts were investigated in vitro, and the effects of insulin, puromycin and 4-methyl-2-oxopentanoic acid on these processes were studied. 2. With glycine, the ratio of concentration of the labelled amino acid in the cell water to that in medium markedly exceeded unity. Insulin significantly increased this ratio. Puromycin did not prevent the insulin effect. 3. With leucine, the concentration ratio of the labelled amino acid between intracellular and extracellular water approached unity in the absence of puromycin and was doubled by its presence. In neither case did insulin substantially alter this ratio. The addition of 4-methyl-2-oxopentanoic acid had no effect in the absence of insulin, but produced a significant increase of the concentration ratio in the presence of the hormone. 4. Leucine uptake was increased slightly by insulin in all experimental conditions except in the presence of puromycin, where a more pronounced stimulation was observed. The hormone had no effect on the incorporation of the labelled amino acid into protein, but accelerated its oxidation to carbon dioxide; the latter effect was particularly evident in the presence of puromycin and disappeared after the addition of 4-methyl-2-oxopentanoic acid.  相似文献   

15.
1. Isolated chick embryo heart cells were used to investigate the mode of action of insulin on the transport of three naturally occurring amino acids: l-proline, l-serine and glycine. Initial velocities of uptake were measured over a period of 5min with an 80-fold range of amino acid concentration. Corrections for amino acid diffusion, incorporation into protein and conversion into carbon dioxide were introduced. 2. The uptake processes approximated Michaelis-Menten kinetics within definite ranges of amino acid concentrations. A single transport system for proline and at least two transport systems for serine and glycine were detected. 3. The kinetic effects of insulin on transport systems for the amino acids tested were consistent with an acceleration of the maximal velocity of the process, without substantial changes in substrate concentration for half-maximal transport velocity. 4. These hormonal effects were not essentially altered by the corrections for amino acid incorporation into protein and conversion into carbon dioxide.  相似文献   

16.
Abstract— The uptake of radioactive leucine by incubated neocortex slices was found to be increased by electrical stimulation, yielding a higher content of radioactive amino acid per g fresh weight of tissue which was maintained for prolonged periods of stimulation. The increased tissue content may be associated with tissue swelling found on electrical stimulation, but the additional amino acid uptake was by an active process rather than by passive diffusion. Additions of valine (2.5–10 m m ) or tryptophan (1 m m ) to the incubation medium was found to depress the tissue leucine content. Decreasing the tissue free leucine content by incubating slices in medium containing 5 m m -valine was found to decrease the incorporation of leucine and lysine into tissue protein, indicating that under these conditions tissue free amino acid becomes rate limiting for amino acid incorporation into protein. By analogy with the properties of cerebral tissue in oitro it is suggested that electrical activity in vivo may cause localized increases in free amino acid concentration which may serve to regulate protein synthesis in conditions where the concentration of free amino acids are rate limiting.  相似文献   

17.
The effects of a somatomedian analog, Temin's multiplication stimulating activity (MSA), on amino acid transport into muscle cells have been characterized in a series of experiments on myoblasts and myotubes in culture. Addition of MSA to serum-starved L6 myoblasts increased the rate of aminoisobutyrate (AIB) uptake 50-150% within five hours. This early effect on transport was followed by increases in cell number, protein content and 3H-thymidine incorporation. Kinetic analyses indicated that MSA increased the maximal velocity of AIB uptake but had no effect on the KM for AIB. When myoblasts were allowed to fuse (and dividing cells eliminated by addition of 10(-4) M cytosine arabinoside) the AIB transport system(s) remained similarly responsive to MSA. In myoblasts and in myotubes, both the basal and MSA-stimulated rate of AIB uptake were sodium-dependent processes; little stimrulation occurred if sodium was absent from the labeling medium. Further suggesting the involvement of cations in response to hormone, MSA stimulated uptake of the potassium analog, 86Rb+, and increase net intracellular potassium in both myoblasts and myotubes. MSA was active at concentrations equivalent to in vivo levels of somatomedins; neither insulin nor growth hormone had any effect at or near physiological concentrations.  相似文献   

18.
1. The livers of rats were perfused in situ with medium containing mixtures of amino acids in multiples of their concentration in normal rat plasma. The incorporation of labelled amino acid into protein of the liver and of the perfusing medium increased with increasing amino acid concentration. During 60min. perfusions, labelling of liver protein reached a plateau, and labelling of medium protein was inhibited when the initial concentration of the amino acid mixture was more than ten times the normal plasma value. 2. Examination of polysome profiles derived from livers perfused without amino acids in the medium showed that the number of large aggregates was decreased and the number of small aggregates, particularly monomers and dimers, was increased with time of perfusion. The addition of amino acids to the perfusion medium reversed this polysome shift to an extent that was dependent on the initial concentration of amino acids. Polysome profiles derived from livers perfused for 60min. with ten times the normal plasma concentration of amino acids were essentially the same as the polysome profiles of normal non-perfused livers. 3. The ability of ribosome preparations from perfused livers to incorporate amino acids into protein in vitro decreased with increasing time of perfusion when no amino acids were added to the medium, but increased as the concentration of amino acids in the perfusion medium was increased. 4. The ability of cell sap from perfused livers to support protein synthesis in vitro was not influenced by the amino acid concentration of the perfusion medium. 5. Livers were perfused for 60min. with medium containing amino acid mixtures at ten times the normal plasma concentration but deficient in one amino acid. Maximal incorporation of labelled amino acid into liver protein, the stability of the polysome profile and the ability of ribosome preparations to incorporate amino acids into protein were found to depend on the presence of 11 amino acids: arginine, asparagine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan and valine. A mixture of these 11 amino acids, at ten times their normal plasma concentration, stimulated the incorporation of labelled amino acid into liver protein, stabilized the polysome profile and increased the ability of ribosome preparations to incorporate amino acids into protein to the same extent as the complete mixture. 6. It is concluded that the availability of certain amino acids plays an important role in the control of protein synthesis, possibly by stimulating the ability of ribosomes to become, and to remain, attached to messenger RNA.  相似文献   

19.
The protein anabolic effect of branched chain amino acids was studied in isolated quarter diaphragms of rats. Protein synthesis was estimated by measuring tyrosine incorporation into muscle proteins in vitro. Tyrosine release during incubation with cycloheximide served as an index of protein degradation. In muscles from normal rats the addition of 0.5 mM leucine stimulated protein synthesis 36--38% (P less than 0.01), while equimolar isoleucine or valine, singly or in combination were ineffective. The three branched chain amino acids together stimulated no more than leucine alone. The product of leucine transamination, alpha-keto-isocaproate, did not stmino norborane-2-carboxylic acid (a leucine analogue) were ineffective. Leucine and isoleucine stimulated protein synthesis in muscles from diabetic rats.Leucine, isoleucine, valine and the norbornane amino acid but not alpha-ketoisocaproate or beta-hydroxybutyrate decreased the concentration of free tyrosine in tissues during incubation with cycloheximide; tyrosine release into the medium did not decrease significantly. Leucine caused a small decrease in total tyrosine release, (measured as the sum of free tyrosine in tissues and media), suggesting inhibition of protein degradation. The data suggest that leucine may be rate limiting for protein synthesis in muscles. The branched chain amino acids may exert a restraining effect on muscle protein catabolism during prolonged fasting and diabetes.  相似文献   

20.
The maximum specific growth rate of Streptococcus lactis and Streptococcus cremoris on synthetic medium containing glutamate but no glutamine decreases rapidly above pH 7. Growth of these organisms is extended to pH values in excess of 8 in the presence of glutamine. These results can be explained by the kinetic properties of glutamate and glutamine transport (B. Poolman, E. J. Smid, and W. N. Konings, J. Bacteriol. 169:2755-2761, 1987). At alkaline pH the rate of growth in the absence of glutamine is limited by the capacity to accumulate glutamate due to the decreased availability of glutamic acid, the transported species of the glutamate-glutamine transport system. Kinetic analysis of leucine and valine transport shows that the maximal rate of uptake of these amino acids by the branched-chain amino acid transport system is 10 times higher in S. lactis cells grown on synthetic medium containing amino acids than in cells grown in complex broth. For cells grown on synthetic medium, the maximal rate of transport exceeds by about 5 times the requirements at maximum specific growth rates for leucine, isoleucine, and valine (on the basis of the amino acid composition of the cell). The maximal rate of phenylalanine uptake by the aromatic amino acid transport system is in small excess of the requirement for this amino acid at maximum specific growth rates. Analysis of the internal amino acid pools of chemostat-grown cells indicates that passive influx of (some) aromatic amino acids may contribute to the net uptake at high dilution rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号