首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biochemical analysis of the kinetics of assembly of two cytoplasmic plaque proteins of the desmosome, desmoplakins I (250,000 Mr) and II (215,000 Mr), in Madin-Darby canine kidney (MDCK) epithelial cells, demonstrated that these proteins exist in a soluble and insoluble pool, as defined by their extract ability in a Triton X-100 high salt buffer (CSK buffer). Upon cell-cell contact, there is a rapid increase in the capacity of the insoluble pool at the expense of the soluble pool; subsequently, the insoluble pool is stabilized, while proteins remaining in the soluble pool continue to be degraded rapidly (Pasdar, M., and W. J. Nelson. 1988. J. Cell Biol. 106:677-685). In this paper, we have sought to determine the spatial distribution of the soluble and insoluble pools of desmoplakins I and II, and their organization in the absence and presence of cell-cell contact by using differential extraction procedures and indirect immunofluorescence microscopy. In the absence of cell-cell contact, two morphologically and spatially distinct patterns of staining of desmoplakins I and II were observed: a pattern of discrete spots in the cytoplasm and perinuclear region, which is insoluble in CSK buffer; and a pattern of diffuse perinuclear staining, which is soluble in CSK buffer, but which is preserved when cells are fixed in 100% methanol at -20 degrees C. Upon cell-cell contact, in the absence or presence of protein synthesis, the punctate staining pattern of desmoplakins I and II is cleared rapidly and efficiently from the cytoplasm to the plasma membrane in areas of cell-cell contact (less than 180 min). The distribution of the diffuse perinuclear staining pattern remains relatively unchanged and becomes the principal form of desmoplakins I and II in the cytoplasm 180 min after induction of cell-cell contact. Thereafter, the relative intensity of staining of the diffuse pattern gradually diminishes and is completely absent 2-3 d after induction of cell-cell contact. Significantly, double immunofluorescence shows that during desmosome assembly on the plasma membrane both staining patterns coincide with a subpopulation of cytokeratin intermediate filaments. Taken together with the preceding biochemical analysis, we suggest that the assembly of desmoplakins I and II in MDCK epithelial cells is regulated at three discrete stages during the formation of desmosomes.  相似文献   

2.
Desmosomes are composed of two morphologically and biochemically distinct domains, a cytoplasmic plaque and membrane core. We have initiated a study of the synthesis and assembly of these domains in Madin-Darby canine kidney (MDCK) epithelial cells to understand the mechanisms involved in the formation of desmosomes. Previously, we reported the kinetics of assembly of two components of the cytoplasmic plaque domain, Desmoplakin I/II (Pasdar, M., and W. J. Nelson. 1988. J. Cell Biol. 106:677-685 and 106:687-699. We have now extended this analysis to include a major glycoprotein component of the membrane core domain, Desmoglein I (DGI; Mr = 150,000). Using metabolic labeling and inhibitors of glycoprotein processing and intracellular transport, we show that DGI biosynthesis is a sequential process with defined stages. In the absence of cell-cell contact, DGI enters a Triton X-100 soluble pool and is core glycosylated. The soluble DGI is then transported to the Golgi complex where it is first complex glycosylated and then titrated into an insoluble pool. The insoluble pool of DGI is subsequently transported to the plasma membrane and is degraded rapidly (t1/2 less than 4 h). Although this biosynthetic pathway occurs independently of cell-cell contact, induction of cell-cell contact results in dramatic increases in the efficiency and rate of titration of DGI from the soluble to the insoluble pool, and its transport to the plasma membrane where DGI becomes metabolically stable (t1/2 greater than 24 h). Taken together with our previous study of DPI/II, we conclude that newly synthesized components of the cytoplasmic plaque and membrane core domains are processed and assembled with different kinetics indicating that, at least initially, each domain is assembled separately in the cell. However, upon induction of cell-cell contact there is a rapid titration of both components into an insoluble and metabolically stable pool at the plasma membrane that is concurrent with desmosome assembly.  相似文献   

3.
During growth of Madin-Darby canine kidney (MDCK) epithelial cells, there is a dramatic change in the stability, biophysical properties, and distribution of the membrane skeleton (fodrin) which coincides temporally and spatially with the development of the polarized distribution of the Na+, K+-ATPase, a marker protein of the basolateral domain of the plasma membrane. These changes occur maximally upon the formation of a continuous monolayer of cells, indicating that extensive cell-cell contact may play an important role in the organization of polarized MDCK cells (Nelson, W. J., and P. J. Veshnock, 1986, J. Cell Biol., 103:1751-1766). To directly analyze the role of cell-cell contact in these events, we have used an assay in which the organization of fodrin and membrane proteins is analyzed in confluent monolayers of MDCK cells in the absence or presence of cell-cell contact by adjusting the concentration Ca++ in the growth medium. Our results on the stability and solubility properties of fodrin reported here show directly that there is a positive correlation between cell-cell contact and increased stability and insolubility of fodrin. Furthermore, we show that fodrin can be recruited from an unstable pool of protein to a stable pool during induction of cell-cell contact; significantly, the stabilization of fodrin is not affected by the addition of cyclohexamide, indicating that proteins normally synthesized during the induction of cell-cell contact are not required. Together these results indicate that cell-cell contact may play an important role in the development of polarity in MDCK cells by initiating the formation of a stable, insoluble matrix of fodrin with preexisting (membrane) proteins at the cell periphery. This matrix may function subsequently to trap proteins targeted to the membrane, resulting in the maintenance of membrane domains.  相似文献   

4.
Desmosomes are major components of the intercellular junctional complex in epithelia. They consist of at least eight different cytoplasmic and integral membrane proteins that are organized into two biochemically and structurally distinct domains: the cytoplasmic plaque and membrane core. We showed previously that in MDCK epithelial cells major components of the cytoplasmic plaque (desmoplakin I and II; DPI/II) and membrane core domains (desmoglein I; DGI) initially enter a pool of proteins that is soluble in buffers containing Triton X-100, and then titrate into an insoluble pool before their arrival at the plasma membrane (Pasdar, M., and W. J. Nelson. 1988. J. Cell Biol. 106:677-685; Pasdar. M., and W. J. Nelson. 1989. J. Cell Biol. 109:163-177). We have now examined whether either the soluble or insoluble pool of these proteins represents an intracellular site for assembly and interactions between the domains before their assembly into desmosomes at the plasma membrane. Interactions between the Triton X-100-soluble pools of DPI/II and DGI were analyzed by sedimentation of extracted proteins in sucrose gradients. Results show distinct differences in the sedimentation profiles of these proteins, suggesting that they are not associated in the Triton X-100-soluble pool of proteins; this was also supported by the observation that DGI and DPI/II could not be coimmunoprecipitated in a complex with each other from sucrose gradient fractions. Immunofluorescence analysis of the insoluble pools of DPI/II and DGI, in cells in which desmosome assembly had been synchronized, showed distinct differences in the spatial distributions of these proteins. Furthermore, DPI/II and DGI were found to be associated with different elements of cytoskeleton; DPI/II were located along cytokeratin intermediate filaments, whereas DGI appeared to be associated with microtubules. The regulatory role of cytoskeletal elements in the intracellular organization and assembly of the cytoplasmic plaque and membrane core domains, and their integration into desmosomes on the plasma membrane is discussed.  相似文献   

5.
Desmosomes, complex multisubunit structures that assemble at sites of cell-cell contact, are important components of the epithelial junctional complex. Desmosome assembly requires the coordinated interaction at the plasma membrane of at least 8 cytoplasmic and integral membrane proteins organized into two structurally and functionally distinct domains, the cytoplasmic plaque and membrane core. Previous studies (Pasdar et al., J. Cell Biol., 113:645-655) provided evidence that cytokeratin filaments and microtubules may regulate transfer and assembly of cytoplasmic plaque and membrane core proteins, respectively. To determine directly the role of microtubules in these processes, Madin-Darby canine kidney (MDCK) cells were treated with nocodazole or colchicine to disrupt the microtubular network. Biochemical analysis of the different components of the cytoplasmic plaque and membrane core domains revealed little or no effect of nocodazole or colchicine on the kinetics of synthesis, post-translational modifications, transfer of proteins to the plasma membrane or their metabolic stability in the presence or absence of cell-cell contact. Likewise, immunofluorescence analysis of desmosome formation demonstrated an apparently normal desmosome assembly in the presence of nocodazole or colchicine upon induction of cell-cell contact. These results indicate that an intact microtubular network is not necessary for the processing or transport of the desmosomal membrane core glycoproteins to the plasma membrane in the absence or presence of cell-cell contact. Furthermore, the integration of the cytoplasmic plaque and membrane core domains induced by cell-cell contact at the plasma membranes of adjacent cells does not require the presence of functional microtubules.  相似文献   

6.
The development of polarized epithelial cells from unpolarized precursor cells follows induction of cell-cell contacts and requires resorting of proteins into different membrane domains. We show that in MDCK cells the distributions of two membrane proteins, Dg-1 and E-cadherin, become restricted to the basal-lateral membrane domain within 8 h of cell-cell contact. During this time, however, 60-80% of newly synthesized Dg-1 and E-cadherin is delivered directly to the forming apical membrane and then rapidly removed, while the remainder is delivered to the basal-lateral membrane and has a longer residence time. Direct delivery of greater than 95% of these proteins from the Golgi complex to the basal-lateral membrane occurs greater than 48 h later. In contrast, we show that two apical proteins are efficiently delivered and restricted to the apical cell surface within 2 h after cell-cell contact. These results provide insight into mechanisms involved in the development of epithelial cell surface polarity, and the establishment of protein sorting pathways in polarized cells.  相似文献   

7.
Changes in solubility and transport rate of cytoskeletal proteins during regeneration were studied in the motor fibers of the rat sciatic nerve. Nerves were injured by freezing at the midthigh level either 1-2 weeks before (experiment I) or 1 week after radioactive labeling of the spinal cord with L-[35S]methionine (experiment II). Labeled proteins in 6-mm consecutive segments of the nerve 2 weeks after labeling were analyzed following fractionation into soluble and insoluble populations with 1% Triton at 4 degrees C. When axonal transport of newly synthesized cytoskeleton was examined in the regenerating nerve in experiment I, a new faster component enriched in soluble tubulin and actin was observed that was not present in the control nerve. The rate of the slower main component containing most of the insoluble tubulin and actin together with neurofilament proteins was not affected. A smaller but significant peak of radioactivity enriched in soluble tubulin and actin was also detected ahead of the main peak when the response of the preexisting cytoskeleton was examined in experiment II. It is thus concluded that during regeneration changes in the organization take place in both the newly synthesized and the preexisting axonal cytoskeleton, resulting in a selective acceleration in rate of transport of soluble tubulin and actin.  相似文献   

8.
The discs large (hDlg) tumor suppressor is intimately involved in the control of cell contact, polarity, and proliferation by interacting with several components of the epithelial junctional complex and with the APC tumor suppressor protein. In epithelial cells, hDlg protein stability is regulated through the ubiquitin-proteasome pathway: hDlg is actively degraded in isolated cells, whereas it accumulates upon cell-cell contact. During neoplastic transformation of epithelial cells, loss of the differentiated morphology and progression toward a metastatic phenotype correlate with down-regulation of hDlg levels and loss of contact-dependent stabilization. Here we show that upon hyperphosphorylation, hDlg interacts with the beta-TrCP ubiquitin ligase receptor through a DSGLPS motif within its Src homology 3 domain. As a consequence, overexpression of beta-TrCP enhances ubiquitination of Dlg protein and decreases its stability, whereas a dominant negative beta-TrCP mutant inhibits this process. Furthermore, a mutant Dlg protein that is unable to bind beta-TrCP displays a higher protein stability and is insensitive to beta-TrCP. Using RNA interference, we also demonstrate that endogenous beta-TrCP regulates hDlg protein levels in epithelial cells. Finally, we show that beta-TrCP selectively induces the degradation of the membrane-cytoplasmic pool, without affecting the nuclear pool of hDlg.  相似文献   

9.
At maturity, the spores of Dictyostelium are suspended in a viscous fluid droplet, with each spore being surrounded by its own spore coat. Certain glycoproteins characteristic of the spore coat are also dissolved in this fluid matrix after the spore coat is formed. To determine whether any proteins of the coat reside in this fluid phase earlier during the process of spore coat assembly, pairs of strains which differed in a spore coat protein carbohydrate marker were mixed and allowed to form spore coats in each other's presence. We reasoned that proteins belonging to an early, soluble, extracellular pool would be incorporated into the spore coats of both strains. To detect trans-incorporation, spores were labeled with a fluorescent antibody against the carbohydrate marker and each spore's fluorescence was analyzed by flow cytometry. Several proteins of both the outer and inner protein layers of the coat appeared to be faithfully and reciprocally trans-incorporated and hence judged to belong to a soluble, assembly-phase pool. Western blot analysis of sorted spores, and EM localization, confirmed this conclusion. In contrast, one outer-layer protein was not trans-incorporated, and was concluded to be insoluble at the time of secretion. Three classes of spore coat proteins can be described: (a) Insoluble from the time of secretion; (b) present in the early, soluble pool but not the late pool after spore coat formation; and (c) present in the soluble pool throughout spore coat assembly. These classes may, respectively: (a) Nucleate spore coat assembly; (b) comprise a scaffold defining the dimensions of the nascent spore coat; and (c) complete the assembly process by intercalation into the scaffold.  相似文献   

10.
Yamazaki Y  Okawa K  Yano T  Tsukita S  Tsukita S 《Biochemistry》2008,47(19):5378-5386
A high level of structural organization of functional membrane domains in very narrow regions of a plasma membrane is crucial for the functions of plasma membranes and various other cellular functions. Conventional proteomic analyses are based on total soluble cellular proteins. Thus, because of insolubility problems, they have major drawbacks for use in analyses of low-abundance proteins enriched in very limited and specific areas of cells, as well as in analyses of the membrane proteins in two-dimensional gels. We optimized proteomic analyses of cell-cell adhering junctional membrane proteins on gels. First, we increased the purity of cell-cell junctions, which are very limited and specific areas for cell-cell adhesion, from hepatic bile canaliculi. We then enriched junctional membrane proteins via a guanidine treatment; these became selectively detectable on two- dimensionally electrophoresed gels after treatment with an extremely high concentration of NP-40. The framework of major junctional integral membrane proteins was shown on gels. These included six novel junctional membrane proteins of type I, type II, and tetraspanin, which were identified by mass spectrometry and by a database sequence homology search, as well as 12 previously identified junctional membrane proteins, such as cadherins and claudins.  相似文献   

11.
The incorporation of [35S]sulfate into the soluble proteins of chromaffin granules was studied. Isolated bovine chromaffin cells were pulse-labeled with [35S]sulfate. The radioactively labeled products were characterized by one- and two-dimensional electrophoresis. Three proteins of chromaffin granules were preferentially labeled. One was identified by immunoprecipitation as chromogranin B (Mr 100,000). This result explains why during cellular synthesis the chromogranin B precursor is converted into a significantly more acidic protein. During chase periods, the newly synthesized chromogranin B was progressively degraded by endogenous proteases. A second labeled protein, much less labeled than chromogranin B, was identified as chromogranin A. The largest portion of the radioactive label was found in a heterogeneous component (Mr 86,000-100,000; pI 4.3-5.0). Digestion experiments with chondroitinase ABC demonstrated that this labeled component and a comigrating Coomassie Blue-stained spot were selectively degraded by this enzyme. This establishes that this component is a proteoglycan.  相似文献   

12.
Ankyrin is an extrinsic membrane protein in human erythrocytes that links the alpha beta-spectrin-based extrinsic membrane skeleton to the membrane by binding simultaneously to the beta-spectrin subunit and to the transmembrane anion transporter. To analyse the temporal and spatial regulation of assembly of this membrane skeleton, we investigated the kinetics of synthesis and assembly of ankyrin ( goblin ) with respect to those of spectrin in chicken embryo erythroid cells. Electrophoretic analysis of Triton X-100 soluble and cytoskeletal fractions show that at steady state both ankyrin and spectrin are detected exclusively in the cytoskeleton. In contrast, continuous labeling of erythroid cells with [35S]methionine, and immunoprecipitation of ankyrin and alpha- and beta-spectrin, reveals that newly synthesized ankyrin and spectrin are partitioned into both the cytoskeletal and Triton X-100 soluble fractions. The soluble pools of ankyrin and beta-spectrin reach a plateau of labeling within 1 h, whereas the soluble pool of alpha-spectrin is substantially larger and reaches a plateau more slowly, reflecting an approximately 3:1 ratio of synthesis of alpha- to beta-spectrin. Ankyrin and beta-spectrin enter the cytoskeletal fraction within 10 min of labeling, and the amount assembled into the cytoskeletal fraction exceeds the amount present in their respective soluble pools within 1 h of labeling. Although alpha-spectrin enters the cytoskeletal fraction with similar kinetics to beta-spectrin and ankyrin, and in amounts equimolar to beta-spectrin, the amount of cytoskeletal alpha-spectrin does not exceed the amount of soluble alpha-spectrin even after 3 h of labeling. Pulse-chase labeling experiments reveal that ankyrin and alpha- and beta-spectrin assembled into the cytoskeleton exhibit no detectable turnover, whereas the Triton X-100 soluble polypeptides are rapidly catabolized, suggesting that stable assembly of the three polypeptides is dependent upon their association with their respective membrane receptor(s). The existence in the detergent-soluble compartment of newly synthesized ankyrin and alpha- and beta-spectrin that are catabolized, rather than assembled, suggests that ankyrin and spectrin are synthesized in excess of available respective membrane binding sites, and that the assembly of these polypeptides, while rapid, is not tightly coupled to their synthesis. We hypothesize that the availability of the high affinity receptor(s) localized on the membrane mediates posttranslationally the extent of assembly of the three cytoskeletal proteins in the correct stoichiometry, their stability, and their spatial localization.  相似文献   

13.
To study the assembly of the Caulobacter crescentus flagellar filament, we have devised a fractionation protocol that separates the cellular flagellin into three compartments: soluble, membrane, and assembled. Radioactive labeling in pulse-chase and pulse-labeling experiments has demonstrated for the first time that both soluble and membrane-associated flagellin pools are precursors in the assembly of the flagellar filament. The results of these experiments also indicate that flagellar filament assembly occurs via the translocation of newly synthesized flagellins from the soluble pool to the membrane pool to the assembled flagellar filaments. It is not possible to conclude whether the soluble flagellin fraction is synthesized cytoplasmically or as a loosely associated membrane intermediate which is released during lysis. It is clear, however, that the soluble and membrane flagellins are in physically and functionally distinct pools. The implications of these findings for the study of protein secretion from cells and the invariant targeting of flagellar proteins to the stalk-distal pole of the dividing cell during flagellum morphogenesis are discussed.  相似文献   

14.
The assembly of newly induced LamB protein (phage lambda receptor) was investigated in an operon fusion strain of Escherichia coli, in which the lamB gene is expressed under lac promoter control. The induction kinetics both for total cellular and for cell surface-exposed LamB protein were studied by immunochemical detection methods, using two distinct antisera directed against detergent-solubilized LamB trimers and completely denatured LamB monomers, respectively. Anti-trimer antibodies recognized both monomers and trimers, whereas anti-monomer antibodies only reacted with monomers. Provided appropriate solubilization conditions were used, both antisera were able to immunoprecipitate intracellular mature LamB protein quantitatively. Following induction, the first LamB antigenic determinants were detected after 60 to 80 seconds; detection of the newly synthesized protein by anti-monomer antibodies slightly preceded that by anti-trimer antibodies, a finding that could be partly explained by the observation that anti-monomer antibodies recognized a larger fraction of nascent LamB than did anti-trimer antibodies. Exposure of antigenic determinants at the cell surface was delayed for 30 to 50 seconds with respect to their synthesis. Therefore, either translocation or conformational changes must be rate-limiting in the series of processes that eventually convert the newly synthesized protein into its mature outer membrane state. LamB protein was found to occur in at least three clearly distinguishable states. State I is the LamB monomer, state II corresponds to a metastable trimer that dissociates in sodium dodecyl sulphate above 60 degrees C, and state III is the state LamB trimer that dissociates in sodium dodecyl sulphate only at temperatures above 90 degrees C. The chase kinetics of these states showed that conversion of newly synthesized LamB monomers to stable LamB trimers occurred in two stages: state I monomers were chased into metastable state II trimers rapidly (t 1/2 = 20 s), whereas stabilization of state II trimers to state III trimers was a relatively slow (t 1/2 = 5.7 min) process. Based on our results, a timing sequence in the assembly of outer membrane LamB protein is proposed.  相似文献   

15.
Aged proteins can become hazardous to cellular function, by accumulating molecular damage. This implies that cells should preferentially rely on newly produced ones. We tested this hypothesis in cultured hippocampal neurons, focusing on synaptic transmission. We found that newly synthesized vesicle proteins were incorporated in the actively recycling pool of vesicles responsible for all neurotransmitter release during physiological activity. We observed this for the calcium sensor Synaptotagmin 1, for the neurotransmitter transporter VGAT, and for the fusion protein VAMP2 (Synaptobrevin 2). Metabolic labeling of proteins and visualization by secondary ion mass spectrometry enabled us to query the entire protein makeup of the actively recycling vesicles, which we found to be younger than that of non‐recycling vesicles. The young vesicle proteins remained in use for up to ~ 24 h, during which they participated in recycling a few hundred times. They were afterward reluctant to release and were degraded after an additional ~ 24–48 h. We suggest that the recycling pool of synaptic vesicles relies on newly synthesized proteins, while the inactive reserve pool contains older proteins.  相似文献   

16.
The preimplantation mouse embryo expresses two polypeptides, Mr 240,000 and Mr 235,000, that are immunologically cross-reactive with antibody to the alpha and beta subunits of mouse brain spectrin. We investigated the synthesis of the spectrin subunits in the Triton-soluble and Triton-insoluble fractions of fertilized eggs, two-cell embryos, compacted morulae, and blastocysts labeled with L-[35S]methionine. Synthesis of embryonic spectrin began in the Triton-soluble fraction with significant levels of alpha-spectrin synthesis first detected in the morula stage and significant levels of beta-spectrin synthesis detected in the blastocyst stage. Incorporation of newly synthesized alpha- and beta-spectrin into the cytoskeletal fraction took place in the blastocyst when equal amounts of both subunits were assembled. Previous studies have shown Triton-insoluble spectrin to be concentrated in regions of cell-cell contact in the embryo (J. S. Sobel and M. A. Alliegro, 1985, J. Cell Biol. 100, 333-336). The temporal and spatial correlation between the assembly of newly synthesized spectrin and its concentration in regions of cell apposition is consistent with the hypothesis that cell contact may influence the assembly of embryonic spectrin.  相似文献   

17.
Upon induction with heparin, Flavobacterium heparinum synthesizes and secretes into its periplasmic space heparinase I (EC 4.2.2.7), heparinase II, and heparinase III (heparitinase; EC 4.2.2.8). Heparinase I degrades heparin, and heparinase II degrades both heparin and heparan sulfate, while heparinase III degrades heparan sulfate predominantly. We isolated the genes encoding heparinases II and III (designated hepB and hepC, respectively). These genes are not contiguous with each other or with the heparinase I gene (designated hepA). hepB and hepC were found to contain open reading frames of 2,316 and 1,980 bp, respectively. Enzymatic removal of pyroglutamate groups permitted sequence analysis of the amino termini of both mature proteins. It was determined that the mature forms of heparinases II and III contain 746 and 635 amino acids, respectively, and have calculated molecular weights of 84,545 and 73,135, respectively. The preproteins have signal sequences consisting of 26 and 25 amino acids. Truncated hepB and hepC genes were used to produce active, mature heparinases II and III in the cytoplasm of Escherichia coli. When these enzymes were expressed at 37 degrees C, most of each recombinant enzyme was insoluble, and most of the heparinase III protein was degraded. When the two enzymes were expressed at 25 degrees C, they were both present predominantly in a soluble, active form.  相似文献   

18.
A neutral proteinase, capable of degrading gelatin, has been found in both an active and a latent form in the medium from the culture of rat mesangial cells. The latent form had an Mr of 80,000-100,000 and could be activated with either 4-aminophenylmercuric acetate or prolonged incubation at neutral pH. The active form of the enzyme was extensively purified. The estimated Mr of the purified enzyme on gel filtration was approximately 200,000, indicating that the active enzyme formed aggregates. However, analysis by SDS/polyacrylamide-gel electrophoresis under reducing conditions showed two protein bands, with Mr 68,000 and 66,000. Both proteins were found to contain proteolytic activity when run on SDS/substrate gels. The enzyme was inhibited by EDTA and 1,10-phenanthroline, but not by inhibitors for cysteine, serine or aspartic proteinases. The enzyme did not digest fibronectin, bovine serum albumin, proteoglycan or interstitial collagen. The enzyme degraded pepsin-solubilized placental type V collagen at 31 degrees C, whereas similarly solubilized type IV collagen was only degraded at higher temperatures. In addition, the neutral proteinase degraded native soluble type IV collagen. It also had activity on insoluble type IV collagen of glomerular basement membrane. The above properties suggest that the mesangial neutral proteinase belongs to the gelatinase group of metalloproteinases and that it may play a role in the normal turnover of extracellular glomerular matrix.  相似文献   

19.
The intracellular signal transduction mechanism leading to desmosome formation in low-calcium-grown keratinocytes after addition of calcium to the medium was studied by immunofluorescence using antibodies to desmoplakins I and II (cytoplasmic desmosomal proteins) and by electron microscopy before and after addition of calcium; protein kinase C (PKC) activators 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-dibutyrate (PDBu), and 1,2-dioctanoylglycerol (DOG); calcium ionophore A23187; selective PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) and staurosporine; and a Ca2+/calmodulin-dependent kinase inhibitor, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). In previous studies using a low-calcium-grown human epidermal squamous cell carcinoma, we have shown that an increase in extracellular Ca2+ caused a four-fold increase in PKC activity and addition of TPA (10 ng/ml) induced a transient increase in membrane-bound PKC activity in association with cell-cell contact formation. The present study showed that TPA (10 ng/ml). PDBu (10 ng/ml), and DOG (1 mg/ml) induced a rapid cell-cell contact and redistribution of desmoplakins from cytoplasm to the plasma membrane with desmosome formation within 60-120 min, which was similar, although less marked, to the effect of increased Ca2+. The TPA-induced desmosome formation was inhibited by selective PKC inhibitors, H-7 (20 microM) or staurosporine (100 nM). On the other hand, calcium ionophore A23187 induced only a temporary increase in the number of desmoplakin-containing fluorescent spots in the cytoplasm and a temporary cell-cell attachment without desmosome formation. The calcium-induced desmosome formation was partially inhibited by 20-100 microM H-7 or 100 nM staurosporine; however, it was not inhibited by W-7 at a concentration of 25 microM, at which this agent selectively inhibits calmodulin-dependent protein kinase. These results suggest that PKC activation plays an important role in desmoplakin translocation from the cytoplasm to the plasma membrane as one of the processes of calcium-induced desmosome formation.  相似文献   

20.
PARsylation [poly(ADP-ribosyl)ation] of proteins is implicated in the regulation of diverse physiological processes. Tankyrase is a molecular scaffold with this catalytic activity and has been proposed as a regulator of vesicular trafficking on the basis, in part, of its Golgi localization in non-polarized cells. Little is known about tankyrase localization in polarized epithelial cells. Using MDCK (Madin-Darby canine kidney) cells as a model, we found that E-cadherin-mediated intercellular adhesion recruits tankyrase from the cytoplasm to the lateral membrane (including the tight junction), where it stably associates with detergent-insoluble structures. This recruitment is mostly completed within 8 h of calcium-induced formation of cell-cell contact. Conversely, when intercellular adhesion is disrupted by calcium deprivation, tankyrase returns from the lateral membrane to the cytoplasm and becomes more soluble in detergents. The PARsylating activity of tankyrase promotes its dissociation from the lateral membrane as well as its ubiquitination and proteasome-mediated degradation, resulting in an apparent protein half-life of approximately 2 h. Inhibition of tankyrase autoPARsylation using H2O2-induced NAD+ depletion or PJ34 [N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide hydrochloride] treatment results in tankyrase stabilization and accumulation at the lateral membrane. By contrast, stabilization through proteasome inhibition results in tankyrase accumulation in the cytoplasm. These data suggest that cell-cell contact promotes tankyrase association with the lateral membrane, whereas PARsylating activity promotes translocation to the cytosol, which is followed by ubiquitination and proteasome-mediated degradation. Since the lateral membrane is a sorting station that ensures domain-specific delivery of basolateral membrane proteins, the regulated tankyrase recruitment to this site is consistent with a role in polarized protein targeting in epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号