首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The nitrate reductase inactivating factor in cultured rice cellswas purified 320-fold. The purification procedure involved precipitationwith (NH4)2SO4, fractionation at pH 4.0, adsorption on CM-cellulose,and gel filtration on Sephadex G-200. The molecular weight wasestimated to be 200,000 from the Sephadex G-200 gel filtration. The inactivating factor shows maximal activity at pH 8.0 andappears to be located in the cytoplasm of the cultured ricecells. The inactivating factor was more stable to heat treatmentthan NADH nitrate reductase. The factor inactivated nitratereductase complex except for reduced methylviologen nitratereductase. It had no influence on the activity of nitrite reductase,glutamate dehydrogenase, and NADH diaphorase, but inactivatedxanthine oxidase. The inactivating factor had no protease activitywhen casein, bovine serum albumin, or nitrate reductase fractionwas used as the substrate. The type of inactivation of nitratereductase by the inactivating factor was noncompetitive. Inhibitionof the inactivating factor by o-phenanthroline, EDTA, and p-chloromercuribenzoicacid suggested the involvement of a metal and sulfhydryl groupat its active site. (Received January 28, 1977; )  相似文献   

2.
A nitrate reductase inactivating factor was found in extractsof leaf blades, leaf sheaths, and roots of rice seedlings. Thefactor was nondialyzable, precipitable with (NH4)2SO4, and heatlabile. The factor from rice roots inactivated NADH nitratereductase, FMNH2 nitrate reductase, and NADH cytochrome c reductasefrom rice shoots, but had no effect on the activities of NADHdiaphorase and nitrite reductase. The factors from rice shoots,rice roots, and maize roots inactivated NADH nitrate reductaseprepared from cultured rice cells. The factor from culturedrice cells also inactivated rice shoot NADH nitrate reductase. The activity of the inactivating factor showed a diurnal changein shoots of rice seedlings grown with NO3– medium, althoughthe fluctuation was not large compared to that of NADH nitratereductase activity. When the seedlings were placed in darkness,the activity of the factor did not change during 20 hr withNO3– medium. However, the activity of the factor fluctuatedwith NO3– -free medium in light; its activity startedto increase at the 8th hour after transfer. NADH nitrate reductaseactivity from rice shoots declined rapidly during the first8 hr and gradually thereafter in both types of culture. (Received August 24, 1977; )  相似文献   

3.
A nitrate reductase inactivating enzyme from the maize root   总被引:12,自引:12,他引:0       下载免费PDF全文
Wallace W 《Plant physiology》1973,52(3):197-201
The nitrate reductase in the mature root extract of 3-day maize (Zea mays) seedlings was relatively labile in vitro. Insoluble polyvinylpyrrolidone used in the extraction medium produced only a slight increase in the stability of the enzyme. Mixing the mature root extract with that of the root tip promoted the inactivation of nitrate reductase in the latter. The inactivating factor in the mature root was separated from nitrate reductase by (NH4)2SO4 precipitation. Nitrate reductase was found in the 40% (NH4)2SO4 precipitate, while the inactivating factor was largely precipitated by 40 to 55% (NH4)2SO4. The latter fraction of the mature root inactivated the nitrate reductase isolated from the root tip, mature root, and scutellum. The inactivating factor, which has a Q10 15 to 25 C of 2.2, was heat labile, and hence has been designated as a nitrate reductase inactivating enzyme. The reduced flavin mononucleotide nitrate reductase was also inactivated, while an NADH cytochrome c reductase in nitrate-grown seedlings was inactivated but at a slower rate. The inactivating enzyme had no influence on the activity of nitrite reductase, glutamate dehydrogenase, xanthine oxidase, and isocitrate lyase. The activity of the nitrate reductase inactivating enzyme was not influenced by nitrate and was also found in the mature root of minus nitrate-grown seedlings.  相似文献   

4.
The activity and decay characteristics of nitrate reductase from wheat (Triticum aestivum) were studied in crude, partially-purified and highly-purified preparations. The decay of nitrate reductase activity in crude extracts was due to spontaneous dissociation of the enzyme and to the effects of two decay factors, one present in the 0–30% and the other in the 50–70% saturated (NH4)2SO4 fraction of a crude extract. Low rates of factor-mediated NR decay in vitro were associated with high levels of NR activity in vivo.  相似文献   

5.
The influence of (NH4)2SO4 on 14C assimilation and cyclosisin internodal cells of Chara corallina was investigated. Severeinhibition of 14C assimilation was found at pH values above7·0, this inhibition being correlated with the exogenouslevel of NH3 rather than NH+4. Cyclosis was also affected athigher concentrations of (NH4)2SO4. This effect was similarlycorrelated with exogenous levels of NH3. 14C assimilation was inhibited non-competitively by (NH4)2SO4,the apparent Km being increased from 0·55 to 1·5mM. The results suggest that the site(s) of inhibition is locatedat the plasmalemma, rather than at the chloroplasts. (Evidencein support of in vivo uncoupling of photophosphorylation, bylow concentrations of (NH4)2SO4, was not obtained). Significant perturbation of the OH efflux pattern wasobserved as the level of (NH4)2SO4 was increased. Induced migrationof efflux sites indicates that NH3 may interfere with the cellularmechanism that controls OH transport. Using a cell-segmentisolating chamber it was shown that (NH4)2SO4 inhibited OHefflux rather than HCO3 transport. This inhibitory effectwas readily reversible. These data are discussed in terms of a possible relationshipbetween the observe NH4)2SO4 stimulation of 36Cl influxand the effect of this compound on 14C assimilation.  相似文献   

6.
Spinach plants grown without molybdenum lack nitrate reductaseand when plants are deprived of nitrate existing activity islost. Transfer of molybdenum-deficient plants to a solutioncontaining (NH4)299MoO4) or nitrate-starved plants to NaNO3solution induced enzyme activity in 24 hr. After purificationby selective adsorption, precipitation and disc electrophoresis,the protein from molybdenum-deficient plants given 99Mo showedradioactivity only where nitrate reductase was revealed on theacrylamide gel. Molybdenum was similarly selectively concentratedinto the enzyme as a result of induction by nitrate in plantsgrown with sub-optimal molybdenum supply in order to minimizeeffects of isotope dilution on measurement of 99Mo incorporation. There was no exchange in vitro between 99Mo and purified activeenzyme in the resting state over 18 hr at 4°C, or with functioningenzyme held at room temperature for 24 hr. There was evidenceeither for possible in vivo exchange of 99Mo andenzyme boundMo or for slight synthesis of fresh enzyme under conditionsof net loss of enzyme in nitrate starved plants. Five NADH2 and two NADPH2 reactive diaphorases which could beseparated by electrophoresis were present in extracts. Onlyone of these having strong NADH2 and weak NADPH2 activity wasdirectly associated with nitrate reductase. The same complexalso showed the only benzyl viologen (BV.) reactive nitratereductase. Nitrate reductase in spinach is therefore considered to be amolybdenum-dependant and molybdenum-containing protein in whichNADH2 (with weak NADPH2) and BVelectron donor functions anddiaphorase/reductase activities remain closely associated duringpurification and electrophoresis. The techniques provide a simple means for the production andpurification of enzyme containing radioactively labelled Moapplicable to investigations on the structure of the enzyme. (Received January 16, 1971; )  相似文献   

7.
Inhibition of Nodule Development in Soybean by Nitrate or Reduced Nitrogen   总被引:5,自引:1,他引:4  
Imsande, J. 1986. Inhibition of nodule development in soybeanby nitrate or reduced nitrogen.—J. exp. Bot. 37: 348–355. Nodulation of hydroponically grown soybean plants [Glycine max(L.) Merr.] is inhibited by continuous growth in the presenceof 4· mol m–3 KNO3 The presence of 4·0 molm–3 ‘starter nitrate’ for 3-6 d during noduledevelopment, however, subsequently stimulates nodule dry weightaccumulation and nitrogenase activity. These stimulations occureven though 4· mol m–3 nitrate temporarily delaysnodule development, i.e. the late steps of nodule developmentare reversibly inhibited by a short-term exposure to 4·0mol m–3 nitrate. On the other hand, treatment with 4·0mol m–3 nitrate in excess of 14 d significantly reducesnodule dry weight Thus, extended growth in the presence of 4·0mol m–3 KNO3 seems to block both early and late stepsof nodule development. Nodulation of hydroponically grown soybeansis also inhibited by continuous growth in the presence of 2·0mol m–3 (NH4)2SO4 This inhibition is not caused by acidityof the growth medium. On the other hand, nodule development6 d after inoculation with Rhizoblum japonicum is not delayedby a 7-d exposure to 2·0 mol m–3 (NH4)2SO4 butis partially inhibited by a prolonged exposure to (NH4)2SO4Because repression of nodulation by 4·0 mol m–3KNO3 is more severe than that by 2·0 mol m–3 (NH4)2SO4and because ammonium taken up by the soybean plant is not activelyoxidized to nitrate, it is suggested that there are at leasttwo mechanisms by which nitrate utilization represses noduleformation in soybean. Key words: Glycine max, nitrogen, nitrogen fixation, nodulation  相似文献   

8.
Abstract Effect of ammonium on in vivo activity of nitrate reductase in roots, shoots and leaves of maize (Zea mays L.) seedlings was studied in relation to light/dark conditions and EDTA supply. Supply of 5 mM (NH4)2SO4 increased the steady state level of enzyme only in leaves and in light, while it had no effect in roots and shoots and in the dark. The substrate induction of enzyme was also little affected by 1 to 10 mM (NH4)2SO4 in roots and shoots. In the leaves the activity in the dark was either inhibited (minus EDTA) or stimulated (plus EDTA) by 5 to 10 mM (NH4)2SO4. The activity was stimulated in the light also in the presence of EDTA at higher concentrations of ammonium. When different concentrations of ammonium were supplied without any exogenous nitrate in the light, the enzyme activity increased at low concentration and was either inhibited or unaffected at higher concentrations depending upon the tissue used. Supply of EDTA with ammonium modified its effect to some extent. It is suggested that the effect of ammonium on nitrate reductase activity depends upon the tissue used and the effective concentration of the ammonium.  相似文献   

9.
During the first 7 d of sulphate-deprivation stored SO42- wasredistributed and assimilated into organic forms in the tropicallegume Macroptilium atropurpu-reum cv. Siratro. However, whilstthe sulphate content of all tissues declined after removingthe external SO42- supply this was slowest in mature leaves.By contrast, the total S content of mature leaves declined markedlyin the absence of external sulphate whilst that of both youngleaves and roots increased. Furthermore, when radiolabelledSO42- was applied to abraded surfaces of mature leaves, mostof the translocated label was recovered in the root following2 d SO42- deprivation. By contrast, radiolabelled SO42-appliedto young leaves was mostly retained in these tissues and nottranslocated. Within 3 d of removing the SO42- supply there was a large increasein extractable APS-sulphotransferase activity in roots accompaniedby a decline in nitrate reductase activity, but these effectswere not seen in leaves. Five days after the removal of SO42-there was a large increase in the content of asparagine in roots. The results are discussed in relation to the co-ordination ofNO3- and SO42- uptake and assimilation and the partitioningof sulphur during S-stress. Key words: Sulphate supply, stomatal conductance, ATP-sulphurylase, APS-sulphotransferase, nitrate reductase  相似文献   

10.
Growth and nitrate reductase activity (NRA) of Atropa belladonnacells were studied in medium supplemented with NaNO3, NH4NO3,and amino acid precursors to tropane alkaloids. Growth and NRAwere stimulated by NH4+ and by proline, by proline plus ornithine,but not by glutamate, in NO3-containing medium. Testedamino acids inhibited neither utilization of inorganic nitrogennor growth. (Received September 30, 1988; Accepted August 28, 1989)  相似文献   

11.
Reactions to the input of acidic gases were investigated inleaves of Quercus robur L. exposed to different concentrationsof SO2 (80, 120, and 160 nl I–1) for 32 to 70 d. Two-year-oldoaks were grown in nutrient solutions with varied nitrogen formand were fumigated in closed chambers. An attempt was made toidentify the mechanisms of proton neutralization by consideringthe uptake of nitrogen, the increase in sulphur and carboxylatecontents, and the excretion of hydroxyl ions or protons. Inaddition, nitrate reductase activity was determined in the leaves. The reduction of sulphur was not involved in the neutralizationof protons generated by SO2-uptake, whereas organic acid metabolismplayed a decisive role. Depending on SO2-concentration, durationof fumigation and nitrogen supply, oaks reacted with a reductionin the size of the carboxylate pool in the leaves, and/or withan increase in proton excretion (or a decrease in hydroxyl ionexcretion). Nitrate reductase activity increased in the leavesof nitrate-grown oaks exposed to the highest SO2-concentration(160 nl l–1) for 42 d. The capacity of the mechanismsconsidered is sufficient for the neutralization of the calculatedamounts of protons resulting from SO2-uptake. Key words: Leaves, neutralization, protons, Quercus, sulphur dioxide  相似文献   

12.
Two cultivars (Mec and Chiarano) of wheat (Triticum aestivum)were exposed to constant low levels of SO2 (35, 75 and 120 nll–1) over a period of 4 months. In previous studies Mechas been shown to be more sensitive to SO2 and this has beenconfirmed in the present study where Mec showed a greater tendencythan Chiarano to accumulate soluble non-protein SH compounds,principally glutathione and cysteine. The reduced glutathione to oxidized glutathione ratio (GSH/GSSG)increased significantly in Mec with SO2 treatment, but no changein the activity of glutathione reductase was observed. Key words: Wheat, SO2 fumigation, SH-compounds  相似文献   

13.
Hydrosulfite-reduced FMN served as an electron donor for nitratereductase purified from broad bean leaves. FMN was successfullyreplaced with BV. The flavine nucleotide nitrate reductase hadits pH optima at about 7.8 with phosphate buffer and at about7.4 with Tris-HCl buffer. The Km's for nitrate and FMN were3.7 ? 10–4 M and 3.7 ? 10–5 M, respectively. NADH2: nitrate reductase activity was completely inhibited by0.1 mM p-CMB, whereas FMNH2: nitrate reductase activity wasnot. Inhibited activity was restored by the addition of cysteine.A sulfhydryl enzyme is involved in the NADH2: nitrate reductasesystem but not in the FMNH2 : nitrate reductase system. NADH2and FMNH2 probably feed electrons into the electron transportchain at different sites. The nitrate reductase preparationhad an NADH2-specific diaphorase activity which was almost completelyinhibited by 0.1 mM p-CMB. The NADH2-specific diaphorase mayform the sulfhydryl enzyme which mediates electron transferbetween NADH2 and nitrate. (Received May 6, 1969; )  相似文献   

14.
In synchronized Chlorella sorokiniana cells, the NH4+ inducibleNADP-specific glutamate dehydrogenase enzyme (NADP-GDH) accumulatedin a linear manner throughout the first cell cycle. Early inthe following second cell cycle, an increase in its rate ofaccumulation occurred that was proportional to the increasein total cellular DNA in the previous cell cycle. In synchronizedbacterial cells, increases in rate of linear accumulation ofinducible enzymes coincide with the time of replication of theirstructural genes. To determine whether the rate change in NADPGDHaccumulation resulted from a delay in replication of its nuclearstructural gene (gdhN) in fully induced C. sorokiniana cells,the cell cycle timing of replication of this gene was comparedto that of another nuclear gene, nitrate reductase (nia), andof a chloroplast gene, ribulose bisphosphate carboxylase large-subunit(rbcL), in synchronized cells cultured in NH4+ or NO3(uninduced) medium. The gdhN and nia genes replicated withinthe period of nDNA synthesis and rbcL within the period of ctDNAsynthesis in cells growing in either nitrogen source. Therefore,the delayed rate change in enzyme accumulation results froma process that regulates expression of the gdhN gene after itsreplication. (Received July 16, 1994; Accepted November 28, 1994)  相似文献   

15.
The xylem exudation of detopped 7-d-old seedlings of Zea maysL. doubled when KCI was present in the root medium comparedto seedlings maintained on water. It was further enhanced whenKCI was replaced by nitrogen compounds such as nitrate, ammoniumand glutamine. The role of the nitrate assimilation pathwayon the enhancement of xylem exudation rate was investigatedusing tungstate, an inhibitor of nitrate reductase (NR) activity,and phosphinothricin or methionine sulphoximine, inhibitorsof glutamine synthetase (GS) activity. The sap levels of NO3,NH4+, glutamine, and asparagine was used to ascertain the invivo inhibition of both enzymes. The tungstate effects werealso checked by measuring leaf in vitro NA activity and NR proteincontent. Xylem exudation rate of detopped seedlings fed withKNO3 decreased when the nitrate assimilation pathway was blockedeither at the NR or at GS sites. This decrease was preventedwhen urea (acting as NH4+ supply) was given simultaneously withtungstate. KNO3 does not act directly on exudation, but throughthe involvement of NH4+. The involvement of glutamine was alsoshown since GS inhibition resulted in a cancellation of theenhancing effect of KNO3 on exudation. As change of exudationrate was not linked to change in sap osmolarity, it is assumedthat the assimilation chain could modify root water conductance.The role of glutamine was discussed. Key words: Exudation, maize, nitrate, conductance, NR, GS  相似文献   

16.
A. Melzer  G. Gebauer  H. Rehder 《Oecologia》1984,63(3):380-385
Summary The aim of this work was to investigate the effect of nitrogen starvation and subsequent fentilization with nitrate or ammonium on nitrate content and nitrate reductase activity of Rumex obtusifolius L. under natural conditions.When plants were transplanted to nitrate-poor media, endogenous nitrate was reduced within a few days. In parallel, nitrage reductase activities dropped to about 25% of the initial values. As a consequence of nitrate fertilization (1; 10 or 100 mmol KNO3/l substrate), endogenous nitrate content of the plant abruptly increased within one day. In extreme cases, nitrate concentrations of up to 10% of plant dry weight could be observed without being lethal. High external nitrate concentrations caused an inhibition of nitrate reductase within the leaves, while low external concentrations provoked an increase in the enzyme activity of about 450% within one day. Ammonium fertilization (5 mmol (NH4)2SO4/l substrate) also caused an increase in nitrate reductase activity and nitrate content within leaf blades. This observation indicates a rapid nitrification of ammonium in the substrate. When plants were fertilized with ammonium plus nitrate (2.5 mmol (NH4)2SO4+ 5 mmol KNO3/l substrate), an extremely high and long term increase in nitrate reduction could be observed. Due to an intensive enzymatic nitrate turnover, the nitrate content of leaf blades then remained relatively low. Our observations do not point to an inhibition of nitrate reductase activity in leaves of Rumex obtusifolius by ammonium. Despite temporarily high endogenous nitrate concentrations, Rumex obtusifolius may not be termed as a nitrate storage plant, since the accumulation of nitrate is a short term process only.  相似文献   

17.
Experiments were conducted to investigate the effect of concentrationof NH4+ in nutrient solution on root assimilation of NO3and to determine whether the NH4+NO3 interaction wasmodified in the presence of K+. Dark-grown, detopped corn seedlings(cv. Pioneer 3369A) were exposed for 8 h to 0.15 mM Ca(NO3)2and varying concentrations of (NH4)2SO4 in the absence or presenceof 0.15 mM K2SO4. The accelerated phase of NO3 uptakeappeared most sensitive to restriction by additions of 0.15mM (NH4)2SO4. In the absence of K+, the restriction increasedonly slightly even when solution (NH4)2SO4, was increased from0.15 mM to 12.5 mM which was accompanied by an increase of NH4+in the tissue from about 7.0 to 35 µmol g–1 fr.wt. of root. Increasing concentrations of solution NH4+ progressivelyinhibited net K+ uptake. At the highest solution NH4+ concentrations,there was an initial net efflux of K+ and no net influx occurredduring the treatment period. The severity of the NH4)SO4 restrictionof NO3 uptake was moderated considerably in the presenceof K+ as long as a net influx of K+ occurred. However, net influxof K+ was not associated with alteration of NH4+ uptake, assimilation,or accumulation in the root tissue. The lack of correlationbetween the severity of restriction of NO3 uptake andendogenous NHJ suggested the restriction resulted from an effectexerted by exogenous NH4+ which tended to saturate at lowersolution NHJ concentrations or by inhibitory factors generatedduring assimilation of NH4+. Several mechanisms were postulatedto account for the moderating influence of K+. In all experiments,root NO3 reduction was restricted by the presence ofambient NH4+. The quantitative decreases in reduction tendedto be less than decreases in NO3 uptake and therefore,could result from inhibition solely of uptake with subsequentlimitation in availability of substrate for the reduction process,but the possibility of a direct effect on reduction could notbe excluded.  相似文献   

18.
The auxin-binding proteins (ABP-I and ABP-II) purified frometiolated mung bean seedlings stimulated RNA synthesis in isolatednuclei both in the presence and absence of (NH4)2SO4. In theabsence of (NH4)2SO4, maximum stimulation of RNA synthesis occurredat 100 µg ABP-I (25%) and 300 µg ABP-II (60%), whereasin the presence of 50 mM (NH4)2SO4 maximum stimulation occurredat 60 µg ABP-I (10%) and 100 µg ABP-II (40%). Thesestimulatory effects on RNA synthesis by ABP-I and ABP-II werecompletely abolished by the addition of -amanitin (4 µg/0.5ml reaction mixture). IAA had no effect on the stimulation ofRNA synthesis by ABP-I and ABP-II. (Received September 30, 1985; Accepted March 5, 1986)  相似文献   

19.
Maize seeds were allowed to germinate in the presence of different nitrogenous salts for 72 h. Changes in the ethanol soluble and insoluble nitrogen were studied in the embryo and in the endosperm. Supply of Ca(NC3)2 enhanced germination and protease activity in the endosperm resulting in greater solubilisation of protein to soluble nitrogen in the seeds. NH4NO3 and (NH4)2SO4 were less effective as compared to Ca(NO3)2. Cycloheximide inhibited germination and protease activity. Pretreatment also resulted in increase in growth, soluble and insoluble nitrogen, and nitrate reductase activity in the primary leaves. Ca(NO3)2 was more effective than NH4NO3 and (NH4)2SO4.  相似文献   

20.
Seven heathland species, four herbaceous plants and three dwarfshrubs, were tested for their capacity to utilize NH4+ or NO3. When cultured in solution at pH 4.0 with 2mol m–3 N,all species showed similar growth responses with respect toN source. Nitrate was assimilated almost equally well as ammonium,with relative growth rate generally averaging 5–8% lowerfor NO3 grown plants, albeit not always significantly.However, N source was significantly and consistently correlatedwith biomass partitioning, as NH4+-fed plants allocated moredry matter to shoots and less to roots when compared to NO3-fed plants. The strong difference in biomass partitioning mayrelate to the relative surplus of carbon per unit plant N (or,alternatively, the relatively suboptimal rate of N assimilationper unit plantC) in NO3-fed plants Inherently slow-growing dwarf shrubs accumulated virtually nofree nitrate in their tissues and reduction of nitrate was strictlyroot-based. Faster-growing herbaceous plants, however, partitionedthe assimilation of nitrate over both shoots and roots, therebyaccumulating relatively high tissue NO3 levels. Ion uptakerates depended clearly on the ‘relative shoot demand’.At similar shoot demands, especially in the herbaceous species,specific uptake rates for N and total inorganic (non-N) anionswere higher in NH4+ -fed plants, whereas the uptake rate fortotal (non-N) cations was higher in NO3-fed plants. Rateof P uptake was enhanced with increasing plant demand, but wasindependent of the N source. Net H+ extrusions ranged from 1.00to 1.34 H+ per NH4+, and from –0.48 to –0.77 H+per NO3 taken up. Key words: Ammonium, biomass partitioning, heathland plants, low pH, nitrate, nitrate reductase activity, relative shoot demand, specific absorption rate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号